
xftsp: a Tool for Time Series Prediction by

Means of Fuzzy Inference Systems

Federico Montesino, Amaury Lendasse and Ángel Barriga

Abstract—A new software tool for time series prediction by
means of fuzzy inference systems is reported. This tool, named
xftsp, implements a novel methodology for time series prediction
based on methods for automatic fuzzy systems identification
and supervised learning combined with statistical methods for
nonparametric residual variance estimation. xftsp is designed
as a tool integrated in the Xfuzzy development environment
for fuzzy systems. Experiments carried out on a number of
time series benchmarks show the advantages of xftsp in terms
of both accuracy and computational requirements as compared
against Least-Squared Support Vector Machines, an established
technique in the field of time series prediction.

Index Terms—Time series prediction, Fuzzy inference, Su-
pervised learning, Nonparametric regression, Residual variance
estimation, Least-squared support vector machines

I. INTRODUCTION

In the past, conventional statistical techniques such as AR,

ARMA and derived models have been extensively used for

forecasting. However, these techniques have limited capa-

bilities for modeling time series data, and more advanced

nonlinear methods including neural networks, evolutionary

algorithms and other soft computing techniques have been

often applied with success [1].

Fuzzy logic based modeling techniques are appealing

because of their interpretability and potential to address

a broad spectrum of problems. The application of fuzzy

inference systems to time series modeling and prediction

dates back to [2], in which the authors develop the well

known learn from examples identification algorithm for fuzzy

inference systems and use the Mackey-Glass time series as a

validation case. Nevertheless, despite its good performance

in terms of accuracy and interpretability, fuzzy systems have

seen little application in the field of time series prediction

as compared to other nonlinear modeling techniques such as

neural networks and support vector machines.

Recently, a methodology framework has been proposed

for the long-term prediction of time-series by means of fuzzy

Federico Montesino Pouzols is with the Microelectronics Institute of
Seville, CSIC, Scientific Research Council, Avda. Reina Mercedes s/n. Edif.
CICA. E-41012 Seville, Spain (phone: +34-955-056-666; fax: +34-955-056-
686; email: fedemp@imse.cnm.es).

Amaury Lendasse is with the Laboratory of Computer and Information
Science of the Helsinky University of Technology. P.O. Box 5400, FIN-
02015 HUT, Finland (phone: +358-9-451 3267; fax: +358-9-451 3277;
email: lendasse@cis.hut.fi).

Angel Barriga Barros is with the Department of Electronics and Electro-
magnetism of the University of Seville, E-41012, Spain (phone: +34-955-
056-666; fax: +34-955-056-686; email: barriga@us.es).

This work has been supported in part by project TEC2005-04359/MIC
from the Spanish Ministry of Education and Science as well as project
TIC2006-635 and grant IAC07-I-0205:33080 from the Andalusian regional
Government.

systems [3]. This paper introduces a tool that implements the

cited methodology in an open and modular way. Experimen-

tal results are compared against the reference implementation

of a methodology commonly applied in the time series

prediction field, least-squared support vector machines.

II. NONPARAMETRIC RESIDUAL VARIANCE

ESTIMATION: DELTA TEST

Nonparametric residual variance estimation (NRVE) is a

well-known technique in statistics and machine learning,

finding many applications in nonlinear modeling [4].

Delta Test (DT) is a NRVE method for estimating the

lowest mean square error (MSE) that can be achieved by

a model without overfitting the training set [4]. Given N

multiple input-single output pairs, (x̄i, yi) ∈ RM × R, the

theory behind the DT method considers that the mapping

between x̄i and yi is given by the following expression:

yi = f(x̄i) + ri,

where f is an unknown perfect fitting model and ri is the

noise. DT is based on hypothesis coming from the continuity

of the regression function. When two inputs x and x′ are

close, the continuity of the regression function implies that

outputs f(x) and f(x′) will be close enough. When this

implication does not hold, it is due to the influence of the

noise.

