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Abstract

High-throughput genomic measurements, interpreted as co-occurring data samples from mul-

tiple sources, open up a fresh problem for machine learning: What is in common in the different

data sets, that is, what kind of statistical dependencies there are between the paired samples from

the different sets. We introduce a clustering algorithm for exploring the dependencies. Samples

within each data set are grouped such that the dependencies between groups of different sets

capture as much of pairwise dependencies between the samples as possible. We formalize this

problem in a novel probabilistic way, as optimization of a Bayes factor. The method is applied

to reveal commonalities and exceptions in the expression of organisms, and to suggest regulatory

interactions, in the form of dependencies between gene expression profiles and regulator binding

patterns.

Index Terms

Biology and genetics, Clustering, Contingency table analysis, Machine learning, Multivariate

statistics

I. Introduction

Assume two data sets with co-occurring samples, that is, samples coming in pairs (x,y)

where x belongs to the first set and y to the second set. In this paper both x and y are

gene expression profiles or other multivariate real-valued genomic measurements about the

same gene. The general research problem is to find common properties in the set of pairs;

statistically speaking, the goal is to find statistical dependencies between the pairs.1

In this paper we search for dependencies expressible by clusters. The standard unsuper-

vised clustering methods, reviewed for gene expression clustering for instance in [32], aim at

finding clusters where genes have similar expression profiles. Our goal is different: to cluster

the x and the y separately such that the dependencies between the two clusterings capture

as much as possible of the statistical dependencies between two sets of clusters. In this sense

1The fundamental difference from searching for differences between data sets [18], where the relative order of the

samples within the two sets is not significant, both sets are within the same space, and the goal is to find differences

between data distributions, is that our data are paired and we search for commonalities between the pairs of samples

that can have different variables (attributes) and different dimensionalities.
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the clustering is associative; it finds associations between samples of different spaces. The

research problem will be formalized in Section II.

The problem of searching for common properties in two or more paired data sets differs

from classic machine learning problems, commonly categorized into unsupervised and su-

pervised. Supervised learning targets at finding classes (in classification) or predicted values

of a variable (in regression). In probabilistic terms the goal is to build a good model for the

distribution p(y|x) while in the kind of dependency modeling discussed in this paper the

goal should be symmetric. Basic unsupervised learning, on the other hand, is symmetric in a

trivial sense: All variation of one variable—be it x, y, or the combination (x,y)—is modeled,

and there is no mechanism for separating between-data-set variation from within-data-set

variation. Common to both kinds of learning, and indeed to all machine learning, is model

fitting: A model parameterized by θ is fitted to the data.

A different kind of problem, to be addressed in this paper, is modeling only the variation

in x and y that is common to both variables. In other words, we search for dependencies

between the x and y. This symmetric goal has traditionally been formalized as maximizing

the dependency between two representations, x̂ ≡ fx(x; θx) and ŷ ≡ fy(y; θy), of x and y,

respectively. A familiar example is canonical correlation analysis [24] where both the fx and

fy are linear projections, and the data are assumed to be normally distributed. This idea

has been generalized to nonlinear functions [4], and to finding clusters of x informative of a

nominal-valued y [3], [37]. It has been formalized in the information bottleneck framework

[40], [44], resulting in efficient algorithms for two nominal-valued variables [35], [41].

Symmetric dependency modeling with non- or semiparametric methods (such as cluster-

ing) is a natural way of formalizing the search for commonalities in co-occurring data sets,

when one is not able or willing to postulate a detailed parametric model a priori. Such

situations are common in modern data-driven functional genomics: Microarray-based high-

throughput measurement techniques make it possible to test broad hypotheses, related,

for example, to organism-wide differences in response, or to functions of a gene over a

range of organisms. Mining the data, stored in community-resource databanks, for new

hypotheses is fruitful as well. In data mining the search for dependencies between data sets

is a considerably better-defined target than the common, unsupervised search for clusters

and other regularities.
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We study two cases of symmetric dependency modeling: search for regularities and dif-

ferences in expression of orthologous genes in different organisms, and search for regulatory

interactions between expression and transcription factor binding patterns. More generally,

we argue that once a research goal can be dressed into a search for dependencies between

data sets, our approach is a well-defined middle ground between purely hypothesis-driven

research, for which hypotheses must be available, and purely exploratory research, where

the task is often ill-defined.

Analogically to the two linear projections in canonical correlation analysis, we use two

sets of clusters as the representations in the dependency search. Clusters are more flexible

than linear projections, and they have a definite role in exploratory data analysis, that is,

in “looking at the data”: Clustering reveals outliers, finds groups of similar data, and simply

compresses numerous samples into a more manageable and even visualizable summary.

Clusters and other kinds of unsupervised models are of particular importance as the first

step of microarray data analysis, where data are often noisy and even erroneous, and in

general not well-known a priori.2

For microarray data, the existing dependency-searching techniques have two deficiencies.

First, mutual information, the dependency measure that they maximize, is defined for

probability distributions which in turn need to be estimated from samples. The separate

estimation stage with its own optimality criteria will introduce uncontrollable errors to

the models. The errors are negligible for asymptotically large data sets but non-negligible

for many real-life sets. We will directly define a dependency measure for data instead of

distributions, and justify it by combinatorial and Bayesian arguments. For asymptotically

large data sets the dependency measure becomes mutual information, and can therefore be

viewed as a principled alternative to mutual information for finite data sets.

The second shortcoming has been that the models are not applicable to symmetric de-

pendency clustering of continuous data. While a trivial extension of existing continuous-

data methods may seem sufficient, a conceptual change is actually required. Existing finite-

data formulations either maximize the likelihood p(y|x) of one data set, say y, given x, or

2This very legitimate and necessary use of clustering in the beginning of the research process should not be confused

with the widespread use of clusterings as a general-purpose tool in all possible research tasks, which could better be

solved by other methods.
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maximize the symmetric joint likelihood for p(x,y). Neither of these approaches is depen-

dency modeling: Conditional models are asymmetric, while joint density models represent all

variation in x and y instead of common variation, and therefore do not even asymptotically

reduce to mutual information. A solution we present in this paper is to use a hypothesis

comparison approach which translates to a Bayes factor cost function.

Bayesian networks, used also as models of expression regulation [16], [36], are models

for the joint density of all data sources. In these models the structure of dependencies

between variables is, at least to some extent, fixed in advance. To a degree dependencies can

be learned from data, but learning is hard and data-intensive. Our approach complements

Bayesian networks in two ways. First, it is more exploratory and assumption-free because

no dependency structure is imposed, except the one implied by cluster parameterization and

division of the data set. Second, as joint distribution models Bayesian networks represent

not only the common variation between the data sets but partly also the unique variation

within each data set. In this sense, the representations they produce are compromises for

the task of modeling the between-set variation.

