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Abstract

While there are numerous unsupervised learning methods in the machine learning liter-

ature for exploring the structure of asingledata set, less attention has been paid to the

unsupervised learning of multiple data sets that have a shared structure. In this thesis,

we show how to handle this problem in a probabilistic generative framework, limiting

our analysis to the case of two related data sets. Each data set acts as acontextto guide

the feature extraction for the other.

Chapter 2 presents the background to probabilistic modelling, dimensionality re-

duction techniques, and existing methods for exploring tworelated data sets. Based on

an information theoretic analysis of the dependencies between two related data vari-

ables, in Chapters 3 and 4 we develop two generative models based on the Gaussian

Process Latent Variable Model (GPLVM), providing a probabilistic interpretation of

nonlinear canonical correlation analysis. In Chapter 5, a mixture of probabilistic canon-

ical correlation analysers is used to model two data sets that are nonlinearly related to

a shared latent space. We then show how to overcome the problem of determining the

number of mixture components, through a fully Bayesian treatment of the model. A

Dirichlet process prior is placed on the indicator variables, allowing an infinite number

of components, such that the number ofrepresentedcomponents is inferred automati-

cally.
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Chapter 1

Introduction

Humans have to continually make decisions based on sensory observations of an un-

certain and changing environment, and learn to adapt their behaviour according to the

observations. The learning process can be thought of as creating a modelof a set of

observed data, with the aim of making predictions about future observations. This char-

acterisation of learning is the basis of the field of machine learning. Machine learning is

concerned with the development of algorithms that allow a computer to ‘learn’. Given

a set of data, a machine learning algorithm finds patterns or rules that characterise in-

teresting aspects, or the structure, of the data. Constructing models of data observations

is not a trivial task; in general, a model will only be an approximation to the true un-

derlying data generating process. The problem lies in determining which aspects, or

features, of the data are useful (in the way a human extracts useful sensory features in

order to make sense of the environment) and capturing the waythese features interact

within the model.

In general, research in the machine learning field has focused on analysing data

that is the output of a single sensor (a single data source) rather than analysing data

from the output of several sensors. However, it seems advantageous to learn from

multiple data sources because there is more information about the underlying data gen-

erating process than if we had just considered a single source. The relevance of this

research area is inspired by the human brain’s ability to integrate five different sensory

input streams into a coherent representation of its environment. Additionally, due to
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the increased availability of electronic recording devices and advances in data analysis

techniques, there exist many scenarios in which it becomes necessary to model multiple

data sources. The analysis of more than one data source is of interest in fields such as

robotics (where it is known as sensor fusion), data fusion ofsatellite observations, and

multimodal image registration.

A naı̈ve approach to the problem of multiple data set modelling would be to extract

useful features for each data source in turn, and then combine the features together.

Unfortunately, this approach neglects the potentially useful shared information between

the data sources; since we suppose that the multiple sets of observations are views

of the same underlying process, then the shared informationwill correspond to some

knowledge about the process. In this thesis, we assume that the useful features of

the data can be found through learning a joint representation of multiple data sets,

and we create models that capture the interaction of these features. We can think of

learning from each set as being guided by all the other sets i.e. thecontextguides the

learning process for each data set. This suggests that inferring an underlying process

from multiple sets of observations is more robust to error than learning from a single

set of observations, since there is more information about the useful features.

1.1 Modelling two data sources

In this thesis, we focus on the case of two data sources, though the methods we con-

sider may be generalised to multiple data sources. We suppose that we haveN pairs

of samples from the two data sourcesY1 = {y1,1, ...,y1,N} andY2 = {y2,1, ...,y2,N},

where thenth pair is given byyn = {y1,n,y2,n}. There are many techniques in the lit-

erature for analysing two data sources, which we can categorise as either discriminative

or generative models.

Discriminative techniques find pairs of featuresxn = {x1,n,x2,n} for each data

pairyn to optimise a measure of similarity between the feature pair. The methods dif-

fer according to the relationship betweenxn andyn, and the definition of the similarity

measure. We can broadly categorise the different methods according to the relation-
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ship between the features and the data being linear, e.g. canonical correlation analysis

(CCA) (Hotelling, 1936) or nonlinear e.g. kernel CCA (Lai & Fyfe, 2000). The nonlin-

ear methods hold more interest than the linear methods, since in general most real life

data sets can be described well by extracting nonlinearly related features. However, a

difficult aspect of the modelling problem is the specification of the nonlinear mappings

to find useful features; when finding nonlinear related features between two data sets,

an overly flexible mapping may find spurious correlations between the data sets, and an

inflexible mapping may not recover the true underlying relationship between the sets.

In general, the difficulty with nonlinear problems is that there is an indeterminacy in

the solution.

While there are many discriminative techniques for finding shared features be-

tween data sets, there are comparatively few generative techniques in the literature. The

existing methods include probabilistic CCA (Bach & Jordan,2005), a linear method,

which formulates standard CCA as a Gaussian density estimation problem, and a non-

linear method in (Verbeeket al., 2004), where each data set is modelled by a mixture

of aligned local feature extractors. Generative methods for finding shared features are

attractive because we can place a prior over the extracted features, and capture our in-

tuition about the problem through the model structure. Additionally a joint density is

defined over the two sets of data variables, allowing us to evaluate predictive densities

of one data set given the other set.

1.2 Nonparametric methods

One of the problems of creating a model for a set of observed data is that in defining

the model, strong assumptions are made about the underlyingdata generation process.

If these assumptions are incorrect then the model will fail to capture the data’s true

underlying structure. Traditionally, the flexibility of the model stems from a set of

model parameters, and training the model consists of findingthe setting of the param-

eters which best fits the data. Suppose that we believe that a set of data points can be

represented as coming fromK distinct clusters. The problem lies in determiningK.
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Similarly, if we believe that the a set of data points are generated from an underlying

function, then the problem lies in parameterising the function. If we choose a model

structure that is too flexible, then the model will overfit thedata. Conversely, if the

model structure is too inflexible, the model will fail to find the underlying structure of

the data.

Nonparametric Bayesian methods, originally developed in the statistics field, are

rapidly receiving more interest in the machine learning community. Nonparametric

Bayesian models have the attractive property that their complexity scales with the num-

ber of data points. The models that we create in this thesis are based on two types

of nonparametric Bayesian models, Gaussian processes (O’Hagan, 1978; Williams &

Rasmussen, 1996; Mackay, 1998; Rasmussen & Williams, 2006), which define a dis-

tribution over functions, and Dirichlet processes (Ferguson, 1973; Antoniak, 1974),

which define a distribution over distributions.

1.3 Scope of the thesis

In this thesis, we focus on learning from two data sources. Weuse a generative prob-

abilistic approach to the problem, such that each observation set consists of a shared

component (which is conditionally independent on a shared latent variable) and mod-

els the between-set variation, and a non-shared component which models the within-set

variation. We create three novel models which we discuss in Chapters 3, 4, and 5. The

models are all nonparametric Bayesian methods, a field whichhas recently attracted a

lot of interest in the machine learning community since thisis an elegant way to define

flexible models.

1.4 Overview of the thesis

Chapter 2

We introduce the problem of learning from two sets of observations, and discuss the

advantages of a generative probabilistic approach over a discriminative approach. We

then review a number of models in the literature for learningfrom data sources. The
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most important model that we discuss is probabilistic canonical correlation analysis

(PCCA) (Bach & Jordan, 2005), which formulates canonical correlation analysis as a

Gaussian density estimation problem. This is one of the few generative approaches to

dependency seeking data analysis, and is a basis for the restof the work in the thesis.

We also introduce nonparametric Bayesian methods and discuss their use as flexible

priors in probabilistic modelling.

Chapter 3

We examine the problem of learning from two sets of observations from an information

theoretic perspective. We derive an alternative formulation of PCCA as probabilistic

PCA (Tipping & Bishop, 1997) on two linearly transformed data sources, where the

transformations are found automatically and capture the within-set variation in the data

sources. We then extend this model, in the spirit of the Gaussian process latent vari-

able model (GPLVM) (Lawrence, 2004) to create a GPLVM formulation of canonical

correlation analysis. This is a generative probabilistic model of nonlinear canonical

correlation analysis. We then evaluate GPLVM-CCA’s performance on a range of data

sets.

Chapter 4

We extend the model of the previous chapter to model complicated noise processes.

Whereas the original model modelled the variance private toeach data source as multi-

variate Gaussian, in this chapter we place Gaussian processpriors on the noise function.

The ability of the model to find shared and private componentsfrom two correlated data

sources is demonstrated on synthetic data.

Chapter 5

We extend probabilistic canonical correlation analysis (PCCA) to a mixture of PCCA

to model two data sources that lie close to nonlinear manifolds. We then further extend

the model to a Dirichlet process mixture of PCCA, which allows the number of mixture

components to be automatically determined from the data.

Chapter 6

Directions for future work are given in this chapter.
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1.5 Publications

The thesis builds on work from the following publications:

• LEEN, G., & FYFE, C. 2006. A Gaussian Process Latent Variable Model For-

mulation of Canonical Correlation Analysis.Pages 413–418 of: Proceedings of

the 14th European Symposium of Artificial Neural Networks (ESANN)(Chapter

3)

• FYFE, C., & LEEN, G. 2006. Stochastic Processes for Canonical Correlation

Analysis. Pages 245–50 of: Proceedings of the 14th European Symposiumof

Artificial Neural Networks (ESANN)(Chapter 5)

1.6 Notation and conventions

In the mathematical notation, we use italicsa to indicate scalars, bold lowercasea

to indicate vectors, and bold uppercaseA to indicate matrices. The vectors, unless

otherwise stated, are column vectors. The transpose of a vector or a matrix is indicated

by the superscript⊤. The identity matrix is denoted byI. Also, a subscript may be

used to showI’s dimension.



Chapter 2

Background

Given multiple sets of sensory data, an organism representsits knowledge about the

world internally by means of synaptic structures in the brain; the internal representa-

tions are believed to be formed in such a way such that they areinformative and can be

used to reason about the environment. Incredibly, the outputs from the different senses

are combined in such a way to create a coherent description ofthe world. This problem

of jointly extracting the useful features from multiple different outputs is the focus of

the thesis. The relevant information is extracted from eachoutput in turn, depending

on the current state of the other outputs, which we define as the context. We therefore

refer to this type of learning ascontext assisted learning.

Learning from multiple sources of data sources is a timely problem. Due to

the increasing availability of electronic recording devices, such as cameras and mi-

crophones, along with the advances in feature extraction ofthe recorded information

from these sensors, there are many situations in which context assisted learning could

be applied. Additionally, it is common to encounter multiple observations of the same

phenomenon, yielding multiple sets of data which all share some common information.

Some examples are:

• A human’s five senses: sight, hearing, touch, taste, and smell, giving him /her

five sets of observations of his/her environment.

• Many witnesses’ accounts of an alleged crime.
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• Translations of a set of documents in several different languages.

• Audio-visual person authentication.

Each example describes sets of observations of one phenomenon, such that there must

be some shared information between the different observation sets. For instance, dif-

ferent translations of a document (as in the third example) will contain some shared

information since the text in each of the translations will have the same meaning, re-

gardless of language.

Suppose that we want to group a set of documents according to their topic. We

want to learn a semantic (and language independent) representation of the text in the

documents, which could be then be used for any retrieval or categorisation task in

both a standard and cross-lingual scenario. The representation of the documents in

this semantic, or topic, space is a compact way of expressingthe information that is

seen to be useful for this learning problem. By representingeach document using the

well known bag-of-words representation, i.e. as a vector ofword count frequencies in

a vector space where there is a dimension for every possible word in the vocabulary

of the language, we would expect word occurrence patterns toindicate a particular

topic. Across languages, these patterns will differ, but wewould expect there to be

correlations between the patterns for different translations of the same document. This

problem was addressed in (Vinokourovet al., 2003) by using a technique called Kernel

Canonical Correlation Analysis.

Audio-visual person authentication systems attempt to verify the identity of a per-

son through both an audio stream (such as the user speaking a sentence) and a corre-

sponding video stream (of the user’s face as he is speaking the sentence). Using two

sources of information can yield better results than using only one; each stream can

help the other to filter out the noise independent of the underlying process, and also to

learn from incomplete data. For instance, parts of the videostream may be missing, due

to noise or occlusion of the user’s face. The audio stream canhelp to infer the missing

parts of the video data, so that both can be used to jointly identify the user.
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To summarise, the context assisted learning problem lies incombining the in-

formation from the multiple data sources so that we can find the most likely process

underlying the observations. Since the sets of observations share a common source, it

is expected that there are dependencies between the sets of observations. Learning con-

sists of exploiting statistical regularities across multiple codings of the same process to

extract common features. In this thesis, we derive several machine learning algorithms

for modelling two data sources that share some common information. However, our

methods may be generalised to modelling multiple related data sources.

2.1 A probabilistic view of the problem

For modelling two data sources, we want to find a compact representation of the infor-

mation contained in both the data sources, in the same way a brain can compress two

sources of information into an internal manageable representation. At first it may seem

that a probabilistic approach is not necessary for the aboveproblems. For instance,

a possible solution to the problem of designing an audio-visual person authentication

system is to construct a classifier which outputs a decision as to whether the identity

claim is true. This involves finding a deterministic mappingfrom the audio-visual data

to the decision, which does not involve any random variables. If we choose to output a

measure of the uncertainty associated with the classifier, this requires estimation of the

parameters of a binary random variable which does not call for the use of sophisticated

probabilistic models. This type of approach is known asdiscriminative modelling,

and is only concerned with optimising a mapping from the inputs to the desired out-

puts. By adjusting the classification boundary or function approximation accuracy, the

model focuses on the given task to produce a good performance. Examples of discrim-

inant models include support vector machines (Vapnik, 1995), and traditional neural

networks e.g. (Haykin, 1994).

This approach neglects the true underlying structure to theproblem; the genera-

tive process (such as the physical systems like the glottis and vocal tract that interact

to create speech, the interaction of facial features to create the video signal) is not
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taken into account by the model. An approach that explicitlyrepresents the underly-

ing structure to a problem - the features (observed and unobserved) and probabilistic

relationships between them - is calledgenerative modelling. The generative approach

defines a joint probability density over all the variables inthe problem, which can then

be manipulated to find desired classification or regression functions. Working in the

joint distribution space offers a great degree of flexibility and a sense of completeness

since we can insert knowledge about the system such as independencies, dependencies

and prior distributions in a principled manner. For a comparison of discriminative and

generative approaches, see (Jebara, 2001).

In this thesis, we choose to use generative models for findingdependencies be-

tween sets of observations. This is because the focus of generative modelling is to

represent a phenomenon and resynthesise certain configurations from it, and for our

problem we wish to represent the two data sources such that wecan calculate quan-

tities such as the predictive distribution over one source given the other, and the pre-

dictive distribution over the underlying processes given the data. Another reason for

using generative models is that we are dealing with more thanone set of observations,

and probabilistic techniques are very good at reasoning in the increased complexity of

the problem domain, due to the modelling of two sources instead of a single source.