Let us denote the first nearest neighbor of the point x̄i in

the set {x̄1, . . . , x̄N} by x̄NN . Then the DT, δ, is defined as

follows:

δ =
1

2N

N
∑

i=1

∣

∣yNN(i) − yi

∣

∣

2
,

where yNN(i) is the output corresponding to x̄NN(i). For

a proof of convergence, refer to [5]. DT has been shown

to be a robust method for estimating the lowest possible

mean squared error (MSE) of a nonlinear model without

overfitting. DT is useful for evaluating nonlinear correlations

between random variables, namely, input and output pairs.

This method will be used for a priori input selection.

III. PREDICTION METHODOLOGY

Consider a discrete time series as a vector, ȳ =
y1, y2, . . . , yt−1, yt, that represents an ordered set of values,

where t is the number of values in the series. The problem

of predicting one future value, yt+1, using an autoregressive

model (autoregressor) with no exogenous inputs can be stated

as follows:

ŷt+1 = f1(yt, yt−1, . . . , yt−M+1)

Where ŷt+1 is the prediction of model f1 and M is the

number of inputs to the regressor.

Predicting the first unknown value requires building a

model, f1, that maps regressor inputs (known values) into

regressor outputs (predictions). When a prediction horizon

higher than 1 is considered, the unknown values can be

predicted following two main strategies: recursive and direct

prediction.

The recursive strategy is based on the application of the

same model recursively, using predictions as known data

to predict the next unknown values. It is the most simple

and intuitive strategy and does not require any additional

modeling after an autoregressor for 1 step ahead prediction

is built. However, recursive prediction suffers from accumu-

lation of errors. The longer the prediction term is, the more

predictions are used as inputs. In particular, for prediction

horizons greater than the regressor size, all inputs to the

model are predictions.

Direct prediction requires that the process of building an

autoregressor be applied for each unknown future value.

Thus, for a maximum prediction horizon H , H direct models

are built, one for each prediction horizon h:

ŷt+h = fh(yt, yt−1, . . . , yt−M+1), with 1 ≤ h ≤ H

While building a prediction system through direct prediction

is more computationally intensive (as many times as values

are to be predicted) it is also straightforward to parallelize.

Direct prediction does not suffer from accummulation of

prediction errors.

In this paper, the direct prediction strategy is followed. In

order to build each autoregressor, a fuzzy inference system

is defined as a mapping between a vector of crisp inputs, and

a crisp output.

The problem of building a regressor can be precisely stated

as that of defining a proper number and configuration of

membership functions and building a fuzzy rulebase from a

data set of t sample data from a time series such that the

fuzzy systems Fh(ȳ) closely predict the h−th next values

of the time series. The error metric to be minimized is the

mean squared error (MSE).

xftsp implements a methodology framework for long-term

prediction of time series [3]. Within this framework, a fuzzy

inference system is defined in an automatic manner for each

prediction horizon. Figure 1 shows the stages required to

define each autoregressor. These stages are detailed in the

following subsections.

A. Variable Selection

As first step, DT estimates are used so as to perform an

a priori selection of the optimal subset of inputs from the

initial set of M inputs, given a maximum regressor size M .

Variable selection requires a selection criterion. The result

of the DT applied to a particular variable selection is used

as as a measure of the goodness of the selection. The input

selection that minimizes the DT estimate is chosen.

In addition, a selection procedure is required. For small (up

to around 10-20) regressor sizes, an exhaustive DT evaluation

for all the possible selections (a total of 2M − 1) is feasible.

Fig. 1. Methodology Framework of xftsp.

We will call this procedure exhaustive DT search. Its main

advantages is that the optimal selection is found.

For higher regressor sizes, forward-backward search of

selections (FBS) [6] can be applied. This procedure combines

both forward and backward selection. Although optimality is

not guaranteed, a balance between performance and compu-

tational requirements is achieved.