From the biological perspective, the advantages of clustering by maximizing dependency

between two sources of genomic information are at least two-fold. First, the new problem

setting makes it possible to formulate new kinds of hypotheses about the dependency of the

sources, not possible with conventional one-source clusterings. Such hypotheses are sought

in the orthologous genes application in Section V. Second, mining for regularities in the

common properties of two data sets is a more constrained problem that mining for any

kinds of regularities within either of them. Hence, assuming the sets are chosen cleverly,

the results are potentially better targeted. Our hypothesis is that there will be less false

positives in the discovered regulatory interactions when expression and transcription factor

binding are combined in a dependency maximizing way, compared to one-source clusterings.

We will study the interactions in Section VI.

II. Associative clustering

The abstract task solved by associative clustering (introduced in the preliminary paper

[39]) is the following: cluster two sets of data, with samples x and y, each separately, such

that (i) the clusterings would capture as much as possible of the dependencies between pairs
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Fig. 1. Associative clustering (AC) in a nutshell. Two data sets are clustered into Voronoi regions. The Voronoi regions

are defined in the standard way as sets of points closest to prototype vectors, but the prototypes are not optimized

to minimize a quantization error but by the AC algorithm. In this example, the data sets are gene expression profiles

and transcription factor (TF) binding profiles. A one-to-one correspondence between the sets exist: Each gene has

an expression profile and a TF binding profile. As each gene falls to a TF cluster and to an expression cluster, we

get a contingency table by placing the two sets of clusters as rows and columns, and by counting genes falling to

each combination of an expression cluster and a TF cluster. Rows and columns, that is, the Voronoi regions defined

within each data set respectively, are called margin clusters, while the combinations corresponding to the cells of

the contingency table are called cross clusters. Associative clustering by definition finds Voronoi prototypes that

maximize the dependency seen in the contingency table. Voronoi regions are representations for the data sets just as

the linear combinations are in canonical correlation analysis. In both cases, dependency between the two parameterized

representations is maximized. Maximization of dependency in a contingency table results in a maximal amount of

surprises, counts not explainable by the margin distributions. The most surprising cross clusters with a very high or

low number of genes potentially give rise to interesting interpretations. Reliability is assessed by the bootstrap.

of data samples (x,y), and (ii) the clusters would contain (relatively) similar data points.

The latter is roughly a definition of a cluster.

Figure 1 gives a brief overview of the method. For paired data {(xk,yk)} of real vectors

(x,y) ∈ x × y ⊂ R
dx × R

dy , we search for partitionings {V
(x)
i } for x and {V

(y)
j } for y.

The partitions can be interpreted as clusters in the same way as in K-means; they are

Voronoi regions parameterized by their prototype vectors mi. The x belongs to V
(x)
i if

‖x − m
(x)
i ‖ ≤ ‖x − m

(x)
i′ ‖ for all i′, and correspondingly for y.

A. Bayes Factor for Measuring Dependency between Two Sets of Clusters

The dependency between two cluster sets, indexed by i and j, can be measured by mutual

information if the joint distribution pij is known. If only a contingency table of co-occurrence

frequencies nij computed from a finite data set is available, mutual information computed
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from the empirical distribution would be a biased estimate. A Bayes factor, to be introduced

below, has the advantage of properly taking into account the finite size of the data set while

still being asymptotically equivalent to mutual information. Bayes factors have classically

been used as dependency measures for contingency tables (see, e.g., [20]) by comparing

a model of dependent margins to another model for independent margins. We will use the

classical results as building blocks to derive an optimizable criterion for associative clustering;

the novelty here is that the Bayes factor is optimized instead of only being used to measure

dependency in a fixed table. The categorical variables defining the rows and columns of the

contingency table are defined by the Voronoi regions. They are parameterized by the cluster

prototypes which are optimized to maximize the Bayes factor.

The Bayes factor compares two alternative models, one describing a contingency table

where the margins are dependent and the other a table with independent margins. The

clusters are then tuned to make the dependent model describe the (contingency table) data

better than the independent model, which can be interpreted as maximizing dependency.

In general, frequencies over the cells of a contingency table can be assumed to be multi-

nomially distributed. The model MI of independent margins assumes that the multinomial

parameters over cells are outer products of posterior parameters at the margins: θij = θiθj.

The model MD of dependent margins ignores the structure of the cells as a two-dimensional

table and samples cell-wise frequencies directly from a table-wide multinomial distribution

θij. Dirichlet priors are set for both the margin and the table-wide multinomials.

Maximization of the Bayes factor

BF =
p({nij}|MD)

p({nij}|MI)

with respect to the margin clusters then gives a contingency table where the margins are

maximally dependent, that is, the table is as far from the product of independent margins

as possible. In associative clustering, the counts are influenced by the parameters of the

Voronoi regions. The BF is maximized with respect to these parameters.

After marginalization over the multinomial parameters, the Bayes factor takes the form

(derivation in the technical report [38])

BF =

∏

ij Γ(nij + n(d))
∏

i Γ(ni· + n(x))
∏

j Γ(n·j + n(y))
, (1)
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where ni· =
∑

j nij and n·j =
∑

i nij express the margins. The hyperparameters n(d), n(x),

and n(y) arise from Dirichlet priors. We have set all three hyperparameters to unity, which

makes the BF equivalent to the hypergeometric probability classically used as a dependency

measure of contingency tables. For large data set sizes N the logarithmic Bayes factor

approaches mutual information of the distribution pij = nij/N with margins pi = ni·/N

and pj = n·j/N [38]:

1

N
log BF =

∑

i,j

pij log
pij

pipj

−log N +1+O

(

1

N
log N

)

= Î(I, J)−log N +1+O

(

1

N
log N

)

,

(2)

where Î(I, J) is the mutual information between the categorical variables I and J having

cluster indices as their values.

B. Optimization of AC

The Bayes factor (1) will be maximized with respect to the Voronoi prototypes. The

optimization problem is combinatorial for hard clusters, but gradient methods are applicable

after the clusters are smoothed. Gradients are derived in a technical report [38]. An extra

trick, found to improve the optimization in the simpler case where one of the margins is fixed

[27], is applied here as well: The denominator of the Bayes factor is given extra weight by

introducing constants λ(·). A choice of λ(·) > 1 introduces to the cost function a regularizing

term that for large sample sizes approaches margin cluster entropy, and thereby in general

favors solutions with uniform margin distributions.

