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Abstract—We apply fuzzy techniques for system identifica-
tion and supervised learning in order to develop fuzzy inference
based autoregressors for time series prediction. An automatic
methodology framework that combines fuzzy techniques and
statistical techniques for nonparametric residual variance es-
timation is proposed. Identification is performed through the
learn from examples method introduced by Wang and Mendel,
while the Marquard-Levenberg supervised learning algorithm
is then applied for tuning. Delta test residual noise estimation
is used in order to select the best subset of inputs as well as the
number of linguistic labels for the inputs. Experimental results
for three time series prediction benchmarks are compared
against LS-SVM based autoregressors and show the advantages
of the proposed methodology in terms of approximation accu-
racy, generalization capability and linguistic interpretability.

I. INTRODUCTION

T IME series prediction and analysis in general is a

recurrent problem in virtually all areas of natural and

social sciences as well as in engineering. In the time series

prediction field, prediction accuracy is not the only major

goal. Understanding the behavior of time series and gaining

insight into their underlying dynamics is a highly desired

capability of time series prediction methods.

In the past, conventional statistical techniques such as AR

and ARMA models have been extensively used for fore-

casting However, these techniques have limited capabilities

for modeling time series data, and more advanced nonlinear

methods including neural networks have been frequently

applied. Fuzzy inference systems, despite its good perfor-

mance in terms of accuracy and interpretability [1], have

seen little application in the field of time series prediction

as compared to other nonlinear modeling techniques such as

neural networks and support vector machines.

In this paper, we propose a methodology framework to per-

form autoregressive time series prediction by means of fuzzy

inference systems. We will call fuzzy autoregressors those

autoregressors implemented as fuzzy inference systems. This
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is not to be confused with what is usually called fuzzy

regression in the literature [2]. The methodology proposed

here is intended to apply to crisp time series.

In practice, one founds two problems when building a

fuzzy model for a time series: choosing the inputs to the

inference system, and identifying the structure of the system

The first problem is addressed by means of a priori feature se-

lection techniques based on nonparametric residual variance

estimation. The second problem is addressed by techniques

for identification of fuzzy systems from numerical examples,

such as the algorithm by Wang and Mendel (W&M) [1] and

identification algorithms based on clustering techniques [3].

This paper also addresses a recent challenge in the field of

time series prediction: long-term prediction (as a generaliza-

tion to short-term prediction), for which lack of information

and accumulated errors pose additional difficulties. Also, real

world benchmarking time series, instead of synthetic series

(chaotic but noise-free) are analyzed. Experimental results

are compared against least-squares support vector machines

(LS-SVM) [4], a well stablished method in the field of time

series prediction.

The next section describes nonparametric residual variance

estimation. In section III we propose a methodology frame-

work and one concrete implementation based on well known

algorithms. Section IV illustrates the methodology through

a case study. Sections V and VI present and further discuss

experimental results for a number of time series benchmarks.

II. NONPARAMETRIC RESIDUAL VARIANCE

ESTIMATION: DELTA TEST

Nonparametric residual variance estimation (or nonpara-

metric noise estimation, NNE) is a well-known technique in

statistics and machine learning, finding many applications in

nonlinear modeling [5].

Delta Test (DT) is a NNE method for estimating the lowest

mean square error (MSE) that can be achieved by a model

without overfitting the training set [5]. Given N multiple

input-single output pairs, (x̄i, yi) ∈ RM × R, the theory

behind the DT method considers that the mapping between

x̄i and yi is given by the following expression:

yi = f(x̄i) + ri,

where f is an unknown perfect fitting model and ri is the

noise. DT is based on hypothesis coming from the continuity

of the regression function. When two inputs x and x′ are

close, the continuity of the regression function implies that

outputs f(x) and f(x′) will be close enough. When this



implication does not hold, it is due to the influence of the

noise.