B. System Identification and Tuning

This stage comprises two substages that are performed in

a coordinated manner until a system that satisfies the error

condition derived from the DT estimate is constructed.

1) Stage 2.1: System identification: In this substage, the

structure of the inference system (linguistic labels and rule

base) is defined. For identification, one or more parameters

are usually required that specify the potential complexity

of the inference system. Thus, the desired boundaries of

complexity for the systems being built are additional inputs

to the process.

2) Stage 2.2: System Tuning: We consider an additional

tuning step in the methodology as a substage separated from

the identification substage. Note that in some cases these two

substages can be integrated into a standalone algorithm. The

tuning process is driven by one or more error metrics.

C. Complexity selection

As last step, the complexity of the fuzzy autoregressors

(measured as the number of linguistic labels per input in

our concrete implementation) is selected depending on the

DT estimate. The first (simplest) system that falls within the

error range defined by the DT NRVE is selected.

The use of DT estimates in a first input selection stage as

well as in the identification and tuning stage has been shown

to be advantageous in two main aspects [3]:

• It does not only improve the regressor accuracy but also

reduces its complexity and increases its interpretability

by decreasing the number of inputs to the fuzzy infer-

ence system.

• It has been shown to be a robust solution to the problem

of selecting the proper system complexity.

IV. xftsp

xftsp is a software tool that implements the methodology

for time series prediction outlined above in a fully auto-

matic manner. It is implemented in Java and defined as

a java package integrated in the Xfuzzy environment for

the design of fuzzy inference systems [7]. xftsp can be run

whether within the Xfuzzy environment or as a standalone

console tool. It is released under the same free license

(GNU General Public License) as Xfuzzy and is available

from the collaborative development web platform for Xfuzzy

(https://forja.rediris.es/projects/xfuzzy).

The identification and tuning tasks are implemented using

the API of the tools already available in Xfuzzy. Thus,

the whole set of identification and tuning algorithms imple-

mented in Xfuzzy [8] is available, as well as the overall

framework for the definition of fuzzy sytems.

Figure 2 shows an scheme of the component architecture

of Xfuzzy. A number of tools implement the following stages

in the fuzzy inference systems development flow: description,

tuning, verification and synthesis. The link among all these

tools is the use of a common specification language, XFL3,

and a common software component for the definition of fuzzy

inference systems using XFL3. Within the description stage,

Xfuzzy includes graphical tools for defining fuzzy systems.

Tools for simulation, monitoring and graphical representation

of the system behavior are included for the verification stage.

The tuning stage involves identification, supervised learning

and simplification tools. Finally, the synthesis stage includes

tools generating high-level language descriptions for software

and hardware implementations. Each tool can be executed

whether as an independent program or as part of a global

environment. The the whole set of tools are tied together

under a graphical user interface.

Many advantages derive from the use of Xfuzzy as the

basis of xftsp. Besides accelerating development, the data

mining and supervised learning algorithms supported by

Fig. 2. Overall component architecture of Xfuzzy.

xftsp_series_name(sunspot)

xftsp_training_file(sunspot-training.txt)

xftsp_test_file(sunspot-test.txt)

xftsp_selection(DeltaTest, Exhaustive)

xftsp_identification_algorithm(WangMendel)

xftsp_learning_algorithm(Marquardt)

xftsp_option(MaxPredictionHorizon,50)

Fig. 3. Example xftsp configuration file.

Xfuzzy as well as extensions of these can be rapidly im-

plemented within the time series prediction methodology

framework of xftsp. Also, by leveraging on the Xfuzzy

environment, many additional features are available. For

instance, the simplification tool xftsp can be used on a system

for time series prediction in order to get a simplified rulebase

for better interpretability.

An execution of xftsp for a time series (defined by means

of a training and an optional test file) is driven by a set

of configuration options that can be set in a configuation

file as well as through a visual interface. An example of

configuration file is shown in figure 3.