The smoothed BF, here denoted by BF’, is then optimized with respect to the cluster

prototypes {m} by a conjugate-gradient algorithm (for a textbook account see [2]). We have

log BF’ =
∑

ij

log Γ

(

∑

k

g
(x)
i (xk)g

(y)
j (yk) + n(d)

)

− λ(x)
∑

i

log Γ

(

∑

k

g
(x)
i (xk) + n(x)

)

− λ(y)
∑

j

log Γ

(

∑

k

g
(y)
j (yk) + n(y)

)

, (3)

where

g
(x)
i (x) ≡ Z(x)(x)−1 exp

(

−‖x − m
(x)
i ‖2/σ2

(x)

)

,
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and similarly for g(y). The g(·) are the smoothed Voronoi regions at the margins. The Z(·)

is set to normalize
∑

i g
(x)
i (x) =

∑

j g
(y)
j (y) = 1. The parameters σ control the degree of

smoothing of the Voronoi regions.

The gradient of log BF’ with respect to an X-space prototype m
(x)
i is

∇
m

(x)
i

log BF’ =
1

σ2
(x)

∑

k,i′

(xk − m
(x)
i )g

(x)
i (xk)g

(x)
i′ (xk)

(

L
(x)
i (yk) − L

(x)
i′ (yk)

)

,

where

L
(x)
i (y) ≡

∑

j

Ψ

(

∑

k

g
(x)
i (xk)g

(y)
j (yk) + n(d)

)

g
(y)
j (y) − λ(x)

Ψ

(

∑

k

g
(x)
i (xk) + n(x)

)

,

and for y accordingly. In the gradient, Ψ(·) is the digamma function.

In summary, the optimization of AC proceeds as follows: (i) Parameters {m(x)} and {m(y)}

are independently initialized by choosing the best of several (here: three) K-means runs

initialized randomly. (ii) On the basis of experience with other data sets, we choose λ(·) = 1.2.

(iii) Parameters σ(·) are chosen by running the algorithm for half of the data and testing

on the rest. (iv) The {m(x)} and {m(y)} are optimized with a standard conjugate gradients

algorithm, using log BF’ as the target function. Gradients of the m-parameters plugged into

the algorithm are shown above. The reported results are from cross-validation runs.

In one-margin optimization with clusters in the other margin fixed, the smoothing trick

performs equivalently to or better than simulated annealing [27]. Also note that smoothing

is for optimization only: Results are evaluated with BF, which translates to having crisp

clusters.

C. Uncertainty in clustering

Our use of Bayes factors is different from their traditional use in hypothesis testing, cf.

[20]. In AC we do not test any hypotheses but maximize the Bayes factor to explicitly find

dependencies. This leaves the uncertainty of the solution open.

A widely used “light-weight” (compared to posterior computation) method to take into

account the uncertainty in clustering is bootstrap [12], [21]. As in [29], we use bootstrap

to produce several perturbed clusterings. We wish to find cross clusters (contingency table

cells) that signify dependencies between the data sets and are reproducible.

April 20, 2005 DRAFT



IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. Y, MONTH 2005 10

Reproducibility of the found dependencies will be estimated from the bootstrap clusterings

as follows.

First, we define what we mean by a significantly dependent cross cluster within a given

AC-clustering. The optimized AC model provides a way of estimating how unlikely a cross

cluster is, given that the margins are independent. For this purpose several (1000 or more)

data sets of the same size as the observed one are generated from the marginals of the

contingency table (i.e., under the null hypothesis of independence). The cross clusters with

the observed amount of data more extreme than that observed by chance with probability

0.01 or less (Bonferroni corrected with the number of cross clusters), are defined to be

significantly dependent cross clusters.

Next, the two criteria, dependency and reproducibility, will be combined by evaluating

how likely it is for each gene pair to occur within the same significantly dependent cross

cluster in bootstrap (this is analogous to [29]). The result, interpreted as a similarity matrix,

will finally be summarized by hierarchical clustering.

Please note that we do not expect to find dependencies for all genes in the whole data

sets, since with noisy genomic data that would hardly be possible. In other words, we are

interested in finding the most dependent, robust subsets of the data. This is exactly what

the final gene clusters from bootstrapped, most dependent cross clusters provide.

D. Extremity of the clusters

In the yeast case studies we evaluate which cross clusters are exceptional by their ex-

pression or TF binding profile. For determining the extremity of the observed within-cluster

profiles, for each of them 10,000 random sets of genes were first sampled, each of the same

size as the cluster under study. We then computed within-cluster average profiles for the

observed cluster as well as for the simulated ones. A part of the observed profile was denoted

as extreme if it was lower or higher in value than all the simulations.

III. Reference methods

First we need a baseline method to give a lower bound for the results. For AC, it should

not optimize the dependency of the clusters but only perform conventional clustering, while

being as similar to AC as possible in other respects. In this work the baseline method will
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be independent K-means clusterings in both data spaces, since K-means is also prototype-

based clustering for continuous data like AC. For more detailed description and references

of K-means see for example [7].

We compare AC to the information bottleneck (IB) methods [17], [44]. The main problem

with IB in our setting is the continuous nature of our data: IB works on nominal-valued

data. Here we discretize the data first by K-means, resulting in a new algorithm called here

K-IB. For discrete data, the closest alternative to AC among information bottleneck methods

would be symmetric two-way IB [17]. Our sequential implementation is based on [40].

We first quantize the vectorial margins x and y separately by K-means, without paying

attention to possible dependencies between the two margins. This results in two sets of

margin partitions which span a large, sparse contingency table that can be filled with

frequencies of training data pairs (xk,yk). The number of elementary Voronoi regions is

chosen by using a validation set. In the second phase, the large table is compressed by

standard IB to the desired size by aggregating the atomic margin clusters. In this stage,

joins at the margins are made with the symmetric sequential algorithm [40] to explicitly

maximize the dependency of margins in the resulting smaller contingency table.

The final partitions obtained by the combination of K-means and IB are of a very flexible

form, and therefore the method is expected to model the dependencies of the margin variables

well. As a drawback, the final margin clusters will consist of many atomic Voronoi regions,

and they are therefore not guaranteed to be particularly homogeneous with respect to the

original continuous variables (x or y). Interpretation of the clusters may then be difficult.

Our empirical results support both the good performance of K-IB and the non-localness of

the resulting clusters.

IV. Validation of Associative Clustering

A. Demonstration with artificial data

Figures 2 and 3 demonstrate two key properties of AC with as simple artificial data sets

as possible.

The clusters focus on modeling those regions of the margin data spaces, that is, those

subsets of data, where the co-occurring pairs x and y are dependent. This is clearly visible

as the high-density area of cross clusters in Figure 2.
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Y

X

Y

X

AC K-means

Fig. 2. Associative clustering concentrates on dependent subsets of data. Here both margin spaces, denoted by X

and Y, are 1-dimensional, and the figure shows a scatterplot of the data (dots on the plane where X and Y are

the axes). Cluster borders in the X-space are shown with the vertical lines and cluster borders in the Y-space with

horizontal lines. The resulting grid of so-called cross clusters then corresponds to the contingency table; the number

of dots within each grid cell gives the amount of data in a contingency table cell. The AC cells are sparse in the bulk

of independent data in the middle and denser on the sides where the X and Y are dependent. K-means, in contrast,

focuses on modeling the bulk of the data in the middle. (For this data set AC has lots of local maxima.)