Furthermore, there are many existing generative models forfinding an informative rep-

resentation of a single data source, and the probabilistic framework allows these models

to be extended in a principled way to the modelling of more than one data source.

The interdependencies between variables of a model can be represented simply

through agraphical model, (also known as a directed acyclic graph or Bayesian net-

work) and the structure and parameters of the model can be learned within the Bayesian

framework from the data. Graphical models provide a good visual representation of the

prior structure that we enforce on our generative model, which reflects our prior as-

sumptions about the way in which the data is generated. Each node of the graphical

model represents a random variable, and the arcs (or links) express the probabilistic re-

lationships between the variables. We use directed graphical models, in which directed
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links (or arrows) are used to express conditional distributions. Unobserved random

variables are denoted by shaded nodes in this thesis. A good introduction to graphical

models is given in (Jordan, 1999) and (Frey, 1998).

2.2 Density estimation using parametric models

In this section, we review some techniques for fitting graphical models to data. Given

a finite sample of dataY = {y1, ...,yN}, a common way of modelling this data is to

assume that it is drawn from an unknown probability distribution p (y), which we have

to model. This method, called density estimation, allows usto summarise the data (see

(Bishop, 1999) for an introduction). A standard approach todensity estimation involves

choosing a specific form for the density as a parametric modelp (y | Θ), which contains

a number of adaptive parametersΘ. This approach is known asparametric modelling.

Learning then consists of inferring the parameter valuesΘ given the observed data set

Y i.e. findingp(Θ | Y). To infer the distribution over a data pointyn with the trained

model, the following equation is used:

p (yn | Y) =

∫

p (yn | Θ) p (Θ | Y) dΘ (2.1)

By integrating overΘ, we are considering all possible parameterisations of the model.

The Bayesian approach is to estimate full distributions over the parameters, using Bayes

rule, for use in (2.1):

p (Θ | Y) =
p (Y | Θ) p (Θ)

p (Y)
=

p (Y | Θ) p (Θ)
∫

p (Y | Θ) p (Θ) dΘ
(2.2)

In practice, it may be necessary to make approximations to (2.1), since computing

the integral is not always straightforward. Two common approaches aremaximum

likelihood (ML) andmaximum a posteriori (MAP) learning, which replacep (Θ | Y)
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with a point estimateΘ∗ such that:

p (y | Y) = p (y | Θ∗) whereΘ∗ = argmax
Θ

p (Y | Θ) ML (2.3)

Θ∗ = argmax
Θ

p (Θ | Y) MAP (2.4)

In general, it is easier to maximise the log of the above probabilities, which results

in the same solution. The maximum likelihood criterion onlyconsiders the training

examples. The a posteriori estimate uses both the training examples and also a prior

on Θ to regularise the estimate ofΘ∗. When viewed as a function of the parameters

Θ, p (Y | Θ) is called the likelihood function. Choosing the likelihoodfunction as an

objective function for optimisation is intuitively appealing since if (as is often the case)

the chosen model differs from the true distribution, maximisation of the likelihood cor-

responds to minimisation of the Kullback-Leibler divergence between the empirical

distribution and the model. This results in the trained model approximating the empir-

ical distribution subject to the constraints of modelling.

2.2.1 Latent variable models

A way of constraining the model is through the introduction of latent or hidden vari-

ables, which reduces the number of degrees of freedom in the model by expressing

p (y) in terms of a smaller number of variables. This makes the assumption that the in-

trinsic dimensionality of the data is lower than the data dimensionality i.e the data lies

close to a manifold embedded in the data space. By fitting a generative latent variable

model to the empirical data, it is expected that the latent variables capture some useful

statistical properties about the observed data variables,and to reflect some aspect of the

underlying data generating process. This lower dimensional latent representation of the

observed variables can then be obtained by using Bayes rule.A latent variable model

is defined by specifying the joint distribution over the latent variablesx ∈ ℜq and the

observed variablesy ∈ ℜD, whereq < D. The joint distribution is decomposed as

p (y,x) = p (x) p (y | x) wherep (x) is a prior distribution over the latent variablesx

andp (y | x) is a conditional distribution which expresses the uncertainty in the map-
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Figure 2.1: A graphical model for modelling a single data sourcey as generated by a
latent (or hidden) variablex.

ping from the latent variables to the observed variables. This structure is represented as

the graphical model in Figure 2.1. The conditional distribution p (y | x) is expressed

in terms of a mapping fromx to y. y is assumed to be generated fromx according to:

y = f (x, Θ) + n (2.5)

wheref (x, Θ) is a function ofx parameterised by a set of parametersΘ, andn is a

x-independent zero mean noise process. After specifying theprior distributionp (x),

the desired distribution overy is found by marginalising out the latent variables:

p (y | Θ) =

∫

p (y | x, Θ) p (x) dx (2.6)

Fitting the model to the data corresponds to determining theparametersΘ of the model

by maximum likelihood, where the likelihood function is given by (2.6). Given N data

samplesY = {y1, ...,yN} and under the assumption that the samples are indepen-

dently identically distributed (i.i.d) i.e.p(Y | Θ) =
∏N

n=1 p(yn | Θ), the log of the

likelihood function is given by:

L = log p (Y | Θ) = log

N
∏

n=1

p (yn | Θ) =

N
∑

n=1

log p (yn | Θ) (2.7)

In practice, the integral in (2.6) is intractable except forcertain forms ofp (x) and

p (y | x, Θ). One of the simplest latent variable models assumes that theobserved



24 Chapter 2. Background

variables are linearly related to the latent variables withadded noise:

y = Wx + µ + n (2.8)

wherey ∈ ℜD, x ∈ ℜq, W ∈ ℜD×q is the matrix describing the linear relationship

betweenx andy, µ ∈ ℜD is a parameter vector allowing the model to have a non zero

mean, andn ∈ ℜD is a noise term, taken to be an independent sample from a Gaussian

distribution with zero mean and covarianceΣn:

p(n) = N(n | 0,Σn)

This gives a Gaussian likelihood for a data pointyn:

p(yn | xn,W,Σn) = N(yn |Wxn + µ,Σn) (2.9)

A conjugate prior is placed on the latent variablesp(xn) = N(xn | 0, I) and integrated

out, giving a marginal likelihood:

p(yn |W,Σn) =

∫

p(yn | xn,W,Σn)p(xn)dxn (2.10)

= N(yn | µ,WW⊤ + Σn) (2.11)

The likelihood of the parameters given allN data pointsY = [y1, ...,yN ]⊤ is given by

p(Y |W,Σn) =

N
∏

n=1

N(yn | µ,WW⊤ + Σn) (2.12)

(assuming that the data points are independent). Parametervalues are then found to

maximise the likelihood function (2.12). From inspection of (2.12), it can be seen that

one solution would beW = 0 andΣn = Σ̃, the sample covariance matrix of the

data. However, this is not an interesting solution since thedata is solely modelled by

noise; instead the form ofΣn is constrained such thatW is forced to model interesting
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variation in the data e.g in factor analysis (Bartholomew, 1987), probabilistic principal

component analysis (Tipping & Bishop, 1999), and probabilistic canonical correlation

analysis (Bach & Jordan, 2005). For a more complete introduction to latent variable

models, see (Bishop, 1999).

2.2.1.1 Finding the latent representation of the data

The latent representationx of the observed datay is found by applying Bayes rule.

This can be thought of graphically as inverting the arrow of the graphical model in

Figure 2.1. The posterior distribution over the latent variables is given by:

p (x | y, Θ) =
p (y,x | Θ)

p (y)
(2.13)

For the Gaussian model given in the previous section, it is known that since both

p (y,x | Θ) andp (y) are Gaussian, the posterior densityp (x | y, Θ) will also be Gaus-

sian, with meanµx|y and covarianceΣx|y:

µx|y = W⊤(WW⊤ + Σn)−1(y− µ) (2.14)

Σx|y = I−W⊤(WW⊤ + Σn)−1W (2.15)

An equivalent formulation can be found by applying the Woodbury identity to the above

equations giving:

µx|y = (W⊤Σ−1
n W + I)−1W⊤Σ−1

n (y − µ) (2.16)

Σx|y = (W⊤Σ−1
n W + I)−1 (2.17)

The advantage of this formulation is that we only have to invert a q × q matrix rather

than aD ×D matrix in (2.14) and (2.15).

2.2.2 Extending latent variable models

We have reviewed a simple Gaussian latent variable model which can be used to model

data that is thought to be linearly related to an underlying latent variable of lower di-
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mensionality i.e. the data is assumed to lie close to a linearsubspace. However, the

model may not be sufficient for modelling more complex data sets, for instance the

data may be better described as lying close to a nonlinear manifold. The linear latent

variable model can be extended within the probabilistic framework to create more com-

plex models that assume a nonlinear relationship between the latent and data spaces.

One approach to this problem is to model the global nonlinearmapping. In this chap-

ter we review two models which use this approach and can be viewed as probabilis-

tic nonlinear principal component analysis models, the Generative Topographic Map-

ping (GTM) (Bishopet al., 1998) and the Gaussian Process Latent Variable Model

(GPLVM) (Lawrence, 2004). The second is to use a mixture of latent variable models

as a set of local linear approximations to the nonlinear manifold, which is reviewed in

Chapter 5.

2.3 Nonparametric Bayesian models

The models that we reviewed in the previous section are parametric models which

assume some finite set of parametersΘ. Since the parameter set is finite, the complexity

of the model is bounded, such that the model is not very flexible and may not be able

to infer the correct model complexity for the data. Nonparametric models, on the other

hand, assume an infinite set of parameters and hence are very flexible models.

2.3.1 Gaussian processes

Gaussian processes (GP) (O’Hagan, 1978; Williams & Rasmussen, 1996; Mackay,

1998; Rasmussen & Williams, 2006) are probability distributions over functions. In

this section we illustrate how GP’s can be used to infer the underlying function in

a regression problem. Suppose that we have a supervised learning problem i.e. we

want to learn a mapping from an inputx to an output (or target)y from empirical data

D = ((xi, yi) | i = 1, .., N).

To make predictions of the targety given new input pointsx, we need to find an

underlying functionf which will make predictions for all possible input values. We

assume that the output is a noisy version of the function valuesy = f(x) + n wheren
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is i.i.d. Gaussian noise with varianceβ−1. There are two main approaches to specifying

the preferred characteristics off . The first is to restrict the class of possible functions,

such as in parametric modelling tools like the latent variable models introduced in

Section 2.2.1, in which only linear functions ofx are considered. The second approach

specifies which functions are more preferable (for instance, functions that are smooth)

by placing a prior over the space of all possible functions, giving higher probability to

functions that have the desired characteristics. This second approach is more flexible

since a rich class of functions can be considered. Gaussian process (GP) methods

use this approach; a Gaussian process is the generalisationof a Gaussian probability

distribution to a distribution over functions. Learning inthe GP framework involves

placing a prior over functions, then after seeing the dataD, calculating the posterior

distribution over functions.

A formal definition for a Gaussian process is as follows. Consider a stochastic

process which defines a distribution,p(f), over functions,f , wheref maps some input

space,χ toℜ. If e.g. χ = ℜ, f is infinite dimensional; however thex values index the

function,f(x), at a countable number of points and so we use the data at thesepoints

to determinep(f) in function space. Ifp(f) is multivariate Gaussian for every finite

subset ofχ, the process is a GP and is then determined by a mean functionm(x) and

covariance functionK(x,x′):

m(x) = E[f(x)] (2.18)

K(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.19)

These are often defined by hyperparameters, expressing our prior beliefs on the nature

of K(x,x′) andm(x), whose values are learned from the data.

2.3.1.1 A regression example

Regression within the GP framework involves finding the underlying functionf of the

datay. We want to predict the function at a finite number of test input points which

we denote byX∗, given a training data setD = [X,Y]. We first place a prior over the
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space of functions evaluated atX∗; typically this a zero mean Gaussian process:

f∗ ∼ N(f∗ | 0, K(X∗,X∗)) (2.20)

To find the posterior distribution over functions (evaluated at X∗) given the training

data,p(f∗ | y,X∗,X), we condition over the joint distribution

p(f∗,Y | X∗,X):

(

y

f∗

)

∼ N







(

y

f∗

)

| 0,







K(X,X) + β−1I K(X,X∗)

K(X∗,X) K(X∗,X∗)












(2.21)

to gain

f∗ | X∗,Y,X ∼ N(f∗|µ(X∗), σ2(X∗)) (2.22)

where

µ(X∗) = K(X∗,X)[K(X,X) + β−1I]−1y, (2.23)

σ2(X∗) = K(X∗,X∗)−K(X∗,X)[K(X,X) + β−1I]−1K(X,X∗)(2.24)

Graphically we can think of inference in the GP framework as rejecting functions from

the prior that do not agree with the observationsD. Figure 2.2 illustrates the inference

steps for an example using 1-dimensional input and target variables.

2.3.2 Dirichlet processes

The Dirichlet process (DP) is a nonparametric distributionon distributions, or equiva-

lently, a measure on measures (Ferguson, 1973). A DP is parameterised by a scaling

parameterα0 > 0, and a base measureG0. We can view DP’s as an infinite dimensional

Dirichlet distribution, which we review in the next section. The DP can be used as a

nonparametric prior over the parameters of a mixture model (Ferguson, 1973; Anto-

niak, 1974; Escobar, 1994); in Chapter 5 we derive a DP mixture model of probabilistic

canonical correlation analysers.
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Figure 2.2: Two functions (·) drawn at random from a GP prior, evaluated atX∗

(a). Given the data setD and the prior, we can calculate the posterior distribution
f∗ | X∗,Y,X over functions. (b) shows the data (o), the mean (-) of the posterior
distribution (evaluated atX∗), and two functions (·) drawn at random from the posterior
distribution. In both diagrams, the grey shaded area represents the pointwise mean
plus and minus 2 standard deviations for each input value forthe prior and posterior
respectively.

2.3.2.1 The Dirichlet distribution

The Dirichlet distribution is a distribution over discretedistributions (over theK dimen-

sional probability simplex). Suppose thatg is aK dimensional probability distribution

on a discrete space, i.e.g = {g1, ..., gK} is aK dimensional vector s.t.∀i : gi ≥ 0 and
∑K

i=1 gi = 1. A Dirichlet distribution ong is written as:

p(g | α′) = Dir(g | α′
1, ..., α

′
K) =

Γ(
∑

i α
′
i)

∏

i Γ(α′
i)

K
∏

i=1

g
α′

i−1
i (2.25)

whereα
′ = {α′

1, ..., α
′
K} is the parameter vector and∀i : α′

i > 0. The first term is a

normalisation constant, whereΓ(x) =
∫∞

0
u(x−1)e−udu denotes the Gamma function.