Let us denote the first nearest neighbor of the point x̄i in

the set {x̄1, . . . , x̄N} by x̄NN . Then the DT, δ, is defined as

follows:
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where yNN(i) is the output corresponding to x̄NN(i). For

a proof of convergence, refer to [6]. DT has been shown

to be a robust method for estimating the lowest possible

mean squared error (MSE) of a nonlinear model without

overfitting. DT is useful for evaluating nonlinear correlations

between random variables, namely, input and output pairs.

This method will be used for a priori input selection.

III. METHODOLOGY FRAMEWORK FOR TIME SERIES

PREDICTION WITH FUZZY INFERENCE SYSTEMS

Consider a discrete time series as a vector, ȳ =
y1, y2, . . . , yt−1, yt that represents an ordered set of values,

where t is the number of values in the series. The problem

of predicting one future value, yt+1, using an autoregressive

model (autoregressor) with no exogenous inputs can be stated

as follows:

ŷt+1 = fr(yt, yt−1, . . . , yt−M+1)

Where ŷt+1 is the prediction of model fr and M is the

number of inputs to the regressor.

Predicting the first unknown value requires building a

model, fr, that maps regressor inputs (known values) into

regressor outputs (predictions). When a prediction horizon

higher than 1 is considered, the unknown values can be

predicted following two main strategies: recursive and direct

prediction.

The recursive strategy applies the same model recursively,

using predictions as known data to predict the next unknown

values. For instance, the third unknown value is predicted as

follows:

ŷt+3 = fr(ŷt+2, ŷt+1, yt, yt−1, . . . , yt−M+3)

It is the most simple and intuitive strategy and does not

require any additional modeling after an autoregressor for 1

step ahead prediction is built. However, recursive prediction

suffers from accumulation of errors. The longer the predic-

tion term is, the more predictions are used as inputs. In

particular, for prediction horizons greater than the regressor

size, all inputs to the model are predictions.

Direct prediction requires that the process of building an

autoregressor be applied for each unknown future value.

Thus, for a maximum prediction horizon H , H direct models

are built, one for each prediction horizon h:

ŷt+h = fh(yt, yt−1, . . . , yt−M+1), with 1 ≤ h ≤ H

While building a prediction system through direct predic-

tion is more computationally intensive (as many times as

values are to be predicted) it is also straightforward to paral-

lelize. Direct prediction does not suffer from accummulation

of prediction errors.

In this paper, we follow the direct prediction strategy. In

order to build each autoregressor, a fuzzy inference system

is defined as a mapping between a vector of crisp inputs, and

a crisp output. In principle, any combination of membership

functions, operators and inference model can be employed,

but the selection has a significant impact on practical results.

As a concrete implementation, we use the minimum for con-

junctions and implications, gaussian membership functions

for inputs, singleton outputs and fuzzy mean as defuzzifica-

tion method following the Mamdani defuzzification model.

In this particular case a fuzzy autoregressor with M inputs

for prediction horizon h is formulated as:

Fh(ȳ) =

Nh
∑

l=1

min

(
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Where Nh is the number of rules in the rulebase for

horizon h, µ
L

i,h

l

are gaussian membership functions for the

input linguistic labels and µRh
l

are singleton membership

functions.

The problem of building a regressor can be precisely stated

as that of defining a proper number and configuration of

membership functions and building a fuzzy rulebase from a

data set of t sample data from a time series such that the

fuzzy systems Fh(ȳ) closely predict the h−th next values

of the time series. The error metric to be minimized is the

mean squared error (MSE).

We propose a methodology framework in which a fuzzy

inference system is defined for each prediction horizon

throughout the stages shown in figure 1. These stages are

detailed in the following subsections.

A. Variable Selection

As first step in the methodology, DT estimates are em-

ployed so as to perform an a priori selection of the optimal

subset of inputs from the initial set of M inputs, given a

maximum regressor size M . Variable selection requires a

selection criterion. We use the result of the DT applied to a

particular variable selection as as a measure of the goodness

of the selection. The input selection that minimizes the DT

estimate is chosen for the next stages.