AC neglects variation that is irrelevant to the dependencies between x and y. In Figure 3,

the AC clusters have effectively become defined by only the relevant one of the two dimen-

sions. By contrast, standard clustering methods, such as K-means, model variation in both

dimensions.

B. Validation of bootstrapped AC analysis with real data

Especially in bioinformatics it is often challenging to test new methods since there rarely

exists any ground truth, that is, known correct answers. We validated the (bootstrapped)

AC approach by searching for dependencies between data sets containing known, real-world

duplicate measurements that should be more dependent than random pairs.

Expression profiles of orthologous man-mouse gene pairs with unique LocusIDs

were derived from a public source [43] (http://expression.gnf.org/data_public_U95.gz

http://expression.gnf.org/data public U74.gz) using the HomoloGene [46] database and Affymetrix

annotation files. The expression measurements include 46 human and 45 mouse arrays

covering a wide range of tissues and cell-lines. For 21 of the tissues, expression values were

available for both species.

We have derived two different data sets from the original data: (1) a larger one for this
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AC in x-space AC in y-space

K-means in x-space K-means in y-space

Fig. 3. Associative clustering focuses on modeling the variation that is relevant to dependencies between the data

sets. Both of the margin spaces are here 2-dimensional, and the data has been constructed such that the vertical

dimension of the x-space is dependent on the horizontal dimension in the y-space. All other variation is uniform

noise. Lines are approximate cluster borders (Voronoi borders), and the small crosses are the prototype vectors.

Associative clustering neglects the irrelevant variation in both margin spaces and models the relevant, dependent

variation. In contrast, K-means, as all purely unsupervised clusterings, models all the variation including noise.

validation study, with known ground truth in the form of naturally multiplicated genes,

and (2) a smaller one for the actual analysis without any multiplicated genes (presented in

Section V).

Due to technicalities related to the Affymetrix oligonucleotide array platform, in the

original data sets [43] one gene (LocusID) may have multiple expression profiles. In the

verification data set these profiles were considered as independent samples, resulting in a

total of 4500 gene expression profile pairs. These “duplicate orthologous genes,” representing

the same sequence-level similarity between the species, should co-occur in the significantly

dependent cross clusters (see Section II-C) more often than randomly chosen orthologous

genes, and, since AC should model dependencies more effectively than K-means, also more
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often than in the cross clusters produced by K-means.

The validation study was carried out by exactly the same procedures as we will use in

the rest of the experiments of the paper, to validate the setting.

The number of clusters was chosen to be such that each cross cluster would on average

contain roughly 10 data points. For the verification set this translates to 19 clusters in

both margin spaces. We sampled 100 bootstrap data sets, computed AC for each, got 100

different contingency tables, and from these we computed a similarity matrix for the genes

as described in Section II-C.

The optimization parameter σ was chosen by leaving half of the data for validation.

We then tested with a rank sum test whether the similarity distribution of the known

duplicates is different from the similarity distribution of all the other genes. In AC the known

duplicates turned out to co-occur unexpectedly frequently in dependent cross clusters (rank

sum test; p < 2.2 × 10−16).

Compared to K-means, AC detected connections of the multiple ortholog profiles statis-

tically significantly more often (sign test, p < 0.001). These two results support the validity

of AC in finding dependent subsets of data better than standard unsupervised clustering.

V. Experimental results: Dependencies between man and mouse

Functions of human genes are often studied indirectly, by studying model organisms such

as the mouse. An underlying assumption is that so-called orthologous genes, that is, genes

with a common evolutionary origin, have similar functional roles in both species. Exploration

of dependencies (regularities and irregularities) in functioning of orthologous genes helps

in assessing to which extent this assumption holds. In practice, gene pairs are defined as

putative orthologs based on sequence similarity, and we seek for regularities and irregularities

in their expression by associative clustering.

Exceptional level of functional conservation of an orthologous gene group may indicate

important physiological similarities, whereas differentiation of function may be due to sig-

nificant evolutionary changes. Large-scale studies on orthologous genes may ultimately lead

to a deeper understanding of what makes each species unique. (For related approaches, see,

e.g., [6], [9], [11], [14], [30]).
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A. Data and experiments

In the original data [43], multiple expression profiles may correspond to one gene. In

Section IV-B they were used for validating the methods, whereas in this section we use a

single representative profile for each gene. The profiles corresponding to a same gene are

averaged after discarding weakly correlating (r < 0.65) profiles of the same gene, when

multiple measurements from incomplete or potentially non-specific probe sets are available.

This results in a set of 2818 orthologous gene pairs with unique LocusIDs.

B. Quantitative comparisons of the methods

A dependency-maximizing clustering method should (i) find dependencies and (ii) repre-

sent the results as homogeneous clusters. We compared AC to a baseline method that does

not search for dependencies at all, that is, separate K-means for both mouse and man, and

to symmetric IB following a discretization with K-means (see Section III). The both σ:s of

AC and the number of initial K-means clusters for IB were chosen using a validation set as

in Section IV-B.

AC produced significantly more dependent clusters than standard K-means clustering (10-

fold cross-validation, paired t-test with d.f.=9; p < 0.001). All methods were run in each

fold from three different intializations, of which the best result according to each method’s

own cost function was selected. Averaged log-BF costs were -52.9 and -115.8 for AC and K-

means, respectively. However, cluster homogeneity was not significantly reduced by focusing

on dependency modeling (at the p < 0.05 significance level). Differences of the methods in

cluster homogeneity have been visualized in Figure 4.

K-IB produced significantly (p < 0.001) more dependent clusterings (log-BF=10.24 on

average over cross-validation folds) than AC and K-means. On the other hand, cross clus-

ters from AC studies are significantly more homogeneous than those of K-IB and random

clustering (p < 0.002). The measure of homogeneity (actually dispersion) was the sum of

intra-cluster variances.

In summary, as expected, AC extracts more dependencies than K-means and the clusters

are more homogeneous (and hence easier to interpret) than those of K-IB. K-IB is a good

method for searching for dependencies if homogeneity is not essential.
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Fig. 4. Dispersion of A margin clusters and B cross clusters in mouse-man studies. AC produces clusters that are

comparable to K-means, whereas the clusters of K-IB are more dispersed (significantly in B). RAND is a kind of an

upper limit for cluster dispersion, obtained by randomly assigning samples to clusters.