The mean of the distribution is given byE(gi) =
α′

iP
k α′

k
. This gives the probability that

the probability ofK events occurring areg = {g1, ..., gK}, given that theith event has

been observedα′
i − 1 times. It is convenient to reparameterise by defining:

α0 =
∑K

i=1 α′
i αi =

α′

i

α0

, i = 1, .., K α = {α1, ..., αK} (2.26)

With this formulation,E(gi) = αi, andα0 can be considered as theprecisionor con-

centration parameter. Whenα0 is large,g is likely to be nearα, the mean of the
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distribution, and whenα0 is small,g can be spread far away aroundα.

2.3.2.2 Conjugacy to the multinomial distribution

The Dirichlet distribution is conjugate to the multinomialdistribution. Suppose that we

have a discrete observed variableΘ, havingK possible states{θ1, ..., θK}, such that

Θ ∼ Multinomial(g), with likelihood function:

p(Θ = θi | g) = gi, for i = 1, ..., K (2.27)

After observingΘ = θi, the posterior overg is also a Dirichlet:

p(g | Θ = θi, α′) =
p(g | α′)p(Θ = θi | g)

p(Θ = θi | α′)
= Dir(g | α′′) (2.28)

whereα
′′ = {α′′

1, ..., α
′′
K} is the parameter vector.α′′

i = α′
i + 1 and∀j 6= i : α′′

j = α′
j .

This shows that the posterior overg is based on the updated ‘counts’α
′′ of the observed

states ofΘ. For a data setD = {Θ1, ..., ΘN}, (N observed states ofΘ), the posterior

overg is:

p(g | D, α′) = Dir(g | α′
1 + N1, ..., α

′
K + NK) (2.29)

whereNi is the number of timesΘ = θi in D. The probability of the next data point

ΘN+1 given the observed dataD, is:

p(ΘN+1 = θi | D, α′) =

∫

p(ΘN+1 = θi | g)p(g | D, α′)dg (2.30)

=

∫

giDir(g | α′
1 + N1, ..., α

′
K + NK)dg (2.31)

=
α0αi + Ni

α0 + N
(2.32)

This shows the effect of the Dirichlet prior overg, the parameters of the multino-

mial distribution. Without the prior, the maximum likelihood estimate ofg is given

by gML
i = Ni

N
, i = 1, ..., K, which is a point estimate ofp(g | D, α′). If some of the
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(a) (b)

Figure 2.3: Graphical model for the Dirichlet distribution(a) and the Dirichlet process
(b)

(a) (b)

Figure 2.4: Illustration of a Dirichlet process prior onΘ

countsNi are very small, andN < K, the parametersg may incorrectly be estimated

to be zero. When using the Dirichlet prior as in (2.32), this tends towards the maximum

likelihood estimate when the countsNi become large and the data dominates the prior.

Figure 2.3a shows a generative model forD = {Θ1, ..., ΘN}. This combines a

multinomial likelihood model with a Dirichlet prior; a distribution overΘn is generated

from the Dirichlet priorp(g | α0, α), and then a value forΘn is drawn fromΘn ∼

Multinomial(g). It is not straightforward to sample fromg; an alternative is to sample

Θn by directly (integrating overg) using the predictive distribution in (2.32), whereD

is the previously generated samples.

Suppose thatG0 is a distribution over a measurable spaceΘ, as depicted in Figure

2.4a. This acts as the base measure for the DP, and this can be interpreted as the

continuous version of the parameter vectorα = {α1, ..., αK}, the mean of the Dirichlet

distribution. A Dirichlet process is defined to be the distribution of a random probability
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measureG overΘ i.e.

G ∼ DP (G | G0, α0) (2.33)

such that for anyK finite partitions ofΘ, {A1, ..., AK}, (as shown in Figure 2.4b),

{G(A1), ..., G(AK)} follows a finite dimensional Dirichlet distribution with parameters

{α0G0(A1), ..., α0G0(AK)}:

{G(A1), ..., G(AK)} ∼ Dir(α0G0(A1), ..., α0G0(AK)) (2.34)

where α0 > 0 determines the concentration of{G(A1), ..., G(AK)} around

{G0(A1), ..., G0(AK)}. As α0 → ∞, G → G0. The graphical model for the Dirichlet

process is shown in Figure 2.3b.

The posterior overG givenD = {Θ1, ..., ΘN} is given by:

p(G | D, α0, G0) = DP

(

G

∣

∣

∣

∣

1

α0 + N

(

α0G0 +

N
∑

i=1

δΘi

)

, α0 + N

)

(2.35)

whereδΘi
is a discrete measure (or atom) concentrated atΘi. The Dirichlet process

allows us to model deviations away from a baseline priorG0. We present two perspec-

tives on the Dirichlet process.

2.3.2.3 Ṕolya Urn Scheme

One perspective on the Dirichlet process is provided by the Pólya urn scheme (Black-

well & MacQueen, 1973), which demonstrates the clustering property of draws fromG.

Suppose that we have already generated a sequence ofN data pointsD = {Θ1, ..., ΘN}

according toG; {Θ1, ..., ΘN} are conditionally independent givenG, and exchange-

able. Integrating overG, we get

p(ΘN+1 | D, α0, G0) =

∫

p(ΘN+1 | G)p(G | D, α0, G0)dG (2.36)

=
1

α0 + N

(

α0G0(ΘN+1) +

N
∑

i=1

δΘi

)

(2.37)
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With the Pólya urn sampling scheme, we assume that there is an urn which contains

coloured balls. The balls are drawn from the urn with probability proportional to their

mass. The coloured balls have unit mass and there is an additional black ball that has

massα0. After drawing a coloured ball from the urn, we replace the ball in the urn with

an additional ball of the same colour. If the black ball is drawn, it is replaced along

with a ball of a new colour, where the colour is drawn from distributionG0. In (2.37),

a data pointΘn represents a draw from the urn,D = {Θ1, ..., ΘN} is the current state

of the urn, and theith colour is represented byθi. If we rewrite (2.37) as:

p(ΘN+1 | D, α0, G0) =
α0

α0 + N
G0(ΘN+1) +

N

α0 + N

(

1

N

N
∑

i=1

δΘi

)

(2.38)

we can see that it is a mixture of distributions. With probability α0

α0+N
, ΘN+1 is drawn

from G0, as we can see from the first term of (2.38). Analogously, thisis the probability

that we draw the black ball from the urn. The second term of (2.38) shows that with

probability N
α0+N

, ΘN+1 is drawn uniformly from{Θ1, ..., ΘN}, or equivalently, one

of the coloured balls is drawn from the urn (and hence the new ball takes on the same

colour as one of the existing balls). The values of the previous data points (or balls in

the urn) are not necessarily distinct. The probability thatΘn = θi (is theith colour) is

given by:

p(ΘN+1 = θi | D, α0, G0) =
Ni

α0 + N
(2.39)

The Pólya urn sampling scheme shows the clustering property of the draws fromG, in

that a set of samples{Θ1, ..., ΘN} are not necessarily distinct. This means that the data

is divided intoK partitions, or clusters, where each partition has the same parameter

settingθi. The more oftenθi is drawn, the more likely it is to be drawn in the future.

α0 controls the tendency to form clusters; ifα0 is very small, it is likely that there will

be few clusters, and ifα0 is large, there will be many small clusters. Another analogy

for the clustering mechanism is given by the Chinese restaurant process.
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Figure 2.5: The Chinese restaurant process. The customers (Θn) are seated at the
tables (circles), where thekth table corresponds to the unique valueθk.

2.3.2.4 Chinese restaurant process

In the Chinese restaurant process (Aldous, 1985),N customers sit down in the restau-

rant which has an infinite number of tables. The tables represent the distinct values

θi, i = 1, ..., K, whereK is the number of occupied tables, orrepresented clusters.

Theith customer representsΘi.

• The first customerΘ1 sits at the first tableθ1. N1 = 1, K = 1.

• Either theith customer sits at already occupied tableθk with probability

N−i,k

α0 + N
(2.40)

whereN−i,k denotes the number of customers at tablek, not including the current

customer. Theith customer inheritsθk. Nk ← Nk + 1.

• or with probability

α0

α0 + N
(2.41)

the ith customer sits at a new table,θk+1. For the new table,θk+1 is generated

from G0. NK+1 = 1, K ← K + 1.

The Chinese restaurant process is shown in Figure 2.5. The data points (the customers)

Θn are clustered according to the parameterθk they have inherited (the table which

they are occupying).
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Figure 2.6: The stick breaking construction

2.3.2.5 Stick breaking representation

We can get an insight intoG, the distribution drawn from aDP (G | G0, α0), through

the stick breaking construction (Sethuraman, 1994).G can be represented as:

G =
∞
∑

i=1

πiδθi (2.42)

whereδθi is a probability measure concentrated atθi, andπi and θi are defined be-

low. The stick breaking construction is based on two independent infinite sequences of

independent random variables{βi}∞i=1 and{θi}∞i=1:

βi ∼ Beta(1, α0) (2.43)

θi ∼ G0 (2.44)

The infinite sequenceπ = {πi}∞i=1 is defined recursively as:

πi = βi

i−1
∏

j=1

(1− βj) (2.45)

which can be interpreted as breaking of parts of a stick, initially of unit length, as

depicted in Figure 2.6, and therefore we writeπ ∼ Stick(α0). We can show that
∑∞

i=1 πi = 1 since1 −
∑K

i=1 πi =
∏K

i=1(1 − βi)
K→∞
−−−→ 0. This shows thatπ can be

interpreted as a random probability measure on positive integers.
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2.4 Modelling a single data source

In this section, we look at different ways of modelling a single data source, since later

on we extend these models to modelling more than one data source.

2.4.1 Probabilistic principal component analysis

Principal component analysis can be obtained from a specificform of latent variable

model, as will be seen in this section. Principal component analysis (PCA) (Joliffe,

1986) is a well established statistical technique for dimensionality reduction. In gen-

eral, mapping the data into a lower dimensional space is accompanied by the loss

of some information contained in the data, so a desired property of a dimensional-

ity reduction technique is to preserve as much of the useful information as possible.

Given a set ofN D-dimensional data vectorsyn, n ∈ {1, ..., N}, the principal axes

uj , j ∈ {1, ..., D}, are defined as the eigenvectors of the sample covariance matrix

Σ̃ = 1
N

∑N
n=1(yn−µy)(yn−µy)⊤, whereµy is the sample mean of the data, such that

Σ̃U = UΛ (2.46)

whereU is the matrix of column eigenvectorsuj , j ∈ {1, ..., D}, andΛ is the diagonal

matrix of corresponding eigenvaluesλj, j ∈ {1, ..., D}. The principal components are

given by the linear projection of the data onto the principalaxes. For a data pointyn, the

principal components are given byxn = U⊤yn. Suppose that we only retain a subset

q < D of the principal axes, i.e. theq dominant eigenvectors of̃Σ, as the columns

of the matrixUq ∈ ℜD×q. By projecting the data ontoUq, a reduced dimensionality

representation (q-dimensional) of the data is obtained. For then-th data pointyn the

corresponding latent variable is given byxn = U⊤
q yn. These projections are of interest

because they minimise the squared reconstruction error over the whole data setY:

Eq =
1

N

N
∑

n=1

(yn − ỹn)2 (2.47)
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Figure 2.7: Illustration of principal component analysis applied to two dimensional
data.

whereỹn = Uqxn is the reconstruction of thenth data point. This formulation of PCA

suggests an alternative approach to finding the principal components of the data, by

minimising (2.47). This approach forms the basis for nonlinear extensions of PCA.

A probabilistic formulation of PCA called probabilistic PCA (PPCA) was intro-

duced in (Tipping & Bishop, 1999) in the form of a Gaussian latent variable model.

By assuming that the noise covariance is isotropic, i.e.Σn = σ2I, PCA can be derived

from within a Gaussian density estimation framework as in Section 2.2.1. For this noise

model, the log likelihood is given by:

L =

N
∑

n=1

log p(yn)

= −
ND

2
log 2π −

N

2
log |C| −

N

2
Tr{C−1Σ̃} (2.48)

whereC = WW⊤ + σ2I andΣ̃ is the sample covariance matrix of the data. There

exists an exact analytical solution for the parameters of the modelW andσ2; the max-

imum likelihood solution of the parametersWML andσ2
ML (obtained by maximising
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(2.48) with respect toW andσ2) are given by:

WML = Uq(Λq − σ2
MLI)

1

2R (2.49)

σ2
ML =

1

D − q

D
∑

j=q+1

λj (2.50)

whereUq ∈ ℜ
D×q is a matrix whose columns are the firstq eigenvectors of̃Σ i.e. the

first q principal axes, with corresponding eigenvaluesλj, j = 1, ..., q in the diagonal

matrix Λq ∈ ℜq×q, andR is a rotation matrix. Suppose that we now want to find

the latent variable representation of the data. This is found by evaluating the posterior

density over the latent variables. Using (2.16) and (2.17) and the ML estimates for the

parameters, we get:

p(xn | yn) = N(xn | µx|y, Σx|y) (2.51)

whereµx|y = (W⊤
MLWML + σ2

MLI)
−1W⊤

MLyn (2.52)

Σx|y = σ2
ML(W⊤

MLWML + σ2
MLI)−1 (2.53)

The reduced dimensionality representation for a data pointyn can be obtained by sum-

marisingp(xn | yn) by its mean, which is given in (2.52). Due to the noise variance

σ2
ML this does not represent an orthogonal projection into latent space as in standard

PCA, since the latent projection becomes skewed towards theorigin. If we letσ2
ML → 0

when defining the model, the density model will become singular and therefore un-

defined. However, if necessary we can still obtain the optimal reconstruction of the

data from the latent mean by omitting the noise term in the reconstruction by using

ỹn = (W⊤
MLWML)−1W⊤

MLyn.

2.4.2 Nonlinear PCA

The PPCA model is limited since we only find latent representations that are linearly

related to the data, and we can only model the data as coming from a unimodal Gaussian

density. In this section we consider a latent space that is nonlinearly related to the data
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space. Nonlinear dimensionality reduction is generally anill posed problem, since

the space of nonlinear functions is very large and hence there will not be a unique

solution when fitting a nonlinear function to data. To overcome this problem, we have

to constrain the form of the solution, as we will see in the following sections.

Suppose that we have a data set that is intrinsically low dimensional but is em-

bedded nonlinearly in a high dimensional space i.e. it lies on, or close to, a nonlinear

manifold. This is a generalisation of the linear dimensionality reduction problems that

we reviewed in Section 2.2.1, but whereas before we restricted our analysis to finding

linear transformations of the data i.e. approximation of the data by a linear subspace,

we now consider any nonlinear mapping, giving us a nonlinearprincipal component

analysis problem. In this context, looking for the greatestnonlinear direction of vari-

ance in the data is problematic. Instead, nonlinear PCA typemethods try to find a

manifold which minimises the squared reconstruction error.