In addition, a selection procedure is required. For small

(up to around 10-20) regressor sizes, an exhaustive evaluation

of DT for all the possible selections (a total of 2M − 1) is

feasible. We will call this procedure exhaustive DT search.

Its main advantages is that the optimal selection is found.

For higher regressor sizes, forward-backward search of

selections (FBS) [7] is employed. This procedure combines

both forward and backward selection. Although this pro-

cedure does not guarantee optimality, a balance between

performance and computational requirements is achieved.



Fig. 1. Methodology Framework for Time Series Prediction.

B. System Identification and Tuning

This stage comprises three substages that are performed

iteratively and in a coordinated manner. The whole process

is driven by the third (complexity selection) substage, until a

system that satisfies a training error condition derived from

the DT estimate is constructed.

1) Stage 2.1: System identification: In this substage, the

structure of the inference system (linguistic labels and rule

base) is defined. For the concrete implementation analyzed in

this paper, identification is performed using the W&M algo-

rithm driven by the DT estimate. Though many modifications

to the original algorithm have been proposed throughout the

years, for the sake of simplicity we adhere to the original

algorithm specification in [1] as implemented in version 3.2

of the Xfuzzy design environment [8].

For identification, one or more parameters are usually

required that specify the potential complexity of the inference

system. Thus, the desired boundaries of complexity for the

systems being built are additional inputs to the process. In the

case of the W&M algorithm, the number of labels per input
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Fig. 2. ESTSP´07 competition data set (875 samples).

must be specified a priori. Our approach is to explore systems

in an increasing order of complexity, from the lowest possible

number of labels up to a maximum specified as complexity

boundary. The same number of labels is used for each input.

This iterative identification process for increasing grid

partitions of the universe of discourse stops when a system is

built such that the training error is lower than the DT estimate

or a threshold based on the DT estimate. The selection is

made by comparing the error after the next (tuning) stage.

2) Stage 2.2: System Tuning: We consider an additional

tuning step in the methodology as a substage separated from

the identification substage. Note that in some cases (as in the

H&G [9] algorithm), these two substages can be integrated

into a standalone algorithm. The tuning process is driven by

one or more error metrics.

As concrete implementation for this paper we apply the

Levenberg-Marquardt supervised learning algorithm driven

by the normalized MSE (NMSE). All the parameters of

the membership functions of every input and output are

adjusted using the algorithm implementation in the Xfuzzy

development environment [10].

3) Stage 2.3: Complexity Selection: As last step, the com-

plexity of the fuzzy autoregressors (measured as the number

of linguistic labels per input in our concrete implementation)

is selected depending on the DT estimate. The first (simplest)

system that falls within the error range defined by the DT-

NNE is selected.

IV. CASE STUDY AND VALIDATION: ESTSP 2007

COMPETITION DATASET

For the purposes of validating and illustrating the proposed

methodology framework and concrete algorithms and crite-

ria, we analyze the data set from the ESTSP 2007 time series

prediction competition [11] (ESTSP´07). This data set (see

figure 2) consists of 875 samples of temperatures of the El

Niño-Southern Oscillation phenomenon.

The original ESTSP´07 series is splitted into two subsets:

a training set (first 475 samples) and a second set (last

400 samples) that will be used for validation. We will call
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Fig. 3. ESTSP´07-T: Number of selected variables for horizon up to 50.
DT based selection with exhaustive search. Maximum regressor size 10.

this series ESTSP´07-T. Though one of the major goals of

the proposed methodology is to avoid the requirement of

validation and test series, we define two subsets in order to

validate the methodology with the residual noise estimator

and algorithms being used.

A maximum regressor size of 10 and a prediction horizon

of 50 are considered. As first stage within our methodology,

DT is performed on the training set for all the possible

variable selections (210 − 1) and the one with lowest DT

estimate is chosen. This process is performed independently

for each prediction horizon. The number of selected variables

is shown in figure 3.