C. Biological results: findings of mice and men

Bootstrapped AC produces a similarity matrix for the genes, computed from the co-

occurrence frequencies of genes in the AC cross clusters. The matrix is in this section

summarized with simple hierarchical clustering, and a set of most homogeneous gene clusters

is extracted by cutting the dendrogram at a specific cut-off level and discarding genes

belonging to clusters smaller than 3 genes.

As the most reliable dependencies, produced by a high cut-off, are expected to be relatively

trivial findings of similar behavior of orthologous genes in mouse and man, we set the

threshold lower to include some unexpected findings as well. The (arbitrary) cut-off limit

was set to include clusters with average co-occurrence frequency larger than 80% (of the

bootstrap samples). This resulted in 139 orthologous gene pairs in 31 clusters.

1) Overall regularities in ortholog expression: Many orthologous genes are expected to be

functionally similar, and similarity can, at its simplest, be measured by correlation. Weak

correlation of expression of orthologous genes suggests differentiated gene function (or heavy

noise), whereas strong correlation is an indication of functional conservation. To some extent,

a global trend exists in our data: Median correlation of expression profiles of orthologous

man-mouse gene pairs in the common 21 tissues is 0.33. It is expected that this trend

dominates the AC analyses concerning unexpectedly common expression trends (large cross

clusters) as well. Indeed, the more similar (highly correlating) the expression profiles of an

orthologous gene pair are, the more often it tends to be located in an unexpectedly large
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cross cluster. This was measured by correlating the occurrence frequency with the correlation

between the orthologs, and the resulting correlation coefficient r = 0.41 suggests that AC

indeed is capable of detecting the simple tendency of the orthologs to depend linearly.

Weakly or negatively correlating orthologs are the other extreme; they are kinds of outliers

and tend to be located in exceptionally small cross clusters. Expression similarity correlates

negatively (r = −0.38) with frequency of occurrence in small cross clusters.

2) General functional trends of dependent genes: Orthologous genes are often functionally

similar, although some deviation may have occurred in the course of evolution. Orthologous

gene groups with exceptional functional conservation could be expected to be of a specific

importance for species survival.

Such a cross-species feature is likely to contribute to dependencies in the data, and should

be detected in AC analyzes. A straightforward approach to study such functional trends is

to check enrichment of Gene Ontology (GO) [1] categories among the most dependent genes.

The most enriched GO categories among the genes showing remarkable dependency (av-

erage co-occurrence level ≥ 80/100, minimum cluster size 3) were ribosomal categories (all

findings having EASE score with the conservative Bonferroni correction < 0.05 are listed;

EASE [23] is a program that annotates the given gene list based on GO and calculates

various statistics for it). The three most significantly enriched GOs, for both species, were

cellular component categories “cytosolic ribosome (sensu Eukarya)” and “ribosome,” and

the molecular function category “structural constituent of ribosome.” Also the biological

process “transmission of nerve impulse,” was enriched for both species. For human, also the

“eukaryotic 48S initiation complex,” “cytosolic small ribosomal subunit (sensu Eukarya),”

“small ribosomal subunit,” and “synaptic transmission” categories were enriched.

Dependency structure of data is mostly explained by genes from these categories. A natural

explanation for the enrichment of ribosomal functions in large cross clusters is that they often

require coordinated effort of a large group of genes, and function in cell maintenance tasks

that are critical for species survival. High conservation of such genes has been suggested also

in earlier studies (see, e.g., [26]). The current result is an additional indication of exceptional

conservation of ribosomal genes and of their crucial role for the cellular functions of an

organism.

By contrast, enrichment of the “transmission of nerve impulse” category is somewhat
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Fig. 5. Average expression profiles of the genes within the cluster showing the highest correlation between mouse

and man. Only the 21 tissues which were measured for both species are shown for clarity. No genes were expressed

(AD < 200) in the remaining tissues. Tissue list is in the Appendix.

surprising and worth more careful studies. It is interesting to note that such genes seem to

contribute more to commonalities in the data than genes with other conserved functions.

No straightforward biological explanation for this phenomenon could be found so far.

3) Examples of finer-scale regularities: Minor regularities are revealed by the individual

clusters. In addition to conserved expression, AC can potentially reveal orthologs with

functional deviation.

We used median correlation as a rough measure to order the clusters, and picked two

clusters: one with the highest (suggesting preservation of function) and one with the lowest

(suggesting differentiation of function) median correlation as examples.

The cluster with the highest median ortholog correlation contained three genes with

strongly testis-specific expression (LocusID pairs 8852-11643, 11055-53604, 1618-13164; Fig. 5).

Literature studies confirmed that the function of these genes is related to reproduction.

Disturbances in the function of the last gene are known to cause infertility although its

functions are otherwise not well known.

Although the presence of strongly correlated orthologs in the most dependent clusters of

the two species is not surprising as such, the strong relationship of the three genes suggests

a possibly unknown functional link.

The clusters having salient regularities suggest interactions: The gene products may have

physical interaction, they may share a common pathway, or they may otherwise be respon-

sible of similar biological functions. Even correlated expression within a single species is
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Fig. 6. Expression profile plots of the genes in the cluster with weakest median correlation between the orthologs.

Since the correlation is low, no immediate relationships are visible. The cluster is very reliable, however, and hence

the orthologs probably share some unexpected higher-order dependency.

known to be a valuable cue for such interactions (see, e.g., [8], [13], [19]), and preservation

of co-expression in evolution is an even stronger hint. Moreover, such “conserved correlations”

have also been suggested to be useful in confirming orthologous relationships between genes

[15].

Low between-species correlation in a cluster with five genes suggests differentiated gene

function (Fig. 6). Three of the genes are known to be related to embryonic development,

and three are transcription factors. We were not able to find an interpretation for the cluster

from the literature. It is reliable, however, and hence potentially interesting; the genes were

clustered together in an exceptional cross cluster in over 80 out of 100 bootstrap samples.

Our data is from adults, in which the embryonic genes may have unknown functions.

4) Functionally exceptional orthologs: Outliers, that is, genes having peculiarities in their

function, can be sought by computing how often they end up in an unexpectedly small cross

cluster in the bootstrap. Such genes are comparatively rare; only 1.5% of the orthologs end

up in an exceptionally small cross cluster with a frequency of ≥ 50%. Such exceptional

orthologs tend to correlate weakly or negatively, and potentially hint at differentiated gene

function. Note that AC takes more than correlation into account as only 3 of the 43 found

orthologs are among the 43 most weakly correlating orthologs. Hence, these exceptional

genes could not have been found based on the correlation analysis alone.