In principle, any combination of membership functions,

operators and inference model can be used for the purposes

of time series prediction, but the selection has a significant

impact on practical results. As default option, xftsp uses

the minimum for conjunctions and implications, gaussian

membership functions for inputs, singleton outputs and fuzzy

mean as defuzzification method following the Mamdani

defuzzification model. These characteristics can be changed

by means of configuration options. The default options were

selected for the experiments described in the next section. In

this particular case a fuzzy autoregressor with M inputs for

prediction horizon h is formulated as:

Fh(ȳ) =

Nh
∑

l=1

min

(

µRh
l
, min
1≤v≤M

µ
L

i,h

l

(yv)

)

Nh
∑

l=1

min
1≤v≤M

µ
L

i,h

l

(yv)

Where Nh is the number of rules in the rulebase for

horizon h, µ
L

i,h

l

are gaussian membership functions for the

input linguistic labels and µRh
l

are singleton membership

functions.

As default option, identification is performed using the

algorithm by Wang and Mendel [2] (W&M) driven by the

DT estimate. Though many modifications to the original

algorithm have been proposed throughout the years, for

the sake of simplicity we adhere to the original algorithm

specification in [2], as implemented in version 3.2 of the

Xfuzzy design environment [7].

In the case of the W&M algorithm, the number of labels

per input must be specified a priori. The approach imple-

mented in xftsp is to explore systems in an increasing order

of complexity, from the lowest possible number of labels up

to a maximum specified as complexity boundary. The same

number of labels is used for each input.

This iterative identification process for increasing grid

partitions of the universe of discourse stops when a system is

built such that the training error is lower than the DT estimate

or a threshold based on the DT estimate. The selection is

made by comparing the error after the next (tuning) stage.

As default option for tuning, xftsp applies the Levenberg-

Marquardt algorithm [9] for supervised learning driven by

the normalized MSE (NMSE) as error metric1. All the

parameters of the membership functions of every input and

output are adjusted using the algorithm implementation in

the Xfuzzy development environment [8], i.e., self-tuning

inference systems are defined. The Levenberg-Marquardt

algorithm is applied by default with the following parameter

values: initial Hessian addition 0.1, increase factor 10.0 and

decrease factor 0.2.

Finally, the task of long term time series prediction can be

highly computationally intensive. Some critical components

as for as performance have been identified. In particular, ap-

plying DT for input selection raises performance issues. The

optimal exhaustive search algorithm has complexity O(2n),
where n is the maximum number of inputs to the regressor.

Besides the possibility of alleviating this problem through

alternative search algorithms, such as forward-backward [3],

an optimized C implementation is provided as a helping

1Normalization is performed against the square of the range of the series.

tool included with xftsp for speeding up the input selection

process as far as possible.

V. APPLICATION EXAMPLES

In this section, we show the results of applying xftsp

to three time series: the Poland electricity benchmark, the

monthly averaged sunspot number and the daily averaged

aggregated traffic in the Abilene network backbone. We also

compare the accuracy and computational requirements of

fuzzy models against least-squared support vector machines

(LS-SVM) [10] models with the same autoregressor size

and input selection. We show the results from conducting

a comparative assessment of xftsp and the LS-SVMlab1.5

Matlab/C toolbox. LS-SVM models were built following a

direct prediction strategy for the same training subsets and

variable selections. We selected RBF kernels, gridsearch as

optimization routine and crossvalidation as cost function.

Though one of the major goals of the methodology im-

plemented in xftsp is to avoid the requirement of validation

and test series, we define two subsets in order to assess the

residual noise estimator and algorithms being used.

In order to perform and approximate comparison of com-

puting requirements, both xftsp and LS-SVMlab1.5 were

executed on the same system configuration: a commodity PC

running a distribution of the GNU/Linux operating system

on an Intel(R) Core(TM)2 Duo CPU E655 processor at

2.33GHz, with 4 MB of L1 cache memory and 2 GB of RAM.