One approach to constructing a nonlinear model is to assume that linear approxi-

mations can be made in local regions of the data space. In (Tipping & Bishop, 1997),

the authors extend their probabilistic model of PCA to create a well defined mixture

model of principal component analysers, whose parameters can be estimated by an EM

algorithm, to capture data that lies on a nonlinear manifold. In this method, the nonlin-

ear manifold is approximated by linear PCA models. A nonlinear latent variable model

called the generative topographic mapping (GTM) was introduced in (Bishopet al.,

1996), (see also (Svensén, 1998; Bishopet al., 1998)) where the nonlinear function

f(x, Θ) of the latent variablex ∈ ℜq underlying the data is given by a generalised

linear regression model of the form:

f(x, Θ) = Wφ(x) (2.54)

whereW ∈ ℜD×M , andφ(x) ∈ ℜM , whose elementsφj(x) consist ofM fixed basis

functions evaluated atx. The relationship between the latent and data variables is given

by the mapping with some added noisen ∈ ℜD which is taken to be from an isotropic
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Figure 2.8: Schematic illustration of the GTM: a grid of latent points is mapped
through a parameterised nonlinear mappingf(x,W) to a corresponding grid of Gaus-
sian centres embedded in data space. Adapted from (Bishopet al., 1996)

Gaussian distribution with varianceσ2. The conditional distributionp(y|x,W, σ2) is

given by:

p(y|x,W, σ2) = N(y |Wφ(x) + µ, σ2I) (2.55)

whereµ is typically incorporated as a bias term into the basis functions. As we men-

tioned in Section 2.2.1, the integral in (2.6) is generally intractable; in order to for-

mulate a tractable nonlinear latent variable model the prior distribution is chosen to

be:

p(x) =
1

K

K
∑

k=1

δ(x− xk) (2.56)

i.e. a set ofK equally weighted delta functions on a regular grid. The integral in (2.6)

becomes a sum:

p(y|W, σ2) =
1

K

K
∑

k=1

p(y | xk,W, σ2) (2.57)

Each delta function maps to the centre of an isotropic Gaussian which lies on a mani-

fold nonlinearly embedded in data space. Iff(x,W) is chosen to be continuous, then

the ordering of the centering of the Gaussians in data space corresponds to the ordering

of the latent points, as shown in Figure 2.8, i.e. the topography of the data is preserved
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in its latent representation. Since the centres of the Gaussians cannot move indepen-

dently of each other, since they are constrained by the mappingf(x,W), the GTM can

be viewed as a constrained mixture of Gaussians.

To train the model, the log likelihood function is maximised, which could be

achieved by any standard nonlinear optimisation technique, but the authors use the Ex-

pectation Maximisation algorithm (Dempsteret al., 1977) due to the model’s similarity

to a mixture of Gaussians.

One of the disadvantages of the nonlinear mapping associated with the GTM,

as noted by its authors, is due to the parameterisation. It requires a decision on the

number of fixed basis functionsM , which puts a hard constraint on the mapping’s

flexibility. Rather than using a generalised regression model, a Gaussian process can

be used instead which allows the flexibility of the nonlinearmapping to be determined

by the hyperparameters of the covariance function.

2.4.3 The GPLVM

The Gaussian Process Latent Variable Model (GPLVM) was introduced in (Lawrence,

2004, 2005). Latent variable models are parametric models;they assume a certain

form for the data density and thus may be a bad fit for the data ifthe true density is

very different to the model’s assumptions. A novel interpretation of Probabilistic PCA,

termed Dual Probabilistic Principal Component Analysis (DPPCA) takes the alterna-

tive approach of marginalising the parameters and optimising the latent variables. For

a particular choice of Gaussian likelihood and prior, DPPCAturns out to be equivalent

to the standard PPCA model, and a special case of a more general class of models,

Gaussian Process Latent Variable Models (GPLVM). The GPLVMcan be viewed as a

nonparametric model since the mapping between the latent and data space is not ex-

plicitly parameterised.

The GPLVM uses Gaussian Processes (GP’s) in an unsupervisedmanner for non-

linear dimensionality reduction. The inputs to the GP’s or latent variables are mapped

to a distribution over the data space byD independent GP’s, whereD is the dimen-
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sionality of the data space. The latent coordinates and the hyperparameters of the GP

covariance function are then adjusted to maximise the GP likelihood. To show the

link between latent variable models and Gaussian processes, we now study the DPPCA

model. In (Lawrence, 2004), a conjugate prior is placed on the linear mappingW of

the PPCA model,p(W) =
∏D

i=1 N(wi | 0, I), wherewi is theith row ofW, and then

W is marginalised giving a likelihood:

p(Y | X) =

N
∏

n=1

∫

p(yn | xn,W, β)p(W)dW (2.58)

=
D
∏

d=1

N(Y:,d | 0,XX⊤ + β−1I) (2.59)

=
1

(2π)
DN
2 |K|

D
2

exp(−
1

2
tr(K−1YY⊤)) (2.60)

where we have used (2.9) and the PPCA noise model from Section2.4.1 in (2.58) ,

Σn = β−1I, whereβ is the inverse noise variance,Y = [y1, ...,yN ]⊤ with correspond-

ing latent variablesX = [x1, ...,xN ]⊤, Y:,i denotes theith column ofY i.e. theN

independent realisations of theith data dimension, andK = XX⊤ + β−1I. The log

likelihood is given by the log of (2.60):

L = −
DN

2
ln(2π)−

D

2
ln|K| −

1

2
tr(K−1YY⊤) (2.61)

Writing S = D−1YY⊤, we optimise the log likelihood with respect toX, giving

∂L

∂X
= −K−1SK−1X + K−1X = 0 (2.62)

Pre-multiplying byK gives

S[β−1I + XX⊤]−1X = X (2.63)
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SubstitutingX with its eigendecomposition,X = ULR⊤ gives

S(U[β−1I + L2]−1U⊤)ULR⊤ = ULR⊤

SU[L + β−1L−1]−1R⊤ = ULR⊤ (2.64)

Right multiplying both sides byR, we get

SU = U(β−1I + L2) (2.65)

so thatU are eigenvectors ofS with eigenvalues(β−1I + L2), giving

X = UqLR⊤ (2.66)

whereUq ∈ ℜN×q is a matrix whose columns are the firstq eigenvectors ofYY⊤, L

is a diagonal matrix whosejth element islj = (
λj

D
− β−1)

1

2 , whereλj is the eigenvalue

associated with theqth eigenvector ofYY⊤, andR is a rotation matrix.

This eigenvalue problem is equivalent to that solved in PCA;X are the projections

of the data onto the principal component axes, and DPPCA has the same underlying

structure as PPCA. We note that the DPPCA model has the advantage in that it can eas-

ily be extended to allow for nonlinear processes by replacing the inner product kernel

K with a nonlinear covariance function. (Lawrence, 2004) refers to this general class

of models as Gaussian Process Latent Variable Models, due tothe Gaussian process

‘mappings’ from the latent space to distributions over the data space.

2.4.4 Kernel Principal Component Analysis

Kernel methods are a relatively new family of algorithms that combine the simplicity of

linear algorithms with the flexibility of nonlinear systems. The basis of kernel methods

is to embed the data into a Hilbert space and to find linear relations within this space.

The embedding of the data in this space is performed implicitly - the embeddings are

defined in terms of inner products between pairs of points in the new space rather than
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explicitly by their coordinates. This is known as ‘the kernel trick’. Therefore, kernel

methods can be viewed as a way of nonlinearising linear algorithms that depend only

on inner products between data points.

Suppose that we have a data space (or input space)Y and an embedding vector

space (or feature space)F and we define a feature mapφ : Y → F . Given two

data pointsyi ∈ Y andyj ∈ Y , the corresponding feature vectorsφ(yi) andφ(yj)

are not calculated explicitly, but instead, their inner product is defined by the kernel

functionk(yi,yj) = φ(yi)
⊤φ(yj). Principal component analysis, as we reviewed in

Section 2.4.1, is conventionally defined in terms of the covariance, or outer product

matrix of the dataY = [y⊤
1 , ...,y⊤

N ]⊤ (which we have assumed to be zero mean),

Σ̃y = 1
N

∑N
n=1 yny

⊤
n = 1

N
Y⊤Y. This is called the primal formulation of the problem.

To derive the dual formulation, it is noted that the principal axesU lie in the span ofY

since:

U = Σ̃yUΛ−1 =
1

N
Y⊤(YUΛ−1) (2.67)

i.e. it can be writtenU = Y⊤α whereα are the dual variables. Substituting this into

the primal formulation of PCA to obtain the dual, we get:

Σ̃yY
⊤α = Y⊤αΛ

YΣ̃yY
⊤α = YY⊤αΛ

1

N
YY⊤YY⊤α = YY⊤αΛ

1

N
YY⊤α = αΛ (2.68)

From (2.68) it can be seen that the principal axesU can be found in terms of the

eigenvectorsα of the inner product matrixYY⊤. The projectionxn of a data point

yn ontoU is given byxn = y⊤
n Y⊤α i.e. in terms of inner products between the data

points. This derivation is fundamental for implementing kernel PCA (Smolaet al.,

1999, 2001; Schölkopfet al., 1998, 1999).
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Suppose that each data point is mapped into a feature space bya set ofM functions

φ : yn → φ(yn), and the inner products between the vectors in feature spaceare defined

by the kernelk(yi,yj) = φ(yi)
⊤φ(yj). To perform PCA on the feature vectors, we

require the eigenvectorsUφ of the covariance matrix in feature space:

Φ⊤ΦUφ = UφΛ (2.69)

where we have definedΦ ∈ ℜN×M as the design matrix in feature spaceΦ =

[φ(y1)
⊤, ..., φ(yN)⊤]⊤. Instead of using (2.69) which involves calculating eachφ(yn)

(which may be unknown) we can use the dual formulation of PCA in (2.68) and replace

the inner product of the feature vectorsΦΦ⊤ with a kernel matrix (or Gram matrix)

K ∈ ℜN×N whereKij = k(yi,yj), andk is the kernel function, giving the kernel PCA

eigenproblem:

Kα = αΛ (2.70)

Calculating the eigenvectorsUφ = Φ⊤α of the covariance matrix in feature space in-

volves calculatingΦ, which may be unknown. Instead, we can calculate the projection

x∗ of a data pointy∗ ontoUφ asx∗ = k⊤
∗ α, wherek∗ = [k(y∗,y1), ..., k(y∗,yN)]⊤.

2.5 Modelling two data sets

In the previous sections we have reviewed graphical models,latent variable models,

and techniques for finding a reduced dimensionality representation of a single data set,

where our models were based on the graphical model shown in Figure 2.9. In this

section, we show how these methods can be extended to modelling two data sets, and

we also highlight some of the difficulties associated with these methods.

It is assumed there is some dependency between the two data setsy1 andy2 that

we are trying to model. A key feature of methods that try to findinteresting structure

between two data sources is that some kind of dimensionalityreduction is used; the

modelling of the dependency is constrained by assuming thatthere is a reduced dimen-
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sionality representation of the relationship, which exists in some feature spacex. This

allows the signal and noise subspaces to be separated. We denote the mapping ofy1

andy2 to the feature space asx1 andx2 respectively. These sets of extracted features

should reflect the information common to both data sets. In general, discriminative

modelling approaches estimate the parameters of the mappings to the two sets of fea-

tures to try to explicitly optimise some dependency criterion betweenx1 andx2, while

generative modelling approaches are based on the estimation of the joint probability

densityp(y1,y2) of the observed data, tuning the parameters of a model that would

generate the observations. A key feature of the existing generative models for two data

sources is the assumption of a shared latent variablex that underlies the data sources,

and that the data sources are conditionally independent of each other, given the latent

variable. After training the model, the latent space representations of each set are given

by the posterior distributionsp(x | y1) andp(x | y2). With both the discriminative and

generative modelling approaches, the same problems exist:

• Defining the mappings from each data space to the shared feature space.

• Defining some dependency measure between the two sets of extracted features

for optimisation.

Within the generative modelling framework, it is difficult to put constraints on the pos-

terior distributions, and thus difficult to explicitly include some dependency measure.

Instead we have to encode our prior knowledge about the two data sets as we see in

Figure 2.9; i.e. structuring our model such that the two datasets interact only through

a shared latent process. However, this does not guarantee that after observing the data,

there will be strong dependency between the posterior distributions. Conversely, a

discriminant model will explicitly try to optimise some dependency measure between

the two extracted feature sets, but this can seemad hoc, and since we do not define

a full probability density over all the variables we cannot calculate quantities such as

p(y1 | y2) andp(y2 | y1) for prediction.
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2.5.1 An overview of discriminative techniques

A well established statistical technique for finding linearly correlated features between

data sets is canonical correlation analysis (CCA) (Hotelling, 1936; Borga, 1998; Lai &

Fyfe, 1999). Correlation is a good measure of dependency between signals because un-

like covariance, it is invariant to the signal magnitudes. However, methods that rely on

correlation have their limitations since they are based on second order statistics, which

is only well justified for Gaussian distributed data. One wayof extending CCA is by

taking higher order statistics into account, which could beachieved by extending ex-

isting independent component analysis (ICA) algorithms totwo data sets as in (Akaho

et al., 1999), (de Bie & de Moor, 2002). Kernel canonical correlation analysis was

introduced in (Lai & Fyfe, 2000), where kernel functions implicitly define nonlinear

transformation of the data sets into a feature space where linear CCA is performed.

Information theory offers a theoretical framework in whichdependencies between

variables can be analysed. Given two variablesx1 andx2, a common measure of de-

pendency is mutual information, which is a measure of the amount of information that

x1 contains aboutx2 (andx2 contains aboutx1). It is defined asI(x1;x2) = H(x1)−

H(x1 | x2) (or alsoH(x2) − H(x2 | x1)) whereH(x1) = −
∫

p(x1) log p(x1)dx1 is

the marginal entropy andH(x1 | x2) = −
∫ ∫

p(x1 | x2)p(x2) log p(x1 | x2)dx1dx2 is

the conditional entropy. Given two signals that are expected to have a dependency on

each other, from an information theoretic point of view thismeans that there should be

features in the signals that have a high mutual information between them.

There are many methods in the literature that use ideas from information theory for

the unsupervised modelling of a single data source. These methods use some measure

based on the mutual information between the datay and its coded representationx such

thatx is informative abouty. This was first introduced to the machine learning field

as the principle of maximum information preservation (Infomax) in (Linsker, 1988).