As second stage, the W&M algorithm is applied to the

training set in order to identify fuzzy inference systems.

These models are then tuned through supervised learning us-

ing the Levenberg-Marquardt algorithm over the training set.

The process is repeated for increasing numbers of linguistic

labelsper input, starting from 2. Within this iterative process,

the DT estimate is used to check whether the best possible

approximation has been achieved, i.e., the right compromise

between model complexity and training error has been found.

After the tuning substage, there is a considerable perfor-

mance increase as for accuracy (the MSE decreases around 1

order of magnitude). In particular, tuned systems with a low

number of rules perform better than untuned systems with

a much greater complexity. Thus, the supervised learning

substage also contributes to reducing model complexity.

The DT estimate threshold for horizon 1 is 1.26 · 10−3

and, as shown in figure 4, the fuzzy system with 3 linguistic

labels per input is chosen as autoregressor for horizon 1.

Figure 5 shows the training and validation errors of the

fuzzy autoregressors. Training and test errors of LS-SVM

models are also shown. LS-SVM models were built with the

same autoregressor size, input selection and training subset,

using RBF kernels, gridsearch as optimization routine and

crossvalidation as cost function. From figure 5, two main

conclusions can be drawn from the comparison:

• As for generalization capability, the overall superiority
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Fig. 4. ESTSP´07-T: Errors for horizon 1, exhaustive DT based selection
of inputs. Continous line: training error. Dashed line: validation error.
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Fig. 5. ESTSP´07-T: comparison of our methodology against LS-SVM.
Generalization errors of LS-SVM models (+). Generalization errors of fuzzy
models (�). Training errors of fuzzy models (∗). Training errors of LS-SVM
models (×).

of fuzzy regressors is specially evident for long-term

prediction (beyond horizon 25).

• Training and generalization errors are much closer for

fuzzy models than for LS-SVM models.

Figure 6 shows the predictions for the first 50 values after

the training set together with a fragment of the actual time

series.

V. EXPERIMENTAL RESULTS

In this section, the proposed concrete implementation of

the methodology framework described is applied to two time

series prediction problems, namely the Poland electricity

time series prediction benchmark and one of the series of

the NN3 forecasting competition.

A. Poland Electricity Benchmark

This time series (PolElec henceforward) represents the

normalized average daily electricity demand in Poland in the

1990´s. The benchmark consists of a training set of 1400
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Fig. 6. ESTSP´07-T: Prediction of 50 values after the training set.
Continous line: actual time series. Dashed line: predictions.
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Fig. 7. PolElec: training series (1400 samples).

samples, shown in figure 7, and a test set of 201 samples. It

has been shown that the dynamics of this time series is nearly

linear [12]. Besides the yearly periodicity, a clear weekly

periodicity can be seen on smaller time scales.

We will show the results obtained for two different

maximum regressor sizes: 7 and 14. In both cases, input

selection was performed by exhaustive search of the lowest

DT estimate. The number of selected variables is shown in

figure 8

For 7 steps ahead prediction, considering the notation for

discrete time series introduced in section III, three input

variables are selected to predict yt+7: yt, yt−1 and yt−5. As

an example of the interpretability of the models developed,

let us suppose that the last 7 daily electricity demand

measurements that are available correspond to the demand

for a week from monday through sunday. Then, the fuzzy

autoregressor predicts the demand for next Sunday based on

the last known daily demand (Sunday), the demand of last

Saturday and the demand of last Tuesday. A sample rule

from the fuzzy inference based autoregressor would read as

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 5  10  15  20  25  30  35  40  45  50

S
el

ec
te

d
 v

ar
ia

b
le

s

Prediction horizon

Fig. 8. PolElec: Number of selected variables (exhaustive DT based
selection). Regressor sizes 7 (continuous line) and 14 (dashed line).
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Fig. 9. PolElec: NDT estimates (*), training (+) and test (x) errors of fuzzy
autoregressors. Maximum regressor size 7. Exhaustive DT based selection
of inputs.

follows:

IF Tuesday was High AND Saturday was Low AND

Sunday was Low THEN NextSunday← “0.92”

Where “0.92” is used as linguistic label for a singleton output

centered approximately at 0.92.