No significant competing load was introduced.

xftsp was run on the Sun Java SE runtime environment

version 1.6.0 04, build 1.6.0 04-b12, with the HotSpot virtual

machine, build 10.0-b19 in mixed mode. LS-SVMlab was

run on Matlab version R2007a, using the optimized C im-

plementation of the LS-SVMlab1.5 toolbox, available from

http://www.esat.kuleuven.ac.be/sista/lssvmlab/.

For all the tests, a maximum prediction horizon of 50 is

considered, i.e., models are generated for predicting the next

50 unknown values.

A. Sunspot Numbers

The series of sunspot numbers is a periodic measure of

the sunspot activity. Values from this series are subject to

uncertainty and noise, particularly during the past centuries.

We analyze a series of monthly averaged sunspot numbers

covering from January 1749 to December 2007, as provided

by the National Geographical Data Center from the US

National Oceanic and Atmospheric Administration2. The

series is split into a set of 1000 values for training and a

set of 2908 values for testing. The whole series is shown in

figure 4.

The training and test errors of LS-SVM models averaged

throughout horizons 1 to 50 are shown together with the

errors of fuzzy models in table I. Two maximum regressor

sizes are shown in the table. Fuzzy autoregressors achieve a

higher approximation accuracy for the test subset for all the

prediction horizons considered.

2The series used here can be obtained from
http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html. The
International Sunspot Number is produced by the Solar Influence
Data Analysis Center (SIDC) at the Royal Obervatory of Belgium [11].

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

S
u

n
sp

o
t

n
u

m
b

er

Months

Fig. 4. Sunspot: training (first 1000 samples) and test (last 2098 samples)
series.

TABLE I

TRAINING AND TEST ERRORS OF FUZZY INFERENCE MODELS AND

LS-SVM, AVERAGED FOR HORIZONS 1 THROUGH 50. ALL ERRORS ARE

GIVEN AS NMSE. MAXIMUM REGRESSOR SIZE SPECIFIED BETWEEN

PARENTHESIS.

xftsp LS-SVMlab1.5
Series Training Test Training Test

Sunspot (9) 1.69·10
−2

2.64·10
−2

1.34·10
−2

3.28·10
−2

Sunspot (12) 1.59·10
−2

2.63·10
−2

9.64·10
−3

3.02·10
−2

PolElec (7) 1.70·10
−2

1.78·10
−2

1.16·10
−2

3.57·10
−2

PolElec (14) 1.58·10
−2

1.82·10
−2

1.04·10
−2

3.24·10
−2

AbileneI (7) 1.44·10
−2

1.73·10
−2

8.58·10
−3

2.47·10
−2

AbileneI (12) 1.22·10
−2

1.50·10
−2

6.77·10
−3

2.15·10
−2

Table II shows the running times for xftsp and LS-SVMlab.

As can be seen, xftsp is at least 1 order of magnitude faster

than LS-SVMlab1.5. Most of the time required by xftsp to

complete a model is spent in the supervised learning sub-

stage. The maximum duration of this stage can be bounded

by setting two complementary configuration options: the

maximum number of iterations of the learning algorithm to

perform and the training error decrease beyond which no

more iterations are performed.

B. Poland Electricity

This time series (PolElec henceforward) represents the

normalized average daily electricity demand in Poland in the

1990´s. The benchmark consists of a training set of 1400

samples, shown in figure 5, and a test set of 201 samples,

shown in figure 6. It has been shown that the dynamics

of this time series is nearly linear [12]. Besides the yearly

periodicity, a clear weekly periodicity can be seen on smaller

time scales (see figure 6). Accuracy and timing results are

also summarized in tables I and II.