However, computing mutual information exactly can be difficult since it requires prob-

ability densities over the variables in question and involves integration over functions

of the densities. As a result, a lot of the methods that use mutual information specify
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the forms of the densities such that the required calculations are analytically tractable.

Generally, jointly Gaussian distributions are chosen (such as in (Linsker, 1988)), but

unfortunately this can result in loss of modelling power dueto the oversimplification

of the statistical relationship between variables, and restriction to linear mappings be-

tween the data and codes. A number of methods have been proposed to extend Infomax

to arbitrary densities and (possibly) nonlinear mappings by using Parzen window den-

sity estimation to directly estimate the required entropies, such as in (Viola, 1995),

and the Information Theoretic Learning framework of Principe et al (Principeet al.,

2000). A different approach is taken in (Agakov, 2005; Agakov & Barber, 2004), in

which a family of variational lower bounds on mutual information between the data

and its coded representation is introduced to give a theoretically rigorous approach to

information preservation.

One problem with using mutual information for an unsupervised learning prob-

lem is that it does not explicitly define which parts of the information are useful. One

way to extract ‘useful’ information is by specifying some prefixed architecture for the

model to implicitly define some measure of usefulness. Another way of constraining

the extracted information is by approaching the problem from a semisupervised per-

spective, in which another variable, which signifies what parts of the information in the

data is relevant, is used to guide the feature extraction. Examples of using mutual infor-

mation in a semisupervised setting are the feature extraction algorithms of (Torkkola,

2003), in which the mutual information between class labelsand the transformed data

is maximised, and the family of Information Bottleneck (IB)methods (Tishbyet al.,

1999) which maximise the amount of information that the compressed representation

x of a data variabley contains about some relevant variablest, while minimising the

information between the compressed representation and thedata. This can be stated

formally as the minimisation of the LagrangianI(x;y)− βI(x; t).

The problem of extracting features from two related data sources is similar to the

semi-supervised information preservation problem for a single data source. Whereas

the latter methods use an additional variable to indicate which features in the data is
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useful, learning a representation for two data sourcesy1 andy2 usesy1 to guide the

feature extraction fory2, and vice versa, such that each data variable acts as the rel-

evance variable for the other. For this reason, semi-supervised information theoretic

frameworks for feature extraction could be extended to our problem of modelling two

data sources. Two interesting extensions to the IB framework are relevant to our prob-

lem. Whereas the original framework was based on a single sided principle, in that

only the data variable and not the relevance variable is compressed, in (Friedmanet al.,

2001) a symmetric form of the problem is proposed such that both variables are com-

pressed. Given two data variablesy1 andy2, y1 is compressed intox1 andy2 into x2

such thatx1 extracts the informationy1 contains abouty2, and at the same timex2

extracts the informationy2 contains abouty1. This is achieved through minimising the

Lagrangian:I(x1;y1)+I(x2;y2)−γI(x1;x2). Another extension of the IB framework

is the extension to continuous variables in (Chechiket al., 2003), (Chechik & Glober-

son, 2003), in contrast with earlier work which focused on categorical variables. By

assuming that the data variabley and the relevance variablet are jointly multivariate

Gaussian variables,y is compressed via a linear transformation intox while preserving

information aboutt. The analytic closed form solution of the optimal linear projection

is shown to be the canonical basis vectors (from CCA) fory andt.

Several methods have been proposed specifically for learning from two data

sources using mutual information. In this context, the mutual information is maximised

between the coded representations of the data sources. Becker and Hinton presented

Imax in (Becker, 1992; Becker & Hinton, 1992; Becker, 1996),a variant of Infomax,

which aims to maximise the information between outputs of two neighbouring neural

networks. This architecture can be used to extract spatially coherent features in simu-

lations of visual processing. A similar approach is presented in (Kay, 1992).

As we detailed above, methods for the analysis of two data sources using mutual

information suffer from complications, due to the difficulties in calculating mutual in-

formation. Another complication exists in the constraining of the model. Suppose that

we have two data sourcesy1 andy2, from which we want to extract features (or a new
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representation)x1 andx2 respectively, that have maximum mutual information. The

extracted feature sets would be expected to be a compact representation of the relation-

ship between the two data sources. However this may not be thecase; we also desire the

joint entropyH(x1,x2) to be small, i.e. we want to minimise the conditional entropies

H(x1|x2) andH(x2|x1) such that the features only capture the common information

betweeny1 andy2.

This problem of finding ’efficient’ features was addressed in(Butz & Thiran,

2005) by introducing the feature efficiency coefficient which both maximises the mu-

tual information between features and minimises the joint entropy, given by:

e(x1,x2) =
I(x1,x2)

H(x1,x2)
(2.71)

SinceH(x1,x2) ≥ I(x1,x2) and both terms are positive,0 ≤ e(x1,x2) ≤ 1. For

highly efficient features,e(x1,x2) should be close to 1. A similar functional called

normalised entropy (Studholmeet al., 1999) is used in the field of multi-modal medical

image registration.

2.5.2 An overview of generative techniques

While there are many discriminative techniques for modelling two data sources, there

are comparatively few generative techniques. Some possible generative models of two

data sets are represented by the graphical models in Figure 2.9. Figure 2.9a shows the

two observed data variablesy1 andy2 and their relationship; modelling the two data

sources is equivalent to estimating their joint distribution p(y1,y2). Direct estimation

of this joint distribution is problematic, particularly ify1 andy2 are high dimensional,

thus it is necessary to further constrain the model. In Figures 2.9b and 2.9c we enforce a

prior structure on our data which assumes that the data sets share a common underlying

sourcex, and also that the data sets are conditionally independent of each other:

p(y1,y2 | x) = p(y1 | x)p(y2 | x) (2.72)
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(a) (b) (c)

Figure 2.9: Possible graphical models for modelling two data sources.

Figure 2.9b represents our intuition that the dependency betweeny1 andy2 is due to

their being different manifestations of the same underlying process. This is represented

by the hidden (shown by the grey shade), orlatent variable x. An alternative graph-

ical model is shown in (c). This model explicitly representsthe ‘private’ information

associated with each sensor by a random variable. Both (b) and (c) constrain the joint

distribution such that it has fewer degrees of freedom before it is directly estimated

from the data. After training the model, we can apply Bayes rule to calculate quantities

such as:

p(x | y1) =
p(y1 | x)p(x)

p(y1)
, p(x | y2) =

p(y2 | x)p(x)

p(y2)
(2.73)

the low dimensional representations of each data source, and the predictive distributions

over one data set given the other:

p(y1 | y2) =
p(y1,y2)

p(y2)
, p(y2 | y1) =

p(y1,y2)

p(y1)
(2.74)

These models serve as a good basis for modelling dependencies with generative mod-

els; some models that already exist in the literature can be placed within this frame-

work. One recent technique is the probabilistic canonical correlation analysis model

(PCCA) in (Bach & Jordan, 2005), which places CCA in a Gaussian density estimation

framework with the model structure as in Figure 2.9b.

There are various extensions to this model. In (Archambeauet al., 2006), the

Gaussian densities are replaced with Student-t densities to create a model that is more

robust to outliers, and a variational Bayesian version is proposed in (Wang, 2007) (in the
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same spirit as the variational Bayesian extension (Bishop,1999) of Probabilistic PCA)

which allows the dimensionality of the latent space (and hence the effective number

of canonical correlations) to be determined automatically. These methods assume a

linear relationship between each data variable and its corresponding set of features, and

consequently models the relationship between the two data sets as linear.

One feature of the PCCA model is that each data source is modelled as the sum of

two independent components:y1 = f1 + n1,y2 = f2 + n2, wheren1 andn2 are noise

components which model the within-set variation,f1 andf2 are components which are

linearly related to a shared latent variablex and model the between-sets variation, and

x,n1 andn2 are independent of each other. The structure shown in Figure2.9c is

implicit in the PCCA model, and as noted in (Klami & Kaski, 2006), it is necessary for

each noise component to be flexible enough to completely model the marginal density

of its corresponding data variable, and hence all of the within-set variation. This allows

the other ‘shared’ components to solely model the between-set variation, since none of

their modelling capacity is wasted on modelling the variation within the sets. This can

be thought of constraining the model in such as way to find efficient features (as we

saw in (2.71)) that only represent shared information between the data sources.

It is difficult to extend this idea to more complicated models; specifying the noise

components to completely model all the within-set variation is difficult when the data

follows a more complex distribution than a unimodal exponential family distribution.

Another complication is that when considering nonlinear relationships between the data

space and the latent space, the noise and shared components may not be independent.

However, there are a few nonlinear extensions of canonical correlation analysis that are

formulated as generative models.

In (Verbeeket al., 2004), the authors propose a nonlinear canonical correlation

analysis method. The two data sets are assumed to come from separate nonlinear man-

ifolds that share an underlying global coordinate system, where each manifold is mod-

elled by a mixture of aligned local models. Interestingly, the method is different from

standard mixture models in that it integrates local featureextractors into a single global
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representation in the spirit of (Roweiset al., 2002). The global coordination of the

local models is achieved by adding a regularizer term to the standard maximum like-

lihood objective function, similar to a variational approach. However, this model does

not model the within-set variation, and instead assumes that the data lies close to each

nonlinear manifold.

Another approach to nonlinear canonical correlation analysis would be to use a dif-

ferent specification of the nonlinear relationship betweenthe data and the latent space.

Instead of modelling the nonlinear relationship by a mixture of aligned local models, an

alternative is to specify a global nonlinear mapping, for instance by placing a Gaussian

process prior over the space of nonlinear functions of the latent variables. The Gaussian

process regression framework is extended in (Boyle & Frean,2005a,b) to handle mul-

tiple coupled outputs by assuming that dependent outputs are related through a shared

latent process, and the variation within an output is modelled by a separate latent pro-

cess, following the structure in Figure 2.9c. However, thismodel is formulated for

regression problems and assumes that the latent coordinates are known. In the next

section, we review canonical correlation analysis and its different variants, and use it

as a starting point for creating dependency seeking generative models.

2.5.3 Canonical correlation analysis

Canonical correlation analysis (CCA) (Hotelling, 1936) proposes a way for dimension-

ality reduction by taking the relationship between two setsof variables into account.

CCA is concerned with finding linear relationships between the two sets of variables.

Given two sets of zero mean data variablesy1 ∈ ℜm1 andy2 ∈ ℜm2 , wherem1 and

m2 are the dimensions ofy1 andy2 respectively, CCA finds linear projections of each

variablex1 = U⊤
1 y1 andx2 = U⊤

2 y2, termed the canonical variates, such that the cor-

relation betweenx1 andx2 is maximised, andU1 ∈ ℜm1×q andU2 ∈ ℜm2×q, where

q ≤ min (m1, m2), are matrices whose columnsU1,i,U2,i, i = 1, .., q form theq pairs

of canonical vectors. We can findU1 andU2 as the eigenvectors of the generalised
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eigenvalue problem:







0 Σ̃12

Σ̃21 0













U1

U2






=







Σ̃11 0

0 Σ̃22













U1

U2






ρ (2.75)

whereρ is the diagonal matrix of canonical correlations, and

Σ̃ = E

(

(

y1

y2

)(

y1

y2

)⊤
)

=







Σ̃11 Σ̃12

Σ̃21 Σ̃22






(2.76)

This can also be formulated as a symmetric eigenvalue problem:







0 Σ̃
− 1

2

11 Σ̃12Σ̃
− 1

2

22

Σ̃
− 1

2

22 Σ̃21Σ̃
− 1

2

11 0













V1

V2






=







V1

V2






ρ (2.77)

whereV1 = Σ̃
1

2

11U1 andV2 = Σ̃
1

2

22U2. Another property of CCA is that the projec-

tions onto canonical directions corresponding to a different canonical correlation are

uncorrelated such thatU⊤
1 Σ̃11U1 = Im1

andU⊤
2 Σ̃22U2 = Im2

. Canonical correla-

tion analysis is also related to mutual information. Ify1 andy2 are jointly Gaussian

distributed, then the mutual information betweeny1 andy2 is given by the sum of the

mutual information between the canonical variatesx1 andx2:

I(y1;y2) =
1

2
log

(

1
∏

i(1− ρ2
i )

)

=
1

2

∑

i

log

(

1

(1− ρ2
i )

)

(2.78)

2.5.4 Probabilistic Canonical Correlation Analysis

Canonical correlation analysis (CCA) was formulated as a Gaussian latent variable

model in (Bach & Jordan, 2005). It is found that the posteriordistributions of the

latent variables lie in the same linear subspaces as those defined by standard CCA.

Using the definition for the Gaussian latent variable model from Section 2.2.1,y is

defined as the concatenation of two sets of data variables i.e. y = [y⊤
1 ,y⊤

2 ]⊤, where

y1 ∈ ℜm1 ,y2 ∈ ℜm2 with m1 andm2 being the dimensions of the two data variable
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sets andµ = [µ⊤
1 , µ⊤

2 ]⊤, whereµ1 ∈ ℜm1 , µ2 ∈ ℜm2 . W = [W⊤
1 ,W⊤

2 ]⊤ with

W1 ∈ ℜm1×q,W2 ∈ ℜm2×q, andxn ∈ ℜq is the shared latent variable for thenth pair

of data variablesyn. The noise covariance matrix is constrained to be of block diagonal

form:

Σn =







Ψ1 0

0 Ψ2






(2.79)

whereΨ1 ∈ ℜm1×m1 ,Ψ2 ∈ ℜm2×m2 The maximum likelihood solutions for the pa-

rameters are given by:

µ̂1 = µ̃1 (2.80)

µ̂2 = µ̃2 (2.81)

Ŵ1 = Σ̃11U1qPqR (2.82)

Ŵ2 = Σ̃22U2qPqR (2.83)

Ψ̂1 = Σ̃11 − Ŵ1Ŵ
⊤
1 (2.84)

Ψ̂2 = Σ̃22 − Ŵ2Ŵ
⊤
2 (2.85)

whereµ̃1 andµ̃2 are the sample means of the two sets of data variables.U1q ∈ ℜm1×q

andU2q ∈ ℜm2×q are matrices whose columns consist of the firstq canonical directions

for y1 andy2 respectively,Pq is the diagonal matrix of theq largest canonical correla-

tions,R ∈ ℜq×q is a rotation matrix, and we have definedE(yy⊤) = E(
(

y1

y2

)(

y1

y2

)⊤
) =







Σ̃11 Σ̃12

Σ̃21 Σ̃22







2.5.5 Kernel CCA

A kernel variant of canonical correlation analysis has beenproposed in (Bach & Jordan,

2002; Lai & Fyfe, 2000), where kernel functions implicitly define a nonlinear transfor-

mation of the two data sources into a feature space where linear CCA is performed.