Figure 9 show the DT estimates as well as training and test

errors for the regressor with maximum size 7. The average

training and test error of LS-SVM models are shown together

with the errors of fuzzy models in table I. The accuracy

of fuzy autoregressors is better with no exception for any

prediction horizon.

B. NN3 Competition

The NN3 forecasting competition [13] comprises a set of

111 series with monthly measures of financial variables. The

next unknown 18 values have to be predicted. We analyze the

time series number 104. The known values and predictions

are shown in figure 10. These predictions were obtained

using a maximum regressor size of 18. Variable selection was



TABLE I

TRAINING AND TEST ERRORS OF LS-SVM AND FUZZY MODELS

AVERAGED FOR HORIZONS 1 THROUGH 50. ERRORS GIVEN AS NMSE.

MAXIMUM REGRESSOR SIZE SPECIFIED BETWEEN PARENTHESIS.

LS-SVM Fuzzy inference

Series Training Test Training Test

ESTSP´07-T (10) 7.93·10−3 2.79·10−2 1.94·10−2 2.04·10−2

PolElec (7) 1.16·10−2 3.57·10−2 1.70·10−2 1.78·10−2

PolElec (14) 1.04·10−2 3.24·10−2 1.58·10−2 1.82·10−2
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Fig. 10. NN3 104 series. 115 known values (continuous line) and 18
predictions (dashed line).

performed through exhaustive search up to size 12 extended

with forward-backward search up to size 18.

From the plot, it can be concluded that the cyclic behavior

of the series is correctly identified and the predictions are

within reasonable boundaries. This result shows that the

methodology employed can perform well when the training

series is small.

VI. DISCUSSION

A fundamental advantage of autoregressive time series

prediction with fuzzy inference systems is that the rule based

models can be linguistically interpreted by humans. For some

time series, the most accurate rulebases have a low number of

rules (below 15 or 10 rules). When the most accurate system

has a high number of rules, there is still the possibility to

build simpler, approximate models with a degree of accuracy

of the same order of the most accurate model.

The methodology developed does not require a validation

stage and thus the whole available data set can be used

as training data to build autoregressive models. Several

procedures have been shown to play a key role in achieving

good approximation accuracy while keeping low complexity:

variable selection, application of a supervised learning algo-

rithm for tuning, and using DT-NNE for selecting the number

of linguistic labels per input. The use of DT estimates has

been shown to be advantageous in two main aspects:

• It does not only improve accuracy but also increases

interpretability by decreasing the number of inputs.

• It is a robust solution to the problem of selecting the

proper system complexity.

While LS-SVM are usually praised for their good gen-

eralization performance, we have shown that fuzzy autore-

gressors clearly outperform LS-SVM based autoregressors in

terms of generalization capability. As far a s computational

requirements is concerned, the methodology proposed has

a very low cost compared against the LS-SVM method. A

Java based implementation of the methodology presented is

consistently between 1 and 3 orders of magnitude faster than

the optimized C implementation of LS-SVM.

VII. CONCLUSION

We have developed an automatic methodology framework

for long-term time series prediction by means of fuzzy

inference systems. Experimental results for a concrete imple-

mentation of the methodology confirm good approximation

accuracy and generalization capability.

Linguistic interpretability for both short-term and long-

term prediction as well as low computational cost are two

remarkable advantages over common time series prediction

methods. Also, the proposed methodology has been shown to

outperform LS-SVM based predictions in terms of approxi-

mation accuracy.
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