C. Aggregated Incoming Traffic in the Abilene Network

This series, AbileneI henceforward, represents the total

amount of aggregated incoming traffic in the routers of

the Internet2 backbone network during several years. The

AbileneI series consists of 1458 daily averages (in bps)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 200 400 600 800 1000 1200 1400

E
le

ct
ri

ci
ty

 d
em

an
d

Days

Fig. 5. PolElec: training series (1400 samples).

TABLE II

RUNNING TIME (IN SECONDS) REQUIRED TO BUILD TIME SERIES

MODELS FOR HORIZONS 1-50. ALL TESTS WERE RUN ON THE SAME

SYSTEM, WITH NO SIGNIFICANT COMPETING LOAD. MAXIMUM

REGRESSOR SIZE SPECIFIED BETWEEN PARENTHESIS.

Series xftsp LS-SVMlab1.5

Sunspot (9) 1.04 · 10
4

3.10 · 10
5

Sunspot (12) 1.22 · 10
4

2.42 · 10
5

PolElec (7) 1.05 · 10
4

3.04 · 10
5

PolElec (14) 2.30 · 10
4

9.91 · 10
5

AbileneI (7) 1.75 · 10
3

1.40 · 10
5

AbileneI (12) 4.69 · 10
3

1.27 · 10
5

covering from the 4th of January of 2003 to the 31st of

December of 2006. The data are available from the Abilene

Observatory at http://www.internet2.edu/observatory/. The

daily averages for years 2003 and 2004 (the first 728 values)

were selected as training set, whereas the daily averages for

years 2005 and 2006 (the last 730 values) were selected

as test set. Accuracy and timing results are summarized in

tables I and II as well.

VI. DISCUSSION

The methodology followed in this paper and its particular

implementation in the xftsp tool have been experimentally

shown to perform well for long-term time series prediction.

xftsp does not require a validation stage and thus the whole

available data set can be used as input training data.

In addition to the interpretability of the methodology

implemented in xftsp, fuzzy inference based models have

been shown to consistently outperform LS-SVM models in

terms of accuracy. For the kind of time series considered

in this paper, noisy time series for which there are no

deterministic models available, fuzzy models are consistently

around 3 times more accurate than LS-SVM models.

A remarkable property of the models generated by xftsp is

their generalization capability. Test errors have been found

to be of the same order of magnitude than training errors and

are usually very close. While LS-SVM are usually praised for

their good generalization performance, it can be concluded

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 20 40 60 80 100 120 140 160 180 200

E
le

ct
ri

ci
ty

 d
em

an
d

Days

Fig. 6. PolElec: test series (201 samples).

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 2.2e+09

 0 250 500 750 1000 1250

A
g

g
re

g
at

ed
 i

n
co

m
in

g
 t

ra
ff

ic
 (

b
p

s)

Day

Fig. 7. AbileneI: daily averaged aggregated incoming traffic in the Abilene
backbone for 1458 days. Training series (first 728 values) and test series
(last 730 values).

from table II that fuzzy autoregressors developed with xftsp

clearly outperform LS-SVM based autoregressors in terms

of generalization capability.

An important contribution of xftsp is the interpretability

of the models it generates. As an example, let us consider

the model with maximum regressor size 7 for 7 steps ahead

prediction of the AbileneI series. Three inputs are selected

to predict yt+7: yt, yt−2 and yt−4. Let us suppose that the

last 7 daily average traffic measurements that are available

correspond to the traffic for a week from Monday through

Sunday. Then, the fuzzy autoregressor predicts the average

traffic for next Sunday based on the averages from last

Sunday, Friday and Wednesday. Two linguistic terms are

defined for each input variable. The rulebase of this predictor

consists of 8 rules. A sample rule from this system would

read as follows:

IF Wednesday was High AND Friday was Low AND

Sunday was High THEN NextSunday← “915Mbps”

where the variables “Wednesday”, “Friday”, “Sunday” and

“NextSunday” refer to daily traffic averages, “Low” and

“High” are the two linguistic terms defined for the inputs,

and “915Mbps” is used as linguistic label for a singleton

output centered approximately at the 915 Mbps value.

