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1 Introduction

Nonlinear dimensionality reduction methods are commoslydufor two purposes: (i) as prepro-
cessing methods to reduce the number of input variablesrept@sent the inputs in terms of more
natural variables describing the embedded data manifol¢li)dor making the data set more un-
derstandable, by making the similarity relationships lesmdata points explicit through visualiza-
tions. The visualizations are commonly needed in exployatata analysis, and in interfaces to
high-dimensional data. In this abstract we will focus on ldiéer types of applications and call
theminformation visualization, with the understanding that the goal is to visualize neigghbod or
proximity relationships within a set of high-dimensionata samples. The introduced methods are
expected to be useful for other kinds of dimensionality ctidun tasks as well, however.

In information visualization applications, a problem witlost of the existing dimensionality re-
duction methods is that they do not optimize the performamdbe task of visualizing similarity
relationships. The cost functions measure preservatigraiivise distances for instance, but that
is only indirectly related to the goodness of the resultifpalization. Manifold search methods,
on the other hand, have been designed to find the “true” manifbich may be higher than two-
dimensional, which is the upper limit for visualization iraptice. Hence, evaluating goodness of
visualizations seems to require usability studies whichildide laborious and slow.

We view information visualization from the user perspestigs an information retrieval problem.
Assuming that the task of the user is to understand the pitxielationships in the original high-
dimensional data set, the task of the visualization alforits to construct a display that helps in
this task. For a given data point, the user wants to know wbibkr data points are its neighbors,
and the visualization should reveal this for all data pgiasswell as possible.

1.1 Retrieval of Neighbors

The SNE algorithm [4] was originally motivated as a methodgtacing a set of objects into a
low-dimensional space in a way that preserves neighbotitten Such a projection does not try
to preserve pairwise distances as such, as multidimerisscabing (MDS) does, but instead the
probabilities of points being neighbors.

We have shown (to be published) that SNE can be seen as amatfon retrieval algorithm; it
optimizes a smoothed form of recall, a traditional goodmesasure. To show the connection we
need to define neighborhoods as step functions instead fsi@as as in the original SNE. The
user is studying neighbors in the output space, and her goal is to find a lamgeoption of thek
“true” neighbors, that is, neighbors in the input space.higally, we assume the closest points to
be neighbors with a high probability and the rest with a very probability.
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Figure 1: Results on projecting the face dataset [9] to twuoedisions. KL-KL curves (left),
precision—recall curves (middle) and trustworthinesstioaity [6] curves (right) as a function of.
Other nonlinear projection methods have been added faierete. The precision—recall curves have
been calculated with 20 nearest neighbors in the input spatiee set of relevant items; the number
of retrieved items (neighbors) is varied from 1 to 100. Olhly teference method that achieved the
highest precision and the highest recall, and Xhalues that had the largest area under the curve
are included for clarity. The KL—KL curve and the trustwangss-continuity curve are calculated
using 20 nearest neighbors. On each plot the best perfoemsauit the top right corner. Methods;
NeRV, LocalMDS [10], fNeRV: a faster approximative versmiNeRV, PCA: Principal Component
Analysis [5], MDS: metric Multidimensional Scaling [2], lE: Locally Linear Embedding [8], LE:
Laplacian Eigenmap [1], CCA: Curvilinear Component An&y8], CDA: CCA using geodesic
distances [7] and Isomap [9].

The Kullback-Leibler divergence in the SNE cost functiom ¢ee divided in four parts, and it is
straightforward to check that the part corresponding toseisdominates the cost function and,
moreover,
N
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whereC' is a constant andV,;;ss the number of misses. Thg is the probability distribution of
point being a neighbor aofin the input space, ang is the corresponding probability distribution in
the output space. SNE tries to minimize this cost functiowl, fleence it would maximize recall

Dk r(pisqi) =

It is well known that maximizing recall typically leads towaprecision. If we want to maximize
precision, we can reverse the direction of the KL divergandle SNE cost function. It can be
shown that minimizing this would correspond to maximizimggsion.

In practice it would be best to optimize a compromise. If wei@s a relative cosk to misses and
(1 — ) to false positives, then the total cost function to be optediis

Enerv = AE;[D(pi, qi)] + (1 — N Ei[D(qi, pi)]

Pij qij
= )\ZZpijlog—_J_ + (1 - )\)ZZqijlog—_J'. (2)
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We call the new method that optimizes (#ighbor Retrieval Visualizer (NeRV). In Figure 1 NeRV
is shown to outperform other dimensionality reduction methon three slightly different pairs of

performance measures.
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