Enrichment of certain GO categories among such exceptional orthologs would indicate
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functionalities that are more often differentiated between species. Interestingly, closest to

significant enrichment were the “secretion” category with its subcategory “protein secretion,”

and the “signal transduction” category with subcategories of “cell communication,” “signal

transduction,” and “cell surface receptor linked signal transduction” for human, and “cell

communication,” and “G-protein coupled receptor protein signaling pathway” for mouse.

These categories have EASE score of < 0.05 without Bonferroni correction. With Bonferroni

correction, the enrichment is not significant, however.

To some extent the secretion categories above could be related to the overall signaling

phenomena. The protein secretion category fits well into this picture since many of these

signaling pathway initiators are in fact secreted molecules. For example, G protein pathways

include a variety of extracellular agents like hormones, neurotransmitters, chemokines, and

local mediators that all are systemically secreted molecules [33]. From the relative abundance

of such orthologs among those with exceptional functionality we may derive a hypothesis of

their role in species divergence.

The most extreme gene (LocusIDs 998 and 12540 for human and mouse, respectively)

occurs in an exceptionally small cluster in ≥ 80 of the 100 bootstrap iterations. The ex-

pressions in man and mouse correlate negatively (-0.47) in this case and the ortholog

is exceptional already as such. The human gene is only expressed in neuronal tissues,

whereas the mouse gene is more generally expressed (Fig. 7). Such outliers may be either

real functional differences in the species or measurement errors. Whichever the reason, the

detection of the outlier was useful.

Groups of orthologous genes with a similar but exceptional functional relationship would

be more reliable findings than individual outliers. Unfortunately, co-occurrence of ortholo-

gous gene pairs in exceptionally small cross clusters is rare. The two cases with the most

frequent co-occurrence in small cross clusters have a frequency of 45 out of 100 bootstrap

iterations. It is interesting to note that in both cases (Fig. 8) mouse genes are only weakly

or not at all expressed in the 21 tissues common to the organisms. In the first case the

mouse and human genes are known to be related to translational regulation. Differences

in the expression levels might hint at differentiation in the translational mechanisms. In

the second case, the human genes (Protein tyrosine kinase 2 and Glia maturation factor,

LocusID-pairs 5747-14083 and 2764-63985) are expressed specifically in neuronal tissues and
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Fig. 7. The most strongly exceptional outlier gene, detected based on its most frequent occurrence in an unexpectedly

small cross cluster. LocusIDs 998 and 12540 for human and mouse, respectively.
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occurred frequently in exceptionally small cross clusters). Gene expression profiles belong to human-mouse LocusID

pairs A1 10438-57316, A2 7458-22384 and B1 5747-14083, B2 2764-63985.

are known to participate in the regulation of growth and differentiation of neurons.

D. Summary

In summary, AC reproduced known findings and performed as expected in comparison

with alternative methods. Although this case study is technically interesting and completely

new, its biological implications are not yet as convincing as in the second one (Section VI).

From the man-mouse orthologs we found clusters of highly conserved orthologs, possibly

unknown functional relationships between genes, and examples of exceptional relationships
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between orthologs suggesting differentiation in gene function between species. Some of the

findings remain unexplained but could be used as starting points for more detailed studies.

VI. Experimental results: Dependencies between gene expression and

transcription factor binding

The baker’s yeast, Saccharomyces cerevisiae, is a popular eukaryotic model organism due to

the representativeness of its genetic regulation and because of its easy experimental handling.

Gene expression regulation operates on several levels, of which perhaps the most crucial

is transcriptional control. This is handled by a set of regulatory proteins called transcription

factors (TFs) that bind to DNA in the gene regulatory (promoter) region and can either

enhance or suppress the gene’s expression. In most cases TFs interact inter se to make

up macromolecular complexes before binding to the regulatory regions of DNA. Since TFs

are manufactured by expressing the relevant genes, they are the key components of gene

interaction networks. In this work, we focus on the dependencies between the TFs and gene

expression, that is, on the gene regulatory network.

Regulatory interactions have been studied by measuring genome-wide expression with

microarrays in knock-out mutation experiments and in time series experiments. In the knock-

out experiments, a mutation is targeted to a single gene in the yeast genome to modify

(usually knock out) the normal function of that gene. It is then hoped that by measuring

the gene expression changes with microarrays after the mutation, the role of the mutated

gene in cellular processes is revealed. Genes belonging to the same regulatory pathway as

the mutated gene could be unveiled, for example. In time series experiments the goal is

often to infer causality in the gene regulatory network based on the sequential changes in

expression levels. However, since the interaction network between the genes is complicated,

discerning the direct effects of the knock-out, or the change of expression in a time series

from noise and the mass of second-order effects can be very difficult, if not impossible. At

least a comprehensive, very expensive high resolution time-series experiment with numerous

replications would be required. The same holds for knock-out experiments. Thus alternative

approaches are worth exploring.

Gene expression is not the only source of information about gene regulation. For in-

stance, microarray-based chromatin immunoprecipitation (ChIP) allows measuring the bind-
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ing strength of the transcription factor proteins on any gene’s promoter region [31]. This

reveals which TFs are able to bind the specific gene’s promoter and are thus potential

regulators. But many TFs bind numerous gene promoter regions and are still not operational

regulators. The number of false positives can be very high, and thus inferring the regulatory

relationships based on the binding information alone is not in general possible.

Combining data from the several sources is a promising option, and exploratory models are

perfectly suited for the first studies. We combine the functional information (gene expression)

and the potential regulator information (TF binding). We make the following assumptions.

First, it is assumed that the genes are co-expressed in groups that are unknown, cf. [16],

[36]. Second, it is sensible to assume that a common set of transcription factors binds to the

co-expressed genes. Otherwise groupwise expression would be very unlikely. This is of course

an oversimplification, but it has some biological justification. To be more realistic, we do

not assume that all the genes are regulated in such a manner; we relax the simplification by

assuming that only subsets of genes behave this way, only a subset of transcription factors

need to be the same, and co-expression needs to take place only in a subset of knock-out

experiments or time points.

Associative clustering, when applied to expression and TF binding data, makes precisely

these assumptions, and we now aim to find subsets of genes whose expression is maximally

dependent on their transcription factor binding profiles. These sets then act as hypotheses

for expression co-regulation.

A. Knock-out expression and TF binding

The yeast expression used in this analysis has been measured from 300 different mutation

strains with cDNA microarrays [25] (http://www.rii.com/publications/2000/cell_hughes.html).