In most cases, the most accurate system has a low number

of linguistic terms and rules (below 15 or 10). However, in

some cases the number of rules can be of a few tens. In

general, it can be concluded that systems with the minimum

number of linguistic terms provide a reasonable approxima-

tion to the most accurate system. Thus, it is easy to obtain

simple approximate models that ease the understanding of

the time series dynamics.

Finally, alternative options for fuzzy inference systems

identification, tuning and simplification have been proposed

to date, and the ones used in this paper could be improved

as well. This is an area of future research in identification

and tuning techniques for time series prediction.

VII. CONCLUSION

The architecture and usage of a new tool for time series

prediction by means of fuzzy inference systems, xfstp, has

been described. The tool has been shown to perform well

and to clearly outperform the well-established LS-SVMlab

matlab toolbox in terms of both accuracy and speed. By

having a modular architecture, xftsp enables further research

on the application of fuzzy systems identification and tuning

techniques for time series modeling and prediction.

REFERENCES

[1] C. Chatfield, The Analysis of Time Series. An Introduction. CRC
Press, Jul. 2003, sixth edition, ISBN: 1-58488-317-0.

[2] L. Wang and J. M. Mendel, “Generating Fuzzy Rules by Learning from
Examples,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 22, no. 4, pp. 1414–1427, Dec. 1992.

[3] F. M. Pouzols, A. Lendasse, and A. Barriga, “Fuzzy Inference Based
Autoregressors for Time Series Prediction Using Nonparametric Resid-
ual Variance Estimation,” in 17th IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE’08), IEEE World Congress on Computa-
tional Intelligence, Hong Kong, China, Jun. 2008.

[4] A. J. Jones, “New Tools in Non-linear Modelling and Prediction,”
Computational Management Science, pp. 109–149, Sep. 2004.

[5] E. Liitiäinen, A. Lendasse, and F. Corona, “Non-parametric Residual
Variance Estimation in Supervised Learning,” in WANN 2007, Interna-
tional Work-Conference on Artificial Neural Networks, San Sebastián,
Spain, Jun. 2007, pp. 63–71.

[6] A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse, “Method-
ology for Long-Term Prediction of Time Series,” Neurocomputing,
vol. 70, no. 16-18, pp. 2861–2869, Oct. 2007.

[7] F. J. Moreno-Velo, I. Baturone, S. Sánchez-Solano, and A. Barriga,
“Rapid Design of Fuzzy Systems With Xfuzzy,” in 12th IEEE Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE’03), St. Louis,
MO, USA, May 2003, pp. 342–347.

[8] F. J. Moreno-Velo, I. Baturone, A. Barriga, and S. Sánchez-Solano,
“Automatic Tuning of Complex Fuzzy Systems with Xfuzzy,” Fuzzy
Sets and Systems, vol. 158, no. 18, pp. 2026–2038, Sep. 2007.

[9] R. Battiti, “First and Second Order Methods for Learning: Between
Steepest Descent and Newton’s Method,” Neural Computation, vol. 4,
no. 2, pp. 141–166, Mar. 1992.

[10] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and
J. Vandewalle, Least Squares Support Vector Machines. Singapore:
World Scientific, 2002, ISBN: 981-238-151-1.

[11] R. V. der Linden and the SIDC Team, “Online Catalogue of
the Sunspot Index,” RWC Belgium, World Data Center for the
Sunspot Index, Royal Observatory of Belgium, years 1748-2007,
http://sidc.oma.be/html/sunspot.html, Jan. 2008.

[12] A. Lendasse, J. Lee, V. Wertz, and M. Verleyssen, “Forecasting Elec-
tricity Consumption using Nonlinear Projection and Self-Organizing
Maps,” Neurocomputing, vol. 48, no. 1, pp. 299–311, Oct. 2002.

