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1 Introduction

Nonlinear dimensionality reduction methods are commonly used for two purposes: (i) as prepro-
cessing methods to reduce the number of input variables or torepresent the inputs in terms of more
natural variables describing the embedded data manifold, or (ii) for making the data set more un-
derstandable, by making the similarity relationships between data points explicit through visualiza-
tions. The visualizations are commonly needed in exploratory data analysis, and in interfaces to
high-dimensional data. In this abstract we will focus on thelatter types of applications and call
theminformation visualization, with the understanding that the goal is to visualize neighborhood or
proximity relationships within a set of high-dimensional data samples. The introduced methods are
expected to be useful for other kinds of dimensionality reduction tasks as well, however.

In information visualization applications, a problem withmost of the existing dimensionality re-
duction methods is that they do not optimize the performancein the task of visualizing similarity
relationships. The cost functions measure preservation ofpairwise distances for instance, but that
is only indirectly related to the goodness of the resulting visualization. Manifold search methods,
on the other hand, have been designed to find the “true” manifold which may be higher than two-
dimensional, which is the upper limit for visualization in practice. Hence, evaluating goodness of
visualizations seems to require usability studies which would be laborious and slow.

We view information visualization from the user perspective, as an information retrieval problem.
Assuming that the task of the user is to understand the proximity relationships in the original high-
dimensional data set, the task of the visualization algorithm is to construct a display that helps in
this task. For a given data point, the user wants to know whichother data points are its neighbors,
and the visualization should reveal this for all data points, as well as possible.

1.1 Retrieval of Neighbors

The SNE algorithm [4] was originally motivated as a method for placing a set of objects into a
low-dimensional space in a way that preserves neighbor identities. Such a projection does not try
to preserve pairwise distances as such, as multidimensional scaling (MDS) does, but instead the
probabilities of points being neighbors.

We have shown (to be published) that SNE can be seen as an information retrieval algorithm; it
optimizes a smoothed form of recall, a traditional goodnessmeasure. To show the connection we
need to define neighborhoods as step functions instead of Gaussians as in the original SNE. The
user is studyingr neighbors in the output space, and her goal is to find a large proportion of thek
“true” neighbors, that is, neighbors in the input space. Technically, we assume the closest points to
be neighbors with a high probability and the rest with a very low probability.
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Figure 1: Results on projecting the face dataset [9] to two dimensions. KL-KL curves (left),
precision–recall curves (middle) and trustworthiness–continuity [6] curves (right) as a function ofλ.
Other nonlinear projection methods have been added for reference. The precision–recall curves have
been calculated with 20 nearest neighbors in the input spaceas the set of relevant items; the number
of retrieved items (neighbors) is varied from 1 to 100. Only the reference method that achieved the
highest precision and the highest recall, and theλ values that had the largest area under the curve
are included for clarity. The KL–KL curve and the trustworthiness-continuity curve are calculated
using 20 nearest neighbors. On each plot the best performance is in the top right corner. Methods;
NeRV, LocalMDS [10], fNeRV: a faster approximative versionof NeRV, PCA: Principal Component
Analysis [5], MDS: metric Multidimensional Scaling [2], LLE: Locally Linear Embedding [8], LE:
Laplacian Eigenmap [1], CCA: Curvilinear Component Analysis [3], CDA: CCA using geodesic
distances [7] and Isomap [9].
.

The Kullback-Leibler divergence in the SNE cost function can be divided in four parts, and it is
straightforward to check that the part corresponding to misses dominates the cost function and,
moreover,

DKL(pi, qi) ≈
NMISS

k
C, (1)

whereC is a constant andNMISS the number of misses. Thepi is the probability distribution of
point being a neighbor ofi in the input space, andqi is the corresponding probability distribution in
the output space. SNE tries to minimize this cost function, and hence it would maximize recall

It is well known that maximizing recall typically leads to low precision. If we want to maximize
precision, we can reverse the direction of the KL divergencein the SNE cost function. It can be
shown that minimizing this would correspond to maximizing precision.

In practice it would be best to optimize a compromise. If we assign a relative costλ to misses and
(1 − λ) to false positives, then the total cost function to be optimized is

ENeRV = λEi[D(pi, qi)] + (1 − λ)Ei[D(qi, pi)]

= λ
∑

i

∑

j 6=i

pij log
pij

qij

+ (1 − λ)
∑

i

∑

j 6=i

qij log
qij

pij

. (2)

We call the new method that optimizes (2)Neighbor Retrieval Visualizer (NeRV). In Figure 1 NeRV
is shown to outperform other dimensionality reduction methods on three slightly different pairs of
performance measures.
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