Transcription factor binding data on genes for 113 transcription factors was obtained from

[31] (http://web.wi.mit.edu/young/regulator_network/). After taking the logarithm of the ex-

pression ratios, imputing missing values with genewise averages, standardizing the treatmen-

twise variances to unity, and including only the genes appearing in both data sets, we had

two full data matrices, each with 6185 genes. The number of clusters in the margin spaces

was chosen to produce roughly 10 data points in each cross cluster, resulting in 30 clusters

in the expression space and 20 clusters in the TF-binding space.
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1) Quantitative evaluation: We first used this data to validate the performance of AC in

the two tasks it addresses: maximizing the dependency and keeping the clusters homoge-

neous. These were measured in 10-fold crossvalidation runs with pre-validated σ for AC and

pre-validated number of K-means clusters for K-IB. Pre-validation was analogous for both

methods: the data was divided into two equally sized parts, and several parameter values

were tried from three different random initializations. Of these the parameter value giving

the best AC cost was chosen. The final cross-validation runs were also started from three

different random initializations.

AC discovered dependencies in the data significantly better than the reference methods

(10-fold crossvalidation, paired t-test; d.f.=9; p < 0.001). The dependency was measured

with (natural) logarithmic Bayes factor (log-BF), the average value of which was 8.84 for

AC, -46.37 for IB, and -262.29 for K-means. The value of log-BF is traditionally interpreted

to signify strong evidence against the null hypothesis if it is at least 6–10 [28].

The homogeneity, or actually dispersion, of the clusters was measured simply by the sum of

the componentwise variances in cross-validation. The comparison was made for both margin

clusters as well as for cross clusters. Margin clusters produced by AC were statistically

significantly less dispersed than those produced by IB, but for cross clusters the difference

was not significant.

2) Biological results: We sought for biologically interesting findings by bootstrapping the

AC (100 bootstrap data sets), and by otherwise using the same parameters as in the above

cross-validation tests. A similarity matrix was generated for the genes from the bootstrap

results (see Sect. IV-B), and summarized by the average-distance variant of hierarchical

clustering. Clusters with average co-occurrence higher than 20 out of 100 and with the

minimum size of 3 genes were chosen for the final analysis, resulting in 20 clusters.

The clusters were first screened with EASE, which found enriched gene ontology classes in

12 of the 20 clusters (Fisher’s exact test, Bonferroni corrected; p < 0.05). It is of course likely

that also clusters without significant GO enrichments are biologically meaningful, but their

interpretation is more cumbersome and is therefore left for future work. In the following we

present a sample of four representative AC cluster types.

The first, most notable cluster is a large set of about one hundred genes that all code for

ribosomal proteins. These genes are known to be expressed often very homogeneously, and
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they can also often be found in conventional cluster analyses, cf. [5], [34].

The next two clusters are examples of how AC identifies and highlights modules where a

subset of the genes and their main regulator(s) have been previously identified in wet-lab

experiments. However, the modules also contain novel components not previously associated

to the corresponding biological function.

The second cluster is an example of a cluster type rarely found in conventional analyses. It

contains only 4 genes, of which 3 are known to code for proteins involved in lipid metabolism

and one to code for a growth factor transporter. The most reliable and strongest transcription

factor bindings in this cluster are by proteins INO2/YDR123Cp and INO4/YOL108Cp that

are known to form a protein complex and then regulate lipid metabolism. The fact that

AC detects two interacting TFs shows that the method can be used, to a certain extent, to

predict TF interactions as well. Moreover, it also unveils which potential target genes are

responsible for the lipid metabolism regulation observed in wet lab experiments. In other

words, the reliability of gene function annotations is enhanced through the use of AC

The third cluster of 31 genes contains 20 genes involved in amino acid and derivative

metabolism. The best identified regulator for this cluster is GCN4/YEL009Cp, a transcrip-

tional activator of amino acid biosynthetic genes known to respond to amino acid starvation.

Here again, it is shown that the AC creates a partially new cluster and identifies a good

candidate regulator.

About two thirds (28) of the genes in the fourth cluster, the most interesting so far,

are of unknown molecular function. Even the biological process they contribute to may

be unknown. The known genes map to such GO categories as “nuclear organization and

biogenesis” and the most reliable transcription factor associated to genes in this cluster

was YAP5p/YIR018Wp. This transcription factor is known to be activated by the main

regulators (SBF and MBF [22]) of the START of the cell cycle, a time just before DNA

replication. This clearly refers to cell-cycle regulation and to organization of the nucleus

prior to replication.

B. Time series gene expression and TF binding

The expression data for this case study was measured during yeast cell cycle and was orig-

inally published in two different papers [10], [42] (http://genome-www.stanford.edu/cellcycle/
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Fig. 9. A Margin cluster and B cross cluster dispersion for all methods in cell-cycle experiments, demonstrating

that AC produces clusters that are almost as compact as K-means clusters, whereas the IB-clusters are significantly

more dispersed. RAND is a kind of an upper limit for cluster dispersion, obtained by randomly assigning samples to

clusters.

links.html). The data consisted of 77 timepoints in total. The transcription factor binding

data used here is the updated (2003) version of [31] for 106 transcription factors. In this

case study the missing values were imputed with the k-nearest neighbor method (k = 10)

[45] and logarithms were taken from both of the data sets. Including only the genes present

in both data sets resulted in a total of 5618 genes. The chosen cluster numbers were 30 in

the expression space and 20 in the TF-binding space.

1) Numerical results: The tests were run as described in Section VI-A. The differences in

dependency modeling between all the methods were statistically significant also for this data

pair (10-fold cross-validation, paired t-test; d.f.=9; p < 0.001). Natural logarithmic Bayes

factor for AC was 32.27, for IB -13.17, and for K-means -92.30, implying that AC found a

very strong dependency between the data sets.

The measure of cluster homogeneity, or actually dispersion, was the same as in the previous

cases: the sum of the componentwise variances. For this data pair AC produced significantly

(10-fold cross-validation, paired t-test; d.f.=9; p < 0.001) less dispersed cross clusters and

margin clusters than IB. Figure 9 visualizes the margin cluster and cross cluster dispersion

for all methods.

2) Biological results: In a similar manner as in the previous case, we sought for biological

findings from the bootstrapped AC clusters. The clusters with average distance smaller than

60 (times in the same dependent cross cluster out of 100) and with more than 2 genes were

chosen. This resulted in a total of 16 clusters.
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Gene ontology classes were enriched statistically significantly in 13 of the 16 clusters

(EASE; Fisher’s exact test, Bonferroni corrected; p < 0.05). In the similar spirit as in the

knock-out mutation case, we give a representative sample of four clusters.

Two clusters are essentially the same as in the in knock-out case study, the ribosomal

proteins being the first of them.

The second cluster is the same as the most interesting (fourth) cluster in the knock-out

case. This provides more evidence that the cluster represents a biologically robust motif,

having a homogeneous profile in both TF-binding and expression.