This allows us to find nonlinear relationships between the two sets of data variables.
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Canonical correlation analysis is conventionally defined in terms of the covariance ma-

trices of the two data variablesy1 andy2, as we reviewed in Section 2.5.3: we can find

W1 andW2, the canonical vectors, as the eigenvectors of the generalised eigenvalue

problem:







0 Σ̃12

Σ̃21 0













W1

W2






=







Σ̃11 0

0 Σ̃22













W1

W2






ρ (2.86)

whereρ is the diagonal matrix of canonical correlations, and

Σ̃ = E

(

(

y1

y2

)(

y1

y2

)⊤
)

=







Σ̃11 Σ̃12

Σ̃21 Σ̃22






=

1

N







Y⊤
1 Y1 Y⊤

1 Y2

Y⊤
2 Y1 Y⊤

2 Y2






(2.87)

whereY1 = [y1,1, ...,y1,N ]⊤ andY2 = [y2,1, ...,y2,N ]⊤. To obtain the dual of (2.86),

it is noted that the canonical vectorsW1 andW2 can be written as:

W1 = Y⊤
1 α1 (2.88)

W2 = Y⊤
2 α2 (2.89)

Substituting into the primal equations for CCA given in (2.86), we get:







0 Σ̃12Y
⊤
2

Σ̃21Y
⊤
1 0













α1

α2






=







Σ̃11Y
⊤
1 0

0 Σ̃22Y
⊤
2













α1

α2






ρ







0 Y1Σ̃12Y
⊤
2

Y2Σ̃21Y
⊤
1 0













α1

α2






=







Y1Σ̃11Y
⊤
1 0

0 Y2Σ̃22Y
⊤
2













α1

α2






ρ

(2.90)

The dual problem for CCA is given in (2.90) which is given in terms of the inner

productsY1Y
⊤
1 andY2Y

⊤
2 (which can be easily seen through the substitutions for the

different blocks forΣ̃). The canonical vectorsW1 andW2 can be recovered from

the dual variables by applying (2.88) and (2.89). The canonical variatesx1,∗ andx2,∗
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for a pair of test pointsy1,∗ andy2,∗ can also be found in terms of the dual variables:

x1,∗ = y⊤
1,∗Y

⊤
1 α1 andx2,∗ = y⊤

2,∗Y
⊤
2 α2.

Suppose that both sets of data variablesy1,n and y2,n are mapped to (possi-

bly different ) feature spaces by a set of functionsφ1 : y1,n → φ1(y1,n) and

φ2 : y2,n → φ2(y2,n), where the inner products between the vectors in feature

space are defined by the kernel functionsk1(y1,i,y1,j) = φ1(y1,i)
⊤φ1(y1,j) and

k2(y2,i,y2,j) = φ2(y2,i)
⊤φ2(y2,j). DefiningΦ1 = [φ1(y1,1), ..., φ1(y1,N )]⊤ andΦ2 =

[φ2(y2,1), ..., φ2(y2,N )]⊤ asY1 andY2 mapped into their respective feature spaces, and

exploiting the dual formulation of CCA given in (2.90), kernel Canonical Correlation

Analysis can be formulated as:







0 K1K2

K2K1 0













α1

α2






=







K2
1 0

0 K2
2













α1

α2






ρ (2.91)

whereK1 = Φ1Φ
⊤
1 ∈ ℜ

N×N andK2 = Φ2Φ
⊤
2 ∈ ℜ

N×N are the kernel matrices where

K1(i,j) = k1(y1,i,y1,j) andK2(i,j) = k2(y2,i,y2,j). To calculate the canonical variates

x1,∗ andx2,∗ i.e. the projections of a pair of test pointsy1,∗ andy2,∗ onto their respective

canonical vectorsW1,φ andW2,φ (which are generally not known), we use

x1,∗ = k⊤
1,∗α1, x2,∗ = k⊤

2,∗α2 (2.92)

wherek1,∗ = [k1(y1,∗,y1,1), ..., k1(y1,∗,y1,N)]⊤ and

k2,∗ = [k2(y2,∗,y2,1), ..., k2(y2,∗,y2,N)]⊤.

2.6 Summary

In this chapter, we have outlined the problem of learning from two data sources, and

reviewed the probabilistic approach that we will be using for finding common features.

We discussed the relative merits of using both generative and discriminative probabilis-

tic models. Though discriminative techniques may be more efficient for finding a joint

representation for two data sources since this involves directly optimising a measure
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of similarity between the extracted features, a probability density is not defined over

the variables of the problem. We consider generative modelsto be more appropriate

for describing the joint structure between two related datasources, since this represents

the data generation process, and we can resynthesise different configurations from it

such as the predictive distribution over one source given the other.

We also reviewed a number of parametric and nonparametric Bayesian methods

for finding the underlying structure of both one and two data sources. Existing lin-

ear models for modelling two sources are canonical correlation analysis (CCA), and

probabilistic CCA, and an existing nonlinear model is Kernel CCA. Since the problem

of finding nonlinearly related features between two data sets is ill posed, because it is

possible to find spurious correlations, in the rest of the thesis we propose that using a

probabilistic generative approach is the preferred solution. We also use nonparametric

Bayesian methods due to their flexibility and their ability to automatically determine

model complexity from the data. The work in this chapter provides the background to

the rest of the thesis which contains our own research in thisarea.



Chapter 3

Generative models for finding shared

structure

3.1 Introduction

In this chapter, we describe some generative models for finding dependencies between

two data sets. In general, most methods that seek dependencies between two data sets

are discriminative methods, which aim to extract a set of features for each data set such

that some dependency measure between the features is maximised. Although this can

be effective since the modelling power is explicitly focused on finding dependent fea-

tures between the two data sets, discriminative methods canseemad hoc. In particular,

for two data sets that have a complex (possibly nonlinear) relationship, it is problem-

atic to choose how the data is mapped into the shared feature space. Another drawback

of the discriminative approach is that a probability density is not defined and it is not

clear how to predict densities of one data set given the other. Using generative models

for seeking structure between data sets is appealing since aprobability density is de-

fined for the data sets, allowing us to calculate predictive densities and to determine the

parameters (or hyperparameters) of the mappings in a principled way within a proba-

bilistic framework. It is also possible to insert prior knowledge about the underlying

shared process into the model.

Probabilistic generative models of two related sets of datavariables describe the
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shared features as a shared latent variable underlying bothsets. By defining the two data

variables as conditionally independent given the latent variable, the latent variable is the

only shared component of the data, and therefore should represent the common infor-

mation. An example of a generative model for finding shared structure is probabilistic

canonical correlation analysis (PCCA) (Bach & Jordan, 2005), which we reviewed in

Section 2.5.4. PCCA models each data set as being linearly related to the underlying

shared latent space i.e. each data dimension is a linear function of the latent variable.

Because PCCA only defines linear projections of the data sets, the scope of its applica-

tion is limited since it cannot accurately model data sets that have nonlinearly related

shared features. An approach to create a nonlinear version of PCCA is to consider

nonlinear functions of the latent variable, in the spirit ofthe generative topographic

mapping (Bishopet al., 1996), to create global nonlinear mappings between the latent

and data spaces. However, the problem with this approach lies in specifying the func-

tion so that it is appropriate for the data, a common problem for parametric modelling

approaches. We turn to nonparametric Bayesian methods which offer a way to define

flexible priors over data sets; we use Gaussian processes (O’Hagan, 1978; Rasmussen

& Williams, 2006) as prior distributions over the functionsfrom latent to data space,

inspired by the Gaussian process latent variable model (GPLVM) (Lawrence, 2004,

2005).

The work described here follows from (Leen & Fyfe, 2006) which describes a

derivation of a dependency seeking generative model using linear mixtures of under-

lying Gaussian processes. The model defines a probabilisticrelationship between two

sets of data variables by assuming that the shared structurecan be represented by a

shared underlying latent variable, which acts as input to the Gaussian process priors

over the shared (nonlinear) functions underlying the data.The resulting model is a

probabilistic interpretation of nonlinear canonical correlation analysis, which we call

GPLVM-CCA. In Section 3.2 we analyse the dependencies between two correlated

data variables from an information theoretic perspective,and use these results to de-

termine the structure of a dependency seeking generative model. We model each data



3.2. Analysing the dependencies between two data variables 61

source as a sum of two independent components, one which models the shared in-

formationbetween the two data sets, and one which models theprivate information

contained within each source. In Section 3.3 we study lineargenerative models for

finding dependencies, and derive an alternative interpretation of probabilistic canoni-

cal correlation analysis (PCCA). In Section 3.5 we use this alternative interpretation

of PCCA to derive a probabilistic model of nonlinear PCCA, byintegrating over the

linear mappings between latent and data space to create Gaussian process ‘mappings’

over the data space. This places nonparametric priors over the underlying functions of

the two data sets. In Section 3.6 we apply the GPLVM-CCA to a range of data sets,

including a large scale image data set, and present the results. We demonstrate the way

in which the GPLVM-CCA model can be used to learn a shared latent structure for both

data sets, and for finding a predictive distribution over onedata set given the other, even

in the presence of missing values.

3.2 Analysing the dependencies between two data vari-

ables

In this section we study the dependencies between two correlated data variables from

an information theoretic perspective (Shannon, 1948) to give us some insight into the

construction of generative models for dependency analysis. Given two correlated data

variablesy1 andy2, we can visualise the way in which their joint entropyH(y1,y2)

can be broken down in Figure 3.1, following similar diagramsin (MacKay, 2003). The

quantities of interest are the joint entropyH(y1,y2), the marginal entropiesH(y1),

H(y2), the conditional entropiesH(y1 | y2), H(y2 | y1), and the mutual information

I(y1;y2), which are defined as follows. The joint entropy ofy1 andy2 is given by:

H(y1,y2) = −

∫

p(y1,y2) log p(y1,y2)dy1dy2 (3.1)
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Figure 3.1: The relationship between joint entropyH(y1,y2), marginal entropyH(y1)
andH(y2), conditional entropyH(y1 | y2) andH(y2 | y1), and mutual information
I(y1;y2) for two correlated variablesy1 andy2, where the relationships between the
quantities is indicated by the relative area of the blocks.

The conditional entropy ofy1 giveny2, and the conditional entropy ofy2 giveny1 are

given by:

H(y1 | y2) = −

∫

p(y1,y2) log p(y1 | y2)dy1dy2 (3.2)

H(y2 | y1) = −

∫

p(y1,y2) log p(y2 | y1)dy1dy2 (3.3)

The marginal entropies ofy1 andy2 are given by:

H(y1) = −

∫

p(y1) log p(y1)dy1 (3.4)

H(y2) = −

∫

p(y2) log p(y2)dy2 (3.5)

and the mutual information betweeny1 andy2 is given by:

I(y1;y2) = H(y1)−H(y1 | y2) (3.6)

= H(y2)−H(y2 | y1) (3.7)

Some useful identities, which can be derived through manipulation of the previous

equations, are as follows:

H(y1) = H(y1 | y2) + I(y1;y2) (3.8)

H(y2) = H(y2 | y1) + I(y1;y2) (3.9)
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3.2.1 A generative process

From (3.8) and (3.9) of the previous section, it can be seen that the information content

of each data variable (the marginal entropy) can be viewed asthe sum of two inde-

pendent components: ashared informationwith the other data variable (the mutual

information betweeny1 andy2) and aprivate information(the conditional entropy).

We also note that the two sets of private information are independent of each other

since all the joint information is contained in the shared component.

In order to create a generative model of two correlated data variablesy1 andy2,

we suppose that they are generated according to:

y1 = f1 + n1 (3.10)

y2 = f2 + n2 (3.11)

such that each data variable consists of two independent components,f , which models

the shared information between the two data sources, andn, an f-independent noise

process which models the private information. See Figure 3.2.

3.2.1.1 Modelling the shared information

To model the shared information, a latent variablex underlying f1 and f2 is intro-

duced. By specifying that the shared data streams are conditionally independent on

the underlying processx i.e. p(f1, f2 | x) = p(f1 | x)p(f2 | x) and consequently

p(y1,y2 | x) = p(y1 | x)p(y2 | x), it is expected thatx will model some shared infor-

mation betweeny1 andy2, sincex is the only thing the two data sets have in common.

The corresponding graphical model is shown in Figure 3.2a.

3.2.1.2 Modelling the private information

However, we wantx to only model the shared information, and not any of the private

information contained within each source, so it is necessary to add a further constraint

on the model. It is stated in (Klami & Kaski, 2006) that a necessary condition for

a generative model to accurately find dependencies between two data sets is for the
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model to contain enough flexibility to model the marginalsp(y1) andp(y2) with the

noise processes. However, we suggest that the model should be able to accurately

modelp(y1 | y2) andp(y2 | y1) with p(n1) andp(n2) respectively, following (3.8)

and (3.9), such that each noise process is flexible enough to model all of the private

information (H(y1 | y2) andH(y2 | y1)) contained within each data set. Given that

the data density estimated by the model is a good approximation of the true data density

we can write:

H(y1) = H(f1) + H(n1), H(y2) = H(f2) + H(n2) (3.12)

If we maximise the amount of private information fromy1 andy2 that is captured by

n1 andn2 respectively, such thatn1 andn2 captureH(y1 | y2) andH(y2 | y1), the

leftover uncertainty in the data will therefore be the shared information betweeny1 and

y2 i.e. H(f1) = H(f2) = I(y1;y2):

H(y1) = I(y1;y2) + H(y1 | y2), H(y2) = I(y1;y2) + H(y2 | y1) (3.13)

This concept is illustrated in Figures 3.2(b), (c), and (d) for different constraints

on the noise processesn1 andn2 for the generative model, whose structure is shown

in (a). (b), (c) and (d) show the relationship between the entropies of two correlated

variablesy1 andy2 (white blocks) and the model componentsf1, f2, n1 andn2 (grey

blocks). In (b) and (c),n1 andn2 are constrained to be independent of each other,

such that they cannot model any of the shared informationI(y1;y2). In (b) the noise

processes are not flexible enough to capture all of the private information contained

within each data set, such that the shared componentsf1 and f2 are forced to model

some of the private information as well as the shared information I(y1;y2). In the

ideal case, shown in (c), the noise processes are sufficiently flexible such thatn1 and

n2 exactly capture the private information andI(f1; f2) = I(y1;y2). In (d) the noise

processes are too flexible; such thatn1 andn2 are free to model some of the shared

informationI(y1;y2) andI(f1; f2) < I(y1;y2).
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(a) (b)

(c) (d)

Figure 3.2: The relationship between joint entropy, marginal entropy, conditional en-
tropy, and mutual information for two correlated variablesy1 and y2, shown with
the entropies for the underlying functionsf1 and f2, and noisen1 and n2 for dif-
ferent configurations of the model shown in (a). In (d),n1 and n2 need not be
independent. In (b) and (c)n1 and n2 are independent; i.e. it is assumed that
p(y1,y2 | x) = p(y1 | x)p(y2 | x). In (c), the model contains enough flexibility
for the noise to maximally model the marginals, such that theunderlying functions are
forced to model the shared components ofy1 andy2.
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3.3 Linear generative models

In this section, we look at generative dependency seeking models for modelling two

Gaussian distributed data variablesy1 andy2 which have a linear relationship. Finding

linearly correlated features between two data sets can be solved by the discriminative

method of canonical correlation analysis (CCA) (Hotelling, 1936), which we reviewed

in Section 2.5.3. However, CCA does not define a probability density for the data, a

problem which has been addressed by its probabilistic formulation in (Bach & Jordan,

2005). Whereas CCA maximises the correlation between the extracted features (termed

the canonical variates) from each data set, a generative approacha priori models the

data sets as having maximally correlated features (i.e. identical features) through a

shared underlying latent variable. In the generative model, each data variable is mod-

elled as a sum of a shared component, which is linearly related to an underlying shared

latent variablex, and a noise componentn. The generative process for the data is given

by:

y1 = W1x + n1 (3.14)

y2 = W2x + n2 (3.15)

wherey1 ∈ ℜm1 ,y2 ∈ ℜm2 such that each data stream is linearly related to a shared

underlying processx ∈ ℜq, by the matricesW1 ∈ ℜm1×q,W2 ∈ ℜm2×q. If we suppose

thatx ∼ N(0, I), n1 ∼ N(0, Ψ1) andn2 ∼ N(0, Ψ2) then we obtain a Gaussian latent

variable model as discussed in Section 2.2.1.

Following the discussion in the previous section, we createflexible noise processes

by specifying thatΨ1 ∈ ℜm1×m1 andΨ2 ∈ ℜm2×m2 are full covariance matrices, so that

p(n1) andp(n2) can approximatep(y1 | y2) andp(y2 | y1) respectively. The resultant

generative model is the probabilistic canonical correlation analysis model of Bach and

Jordan (Bach & Jordan, 2005). If we had constrainedΨ1 andΨ2, for instance if we had

assumed isotropic noise:Ψ1 = Ψ2 = σ2I, x would capture correlations within, as well

as between, the two data streams i.e. the resultant model would be probabilistic PCA
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as reviewed in Section 2.4.1. This scenario is illustrated in Figure 3.2b.

3.3.1 Introducing correlations through linear mixtures

We note that the covariance matrix of the data under the modelis given by:

Σy = E

(

(

y1

y2

)(

y1

y2

)⊤
)

= Σf + Σn (3.16)

whereΣf =







W1W
⊤
1 W1W

⊤
2

W2W
⊤
1 W2W

⊤
2






, Σn =







Ψ1 0

0 Ψ2







whereΣf models variation shared betweeny1 andy2, the between-set variation, and

Σn models variation that is contained withiny1 andy2, the within-set variation. Con-

sider the linear transformation of the data

(

z1

z2

)

=







Ψ
− 1

2

1 0

0 Ψ
− 1

2

2







(

y1

y2

)

=







Ψ
− 1

2

1 W1x + Ψ
− 1

2

1 n1

Ψ
− 1

2

2 W2x + Ψ
− 1

2

2 n2






(3.17)

wherez1 ∈ ℜm1 , andz2 ∈ ℜm2 . Since the sample covariance of the transformed noise

components ofz1 andz2 areΨ
− 1

2

1 E(n1n
⊤
1 )Ψ

− 1

2

1 = Im1
andΨ

− 1

2

2 E(n2n
⊤
2 )Ψ

− 1

2

2 = Im2

respectively, i.e. isotropic noise with unit variance, it follows that the elements of

z1 are uncorrelated givenx, and similarly forz2. In fact, z = [z⊤1 z⊤2 ]⊤ is generated

according to a probabilistic PCA model with weight matrixV = [V⊤
1 V⊤

2 ]⊤ with V1 =

Ψ
− 1

2

1 W1,V2 = Ψ
− 1

2

2 W2, and a fixed noise variance of 1. Each data variable may then

be written as a linear mixture of independent functions which are all linearly related to

a shared latent variablex:

y1 = Ψ
1

2

1 z1 = Ψ
1

2

1 V1x + n1

y2 = Ψ
1

2

2 z2 = Ψ
1

2

2 V2x + n2 (3.18)

wheren1 andn2 are distributed as before. With this interpretation of the probabilistic

CCA model, the within-set variation is modelled by a linear transformation of indepen-



68 Chapter 3. Generative models for finding shared structure

Figure 3.3: Graphical model for a new interpretation of probabilistic canonical cor-
relation analysis. An intermediate set of latent variablesz = [z⊤1 z⊤2 ]⊤ is introduced,
wherez1 ∈ ℜm1 , z2 ∈ ℜm2 (m1 = m2 = 2), which are conditionally independent of
a shared latent variablex ∈ ℜq(q = 1), such thatx models the correlations between
the elements ofz. Each data source is modelled by a linear mixture of the independent

underlying functions:y1 = Ψ
1

2

1 z1,y2 = Ψ
1

2

2 z2, whereΨ
1

2

1 ∈ ℜ
m1×m1 ,Ψ

1

2

2 ∈ ℜ
m2×m2 ,

such that the within- set variation is modelled through a linear mixture of independent
noise processes. This differs from the original probabilistic CCA model in (Bach &
Jordan, 2005) in which the within-set variation is modelledby an additive noise com-
ponent correlated across the data dimensions.

dent noise processes. We can think of probabilistic canonical correlation analysis as

probabilistic principal component analysis on two linearly transformed data variables

z1 andz2, where the transformationsΨ−1/2
1 andΨ2

−1/2 remove the within-set varia-

tion such that the weight vectorsV1 andV2 span the between-set variation. This idea

is shown graphically in Figure 3.3 for the case of a one dimensional latent variablex

(q = 1) and where each data variable is two dimensional (m1 = m2 = 2).

3.3.2 An alternative version of Probabilistic Canonical Correlation

Analysis

The latent variable model for the different interpretationof canonical correlation anal-

ysis introduced in Section 3.3.1 is given by:

p(x) = N (x | 0, Iq), min(m1, m2) ≥ q ≥ 1 (3.19)

p(z1 | x,V1) = N (z1 | V1x, Im1
), V1 ∈ ℜ

m1×q (3.20)

p(z2 | x,V2) = N (z2 | V2x, Im2
), V2 ∈ ℜ

m2×q (3.21)

p(y1 | z1,Ψ1) = δ(y1 − (Ψ
1/2
1 z1 + µ1)), Ψ1 ∈ ℜ

m1×m1 , µ1 ∈ ℜ
m1 (3.22)

p(y2 | z2,Ψ2) = δ(y2 − (Ψ
1/2
2 z2 + µ2)), Ψ2 ∈ ℜ

m2×m2 , µ2 ∈ ℜ
m2 (3.23)
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where we have usedµ1 andµ2 to allow for a bias term ony1 andy2 respectively, and

p(y1 | x) =

∫

p(y1 | z1)p(z1 | x)dz1 = N (y1 | Ψ
1/2
1 V1x + µ1,Ψ1) (3.24)

p(y2 | x) =

∫

p(y2 | z2)p(z2 | x)dz2 = N (y2 | Ψ
1/2
2 V2x + µ2,Ψ2) (3.25)

Again, this model (like the original probabilistic CCA model) is limited since it models

the relationship between the latent and data spaces as linear, which may be insufficient

for data which lie close to nonlinear manifolds embedded in data space. However, this

above formulation of probabilistic CCA can then be extendedto modelling nonlinear

relationships, as seen in the following section. The standard approach for fitting this

latent variable model is to marginalise the latent variablesx, and to optimise the param-

etersV = [V⊤
1 ,V⊤

2 ]⊤,Ψ
1/2
1 andΨ

1/2
2 via maximum likelihood. We follow the dual ap-

proach, used in the derivation of Gaussian Process Latent Variable Models (Lawrence,

2004, 2005), which is to marginalise the parameters and to optimise the likelihood with

respect to the latent variables.

3.4 A GPLVM version of CCA

Gaussian process latent variable models (GPLVM) describedin (Lawrence, 2004,

2005) are a new class of probabilistic models that define Gaussian process ‘mappings’

from a latent space to the data space. A theoretical grounding is provided for the

GPLVM, deriving the model from a dual formulation of probabilistic principal com-

ponent analysis (PPCA) (Tipping & Bishop, 1999). Rather than integrating out the

latent variables and optmising the linear mapping of the PPCA model as in (Tipping &

Bishop, 1999), the GPLVM approach is to integrate out the mapping and optimise the

latent variable positions. The resulting model is a productof D independent Gaussian

processes (whereD is the dimension of the data), where the process inputs are the latent

variables. PPCA is a special case of the GPLVM when the model’s covariance function

is linear, but any valid covariance function can be used, such that there is an implicit

nonlinear mapping from the latent space to the data space, such that the GPLVM is a
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probabilistic model of nonlinear principal component analysis.

In the GPLVM, the data (output) dimensions area priori assumed to be indepen-

dent and identically distributed, such that the latent coordinates, which are common to

all dimensions, capture the variation between the dimensions. This model is therefore

not appropriate for capturing variations between two related data sets, as we noted in

Section 3.3, since the model’s set of latent coordinates will capture the private infor-

mation (or within-set variation) as well as the shared information. One approach in

the literature to finding structure between two data sets is to optimise two GPLVM’s

that have a joint latent space (Shonet al., 2006). This relaxes the ‘identically dis-

tributed’ constraint on the data dimensions of the GPLVM - each data set is modelled

by a GPLVM which has its own covariance function. However, weargue that this is

not strictly a dependency seeking model, since the private information within each data

set is not explicitly modelled.

Our approach to creating a dependency seeking generative model is to model the

within-set variation by using a linear combination of underlying Gaussian processes

with a common input, generalising from the new interpretation of probabilistic canon-

ical correlation analysis introduced in Section 3.3.2. This is equivalent to relaxing the

‘independently distributed’ assumption on the data dimensions within each data set; a

GPLVM underlies each data set, and the output dimensions arelinearly mixed to model

dependencies within each data set. We describe the model in the next section.

3.4.1 Derivation of the model

Starting from the new interpretation of probabilistic canonical correlation analysis in

Section 3.3.2, the set ofN data pairsY = [Y1,Y2] (whereY1 = [y1,1, ...,y1,N ]⊤

andY2 = [y2,1, ...,y2,N ]⊤) is modelled as a linear combination of a set of underlying

function values,Z = [Z1,Z2], whereZ1 = [z1,1, ..., z1,N ]⊤ andZ2 = [z2,1, ..., z2,N ]⊤:

p(Y | Z,Ψ) =

m1+m2
∏

i=1

δ(Y(:, i)− (ZΨ(:, i)
1

2 )) (3.26)
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where we have assumed zero mean data,Y(:, i) is theith column ofY, andΨ(:, i)
1

2 is

the ith column ofΨ
1

2 =







Ψ
1

2

1 0

0 Ψ
1

2

2






. In our PCCA model the prior on the latent

function valuesZ = [Z1,Z2] is given by:

p(Z | X,V) =

m1+m2
∏

i=1

N (Z(:, i) | Xv⊤
i , IN) (3.27)

whereX = [x1, ...,xN ]⊤ is the set ofN latent variables underlyingZ, Z(:, i) is theith

column ofZ, andvi is theith row of V. We can think of each latent function value

zn = [z⊤1,nz
⊤
2,n]⊤ as being a function ofxn such that the columns ofZ are the latent

common functions evaluated atX. In (3.27), the latent functions are linear functions

of their inputs, but we see in Section 3.5 that we can also consider nonlinear functions

with the model.

3.4.1.1 Integrating out the linear mapping

Following the derivation of the GPLVM in (Lawrence, 2004), aprior conjugate to (3.27)

is placed onV (which parameterises the mapping fromX to Z), and then we integrate

overV. An isotropic Gaussian prior with unit variance is used:

p(V) =
m1+m2
∏

i=1

N (vi | 0, Im1+m2
) (3.28)

wherevi is theith row ofV. The resulting marginal likelihood is given by:

p(Z | X) =

∫

p(Z | X,V)p(V)dV (3.29)

=

m1+m2
∏

i=1

N (Z(:, i) | 0,XX⊤ + IN) (3.30)

=
1

(2π)
DN
2 |K|

D
2

exp

(

−
1

2
tr(K−1ZZ⊤)

)

(3.31)

whereK = XX⊤ + IN andD = m1 + m2. This is a GPLVM, consisting of a product

of m1 + m2 independent Gaussian processes. Thenth value for each data source is

a linear combination of thenth latent function values evaluated atxn as in (3.22) and
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(3.23). The likelihood function forY = [Y1,Y2] is given by integrating outZ, where

we have used (3.26) and the prior onZ in (3.31):

p(Y | X,Ψ) =

∫

p(Y | Z,Ψ)p(Z | X)dZ

=
1

(2π)
DN
2 |K|

D
2 |Ψ|

N
2

exp

(

−
1

2
tr(K−1YΨ−1Y⊤)

)

(3.32)

The log likelihood function for the model is given by:

LY|X = −
N

2
ln|Ψ| −

DN

2
ln(2π)−

D

2
ln|K| −

1

2
tr(K−1YΨ−1Y⊤) (3.33)

The gradients of (3.33) with respect toX is given by:

∂LY|X

∂X
= −

D

2
K−1X +

1

2
K−1YΨ−1Y⊤K−1X (3.34)

and a fixed point where the gradients are zero is given by:

1

D
YΨ−1Y⊤K−1X = X (3.35)

which is satisfied by:

X = UqLqR
⊤ (3.36)

whereUq are theq dominant eigenvectors ofYΨ−1Y⊤, Lq is the diagonal matrix

(Λq − Iq)
1

2 with Λq being the corresponding diagonal matrix of eigenvalues, and R ∈

ℜq×q is a rotation matrix. The gradients of (3.33) with respect toΨ is given by:

∂LY|X

∂Ψ
= −

N

2
Ψ−1 +

1

2
Ψ−1Y⊤K−1YΨ−1 (3.37)

and a fixed point where the gradients are zero is given by:

Ψ =
1

N
(Y⊤K−1Y) (3.38)
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which we then constrain to be of block diagonal form to giveΨ =







Ψ1 0

0 Ψ2







whereΨ1 = Y⊤
1 K−1Y1/N ∈ ℜm1×m1 , andΨ2 = Y⊤

2 K−1Y2/N ∈ ℜm2×m2 . Ψ has

the interpretation of being the noise covariance matrix of the probabilistic CCA model.

Ψ1 models the within-set variation inY1, andΨ2 models the within-set variation in

Y2.