The third cluster (Fig. 10) contains a significantly high number of genes involved in cell

cycle regulation, and more specifically at the stage of entry into the mitotic cell cycle

(9 genes out of 33). The main regulator identified in this module is SIP4p/YJL089Wp

which is possibly involved in SNF1p/YDR477Wp-regulated transcriptional activation. This

latter signaling factor is required for transcription in response to glucose limitation. Inter-

estingly, SIP4p/YJL089Wp has a DNA-binding domain similar to the GAL4p/YPL248Cp

transcription factor, involved in galactose response, another route in energy metabolism.

Taken together, this cluster contains some clear references to cell cycle regulation on one

hand and energy metabolism on the other, and proposes a set of genes that can bridge

and connect these two biological processes. Thereby AC offers the hypothesis for a relation

between biological functions, in addition to some clues on what genes could be involved.

The fourth cluster contains 9 genes of unknown molecular function or associated biological

process. The associated transcription factor ACE2p/YLR131Cp is known to activate expres-

sion of early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and there

delays G1 progression in the daughters. Based on this data, the 9 genes can be predicted to

act during the G1 phase of the cell-cycle, thus specifying what kind of targeted experiments

are needed to establish their function.

VII. Conclusion and future work

We have introduced a new approach for a relatively little-studied machine learning or

data mining problem: From data sets of co-occurring samples, find what is in common. We

have formulated the problem probabilistically, extending earlier mutual information-based

approaches. The new solution is better-justified for finite (relatively small) data sets.
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Fig. 10. Two examples of bootstrapped cross clusters, associated to cell cycle, that reveal both known and novel

dependencies between gene expression and TF binding. The upper figures show the average expression profiles (bars)

of the clusters and confidence intervals (curves). The periodicity of the cell cycle in the expression is clearly visible. The

lower figures show the average TF-binding profile of the clusters with confidence intervals. The average TF-bindings

rising above the confidence interval are considered reliable. Note that the confidence intervals are very conservative;

they have been estimated based on random clusters. In the Cluster A there was only one reliable TF binding, SIP4.

It could be verified from the literature (see text for details). SIP4 binds also the genes in Cluster B, but additionally

there is one extremely strongly binding TF, SFL1 (the rightmost bar). Its putative regulatory interaction with the

gene cluster during cell cycle is a new finding.

The introduced method, coined associative clustering (AC), summarizes dependencies

between data sets as clusters of similar samples having similar dependencies. Such a method

is particularly needed for mining functional genomics data where measurements are available

about different aspects of the same set of functioning genes. Then a key challenge is to find

commonalities between the measurements. The answer should reveal characteristics of the

genes, not only characteristics of the measurement setups.

The work is pure machine learning in the sense that the model is a general-purpose

semiparametric model which learns to fit a new data set instead of being manually tailored.
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As a result, it is probably not as accurate as more specific models, but it can be expected

to be faster and easier to apply to new problems. Its main intended application area is in

exploratory data analysis, “looking at the dependencies in the data” in the first stages of a

research project.

The method was validated and applied in two functional genomics studies. The first found

regularities and differences between functioning of orthologous genes in different organisms,

suggesting evolutionary conservation and divergence. The second explored regulatory interac-

tions between gene expression and transcription factor binding. Both trivial and unexpected

findings were made: known regularities, outliers, and hints about unexpected regularities.

While the proposed method was shown to be viable already as such, it can be further

improved. We did not address the problem of choosing an optimal number of clusters. If

clustering is interpreted as a partitioning or quantization of data to compress its presentation,

then the exact number of clusters is not a crucial parameter, but nevertheless the results

could be improved by optimizing it. Since the task is formulated in Bayesian terms, Bayesian

complexity control methods are applicable in principle. The setting is not standard, however,

because of the non-standard (new) use of the Bayes factors, and because of discontinuities

in the objective function.

Another direction of improvement is regularization of the solution. Dependency-searching

methods may potentially overfit the data, which is well-known from canonical correlation

analysis and can be avoided by regularization. We have developed two regularization methods

for AC with one fixed margin. “Entropy regularization” was used here because it is easier

in practice and has not been shown to be worse than the alternative [27]. In the present

case bootstrap also helped. Another related question is which kinds of priors to use for the

distributional parameters. The simple constant Dirichlet priors used in this work may be

too informative. Hierarchical modeling should be more appropriate but it is computationally

more complex.

A third area worth investigating is the parameterization of the clusters. It should be

investigated whether the hard Voronoi regions, used up to now because they are easily

interpretable and make the theory manageable, could be replaced by smooth and more

regular-sized clusters. Alternatively, the degrees of freedom of the clusterings could be

directly reduced to regularize the solution.
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Finally, a comprehensive comparison of the relative merits of dependency maximization

and more traditional Bayes networks and graphical models of the whole joint distribution

should be carried out. It is clear that the two approaches focus on different properties

of data, and that our semiparametric models need less prior knowledge than specialized

models of gene regulation, for instance, and are hence more general-purpose. We expect

that exploratory models of the type introduced here are viable as complementary methods

for gathering the necessary prior knowledge for the more specific models.

Appendix

Tissues in mouse-human data

The first 21 tissues are considered to be common for both species. (Listed in the following

order: tissue number: human tissue: mouse tissue. Tissues are separated with commas.)

Common tissues: 1: cerebellum: cerebellum, 2: cortex: cortex, 3: amygdala: amygdala, 4: testis: testis, 5:

placenta: placenta, 6: thyroid: thyroid, 7: prostate: prostate, 8: ovary: ovary, 9: uterus: uterus, 10: 0DRG:

0DRG, 11: salivary gland: salivary gland, 12: trachea: trachea, 13: lung: lung, 14: thymus: thymus, 15:

spleen: spleen, 16: adrenal gland: adrenal gland, 17: kidney: kidney, 18: liver: liver, 19: heart: heart, 20:

caudate nucleus: striatum, 21: spinal cord: spinal cord lower,

Non-common tissues: 22: fetal brain: digits, 23: whole brain: gall bladder, 24: thalamus: hippocampus, 25:

corpus callosum: large intestine, 26: pancreas: adipose tissue, 27: pituitary gland: lymph node, 28: prostate

Cancer: eye, 29: OVR278E: skeletal muscle, 30: OVR278S: snout epidermis, 31: fetal liver: tongue, 32:

HUVEC: trigeminal, 33: THY+: bladder, 34: THY-: small intestine, 35: myelogenous k-562: stomach, 36:

lymphoblastic molt-4: hypothalamus, 37: burkitts Daudi: epidermis, 38: bukitts Raji: spinal cord upper,

39: hep3b: bone, 40: A2058: brown fat, 41: DOHH2: olfactory bulb, 42: GA10: mammary gland, 43: HL60:

umbilical cord, 44: K422: bone marrow, 45: ramos: frontal cortex, 46: WSU: -.
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