3.4.2 Finding latent coordinates for each data set

After training the model by findingX andΨ according to the update equations, we may

want to find the latent space representation of just one of thedata sets. Denoting the

data and optimised latent coordinates asD = {Y1,Y2,X}, the resulting probability

distribution over a data pointy1,n from the first data set given a latent pointxn is given

by:

p(y1,n | xn,D) = N (y1,n | µ1(xn), σ2
1(xn)Ψ1) (3.39)

where

µ1(xn) = [k(xn)⊤K−1Y1]
⊤ (3.40)

σ2
1(xn) = k − k(xn)⊤K−1k(xn) (3.41)

andK = C(X,X) + β−1I, k(xn) = [C(xn,x1), ..., C(xn,xN)]⊤, k = C(xn,xn), so

that, for the linear covariance function,C(xn,xn) = x⊤
n xn. Similarly, the resulting

probability distribution over a data pointy2,n from the second data set given a latent

pointxn is given by:

p(y2,n | xn,D) = N (y2,n | µ2(xn), σ2
2(xn)Ψ2) (3.42)
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where

µ2(xn) = [k(xn)⊤K−1Y2]
⊤ (3.43)

σ2
2(xn) = k − k(xn)⊤K−1k(xn) (3.44)

The latent coordinates for a pair of data points is found through:

x1 = arg max
x

ln p(y1 | x,D) (3.45)

x2 = arg max
x

ln p(y2 | x,D) (3.46)

where

ln p(y1 | x,D) = −
m1

2
ln(2π)−

1

2
ln σ2

1(x)−
1

2σ2
1(x)
||Ψ

− 1

2

1 (y1 − µ1(x))||2 (3.47)

∂ ln p(y1 | x,D)

∂x
= −

1

2
σ−2

1 (x)
∂σ2

1(x)

∂x

(

1−
||Ψ

− 1

2

1 (y1 − µ1(x))||2

(σ2
1(x))

)

+
(Ψ

− 1

2

1 (y1 − µ1(x)))⊤

(σ2
1(x))

∂µ1(x)

∂x
(3.48)

where∂σ2

1
(x)

∂x
and∂µ1(x)

∂x
depend on the form of the covariance functionC, and similarly

for ln p(y2 | x,D).

The probability distributions over the data setsY1 andY2 given the trained model

are given byp(Y1 | X,D) =
∏N

n=1 p(y1,n | xn,D) andp(Y2 | X,D) =
∏N

n=1 p(y2,n |

xn,D) using (3.39) and (3.42) respectively. Now we can consider the situation in which

we have a trained mapping and we wish to predict one data set from the other. We can

denote the latent coordinate sets underlyingY1 andY2 asX̂1 andX̂2 respectively, and

we findX̂1 andX̂2 as:

X̂1 = arg max
X

ln p(Y1 | X,D) (3.49)

X̂2 = arg max
X

ln p(Y2 | X,D) (3.50)
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Intuitively X̂1 andX̂2 represent the most highly correlated portions ofY1 andY2. That

is, the best prediction ofY1 andY2 is given by the underlying latent coordinatesX̂1

andX̂2 which are themselves highly correlated. We can use this factfor prediction.

3.4.3 Prediction of one data set given the other

We want to predictY∗
2 given new values of the first datasetY∗

1. Our method consists

in finding corresponding latent coordinatesX∗ for Y∗
1 using (3.45) and (3.50) and the

relationship between̂X1 andX̂2 i.e. equatingX̂1 andX̂2 , and then using the coordi-

nates to predict the other data setY∗
2. The predictive distribution over the second data

variabley∗
2 given its corresponding latent coordinatex∗ is given by:

p(y∗
2|x

∗,D) = N (y∗
2|µ2(x

∗), σ2
2(x

∗)Ψ2) (3.51)

where

µ2(x
∗) = [k(x∗)⊤K−1Y2]

⊤ (3.52)

σ2
2(x

∗) = k − k(x∗)⊤K−1k(x∗) = σ2
1(x

∗) (3.53)

andK = C(X,X) + β−1I, k(x∗) = [C(x∗,x1), ..., C(x∗,xN)]⊤, k = C(x∗,x∗). We

independently optimise the likelihood of eachy∗
1,n by finding the correspondingx∗

n,

which we use to calculate the predictive distribution fory∗
2,n. We can similarly find a

predictive distribution forY∗
1 givenY∗

2.

3.5 Extension to nonlinear processes

The previous sections show how probabilistic CCA can be derived in terms of a

GPLVM with a linear covariance function (i.e. dual Probabilistic PCA) on two lin-

early transformed data sets. We can consider nonlinear covariance functions to al-

low for nonlinear processes such that the resultant model isa nonlinear version of

probabilistic CCA. Due to the nonlinear relationship between the latent space and

data space, the resultant model will not be optimisable by aneigenvalue problem.
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In the following sections we show how to train the model, following the approach

used in the training of Lawrence’s GPLVM (Lawrence, 2005). Our implementa-

tion of the model is based on Neil Lawrence’s GPLVM code available online at

http://www.dcs.shef.ac.uk/ ˜ neil/gplvm . Covariance functions that we

will use in this thesis are:

3.5.0.1 Squared exponential covariance function

The squared exponential (SE) or RBF is probably the most widely used kernel in the

kernel machines field. It favours smooth functions (since itis infinitely differentiable)

whose values fall away to almost zero in regions where there is no data, and has the

form:

k(xi,xj) = α exp
(

−
γ

2
(xi − xj)

⊤(x1 − xj)
)

+ β−1δi,j (3.54)

with hyperparametersΘKSE
= {α, β, γ}, whereα is a parameter that controls the scale

of the output functions,β is the inverse noise variance, andγ controls the characteristic

length scale of the functions.

3.5.0.2 Linear covariance function

The linear covariance function (which we have used earlier)is a matrix of inner prod-

ucts ofX such that the output functions are linearly related toX, and is given by:

k(xi,xj) = αx⊤
i xj + β−1δi,j (3.55)

with hyperparametersΘKlin
= {α, β}, whereα is a scale parameter andβ is the inverse

noise variance.

3.5.0.3 Polynomial covariance function

The polynomial covariance function is given by:

k(xi,xj) = α
(

wx⊤
i xj + γ

)d
+ β−1δi,j (3.56)
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with hyperparametersΘKpoly
= {α, β, γ, d, w}, whereα is a scale parameter,β is the

inverse noise variance,d defines the degree of the polynomial,w controls the scale of

the dot product component, andγ is a bias parameter.

3.5.1 Using different processes for the data sets

To extend the model, we can use different covariance functions K1 andK2 for the

processesZ1 andZ2 respectively, underlying the data sets. We write the log likelihood

function as:

LY|X = LY1|X + LY2|X (3.57)

where

LY1|X = ln p(Y1 | X)

= −
N

2
ln|Ψ1| −

m1N

2
ln(2π)−

m1

2
ln|K1| −

1

2
tr(K−1

1 Y1Ψ
−1
1 Y⊤

1 )

LY2|X = ln p(Y2 | X)

= −
N

2
ln|Ψ2| −

m2N

2
ln(2π)−

m2

2
ln|K2| −

1

2
tr(K−1

2 Y2Ψ
−1
2 Y⊤

2 )

(3.58)

The model consists of two GPLVM’s which share the same set of latent coordinates,

and each models a linear transformation of its respective data set.

3.5.2 Training the model

To train the model, we have to find the latent coordinatesX, the parameters of the

covariance functionsΘKi
, i = 1, 2, and the linear transformationsΨ1 andΨ2 such that

the log likelihood functionL is maximised. SinceL is a highly nonlinear function of

X andΘKi
, i = 1, 2, we have to use gradient based optimisation procedures. In our

experiments we use scaled conjugate gradients (SCG).



78 Chapter 3. Generative models for finding shared structure

3.5.2.1 Optimisation of the latent pointsX

The gradients ofLY|X with respect toKi is given by:

∂LYi|X

∂Ki
= −

D

2
K−1

i +
1

2
K−1

i YiΨ
−1
i Y⊤

i K−1
i (3.59)

The gradients ofLY|X with respect toX can be obtained by combining (3.59) with

∂Ki

∂X
, i = 1, 2 using the chain rule, where∂Ki

∂X
depends on the form of the covari-

ance functionKi. Using nonlinear covariance functions introduces more flexibility

into the model and rather than seeking a maximum likelihood solution for X it may

be preferable to seek a MAP solution. In our experiments we use a Gaussian prior

over X: p(X) =
∏N

n=1N (xn | 0, I) and find a MAP solution forX by maximis-

ing LY,X = LY|X + lnp(X) with respect toX, whereLY|X is given in 3.57. This is

equivalent to penalisingLY|X with the sum of squared elements ofX.

3.5.2.2 Optimisation ofΘKi
, i = 1, 2

The gradients ofLY|X with respect to the covariance function parametersΘKi
are given

by combining (3.59) with∂Ki

∂ΘKi
using the chain rule. The parametersΘKi

that we work

with should be positive so in our experiments we optimiseΘKi
in a transformed space

by using the transformationθ = ln(1 + exp(θ′)) As before forX, we can seek MAP

solutions forΘKi
by first specifying priors overΘKi

.

3.5.2.3 Optimisation ofΨ

The parameterΨ is found through an exact update as before.

Ψ1 =
1

N
(Y⊤

1 K−1
1 Y1) (3.60)

Ψ2 =
1

N
(Y⊤

2 K−1
2 Y2) (3.61)

In our experiments we updateΨ every 5 iterations.
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3.5.3 Relation to other models

Our model is closely related to the Gaussian Process Latent Variable Model (Lawrence,

2004, 2005) of Lawrence as we reviewed in 2.4.3. Lawrence’s model is derived from

a dual approach to probabilistic PCA, assuminga priori that the data dimensions are

independent and identically distributed given the latent variables. The marginal likeli-

hood of the resultant model is a product ofD independent Gaussian processes (where

D is the dimensionality of the data), and each dimension is identically distributed i.e.

they share the same covariance function. The latent coordinatesX are the inputs to the

Gaussian processes and are ’mapped’ to a distribution over each data dimension. Our

model is designed to find relationships between two data setsY1 andY2 and is derived

from a dual approach to probabilistic CCA. The data in the individual dimensions of

each data set are assumed to be dependent on each other but independent of the data

from the dimensions of the other set, given the shared latentvariable setX. The data

setsY1 andY2 are modelled as linear mixtures of independent Gaussian processesZ1

andZ2 respectively, which share the same covariance function andthe same input set

X. An interpretation of the model is thatZ = [Z1,Z2], linear transformations of the

data sets, are generated according to a GPLVM.

The Scaled Gaussian Process Latent Variable Model (SGPLVM)of Grochow et al.

(Grochowet al., 2004) is an extension of the GPLVM and associates a scale parameter

with each dimension of the data. The likelihood function forthis model is given by:

p(Y | X,W) =
|W|

N
2

(2π)
DN
2 |K|

D
2

exp

(

−
1

2
tr(K−1YWY⊤)

)

(3.62)

for a D-dimensional data setY, latent variable setX, and the diagonal matrixW ∈

ℜD×D of scale parameters{w1, ..., wD}. The model is similar to Factor Analysis, in

that the data dimensions are assumed to be independent, but allowed to have different

noise variances i.e. the dimensions are not identically distributed. From (3.62) it can

be seen that the distribution over thedth data dimension is a Gaussian process with a

covariance functionw−1
d K. Since the different noise variances of the data dimensions
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are already accounted for by the model,X captures the correlations between the data

dimensions. For our model, the likelihood function is givenby:

p(Y | X,Ψ) =
1

(2π)
DN
2 |K|

D
2 |Ψ|

N
2

exp

(

−
1

2
tr(K−1YΨ−1Y⊤)

)

(3.63)

for two data setsY = [Y1,Y2], and the block diagonal matrix of parametersΨ =






Ψ1 0

0 Ψ2






whereΨ1 ∈ ℜ

m1×m1 , andΨ2 ∈ ℜ
m2×m2 , wherem1 andm2 are the

dimensions ofY1 andY2 respectively. From (3.63) it can be seen that the covari-

ance function between theith andjth dimensions ofY is
(

Ψ−1
i,j

)−1
K whereΨ−1

i,j is

the (i, j)th element of the matrixΨ−1. Due to the block diagonal structure ofΨ−1,

there are cross covariance functions between the variableswithin each data set. By

accounting for the correlations within each data set with the model,X should capture

the between-set variation.

Our model, like the SGPLVM, can be interpreted as a warped Gaussian processes

(Snelsonet al., 2004) with a linear warping functionzn = Ψ− 1

2yn. In the warped Gaus-

sian process framework, a transformation is made from the data space to a latent space,

such that the data is best modelled by a Gaussian process in the latent space. Rather

than being an ad-hoc step, this preprocessing transformation is found automatically

since it is incorporated into the probabilistic framework of the GP. A warped Gaussian

process is defined as follows. The latent function valuesZ = [z1, ..., zN ]⊤ is modelled

by a Gaussian process with zero mean and covariance functionK, parameterised byΘ,

and the transformation from the data space to the latent function space is given by a

mapping of theN data pointsY = [y1, ..., yN ]⊤ through the same functionf

zn = f(yn,Ψ) (3.64)

wheref is required to be monotonic and maps to the whole of the real line, such that

probability measure is conserved in the transform, andΨ parameterises the transform.
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The log likelihood function lnp(Y | X,Ψ, Θ) is given by:

L = −
1

2

N
∑

n=1

ln
∂f(y,Ψ)

∂y

∣

∣

∣

∣

yn

−
N

2
ln(2π)−

1

2
ln|K| −

1

2
tr(K−1f(Y)f(Y)⊤) (3.65)

where the first term is the Jacobian term that takes the transformation into account.

The warped GP is a generalisation of the standard GP, finding extra structure in the

(possibly non Gaussian) data by learning a transformation of the data. In (Snelson

et al., 2004), the analysis is limited to one dimensional regression problems, but in our

case, the learned transformation from the data to the latentfunction space models the

within-set variation between two data sets such that the variation between the data sets

is best modelled by a GPLVM.

In our model, using a linear mixture of Gaussian processes tomodel correlations

within a data set is similar in spirit to the Semiparametric Latent Factor Model (Teh

et al., 2005). This is a semiparametric model for regression problems involving mul-

tiple response variables. The model uses a linear mixture ofGaussian processes to

capture the dependencies that may exist between the response variables.

3.6 Experiments

In this section, we demonstrate the GPLVM-CCA model on a range of data sets. In

Section 3.6.1, we present results on a pair of data sets whichhave an underlying linear

relationship. In Section 3.6.2, we illustrate the algorithm on a nonlinear CCA problem.

In Section 3.6.4 we demonstrate the GPLVM-CCA on a set of image pairs. Each pair

consists of the left and right half of a face with varying poses and expressions. We find

a joint latent space for the data, and show how to predict one face half given the other.

Additionally, in Section 3.6.5, we show how the we can still predict a face half given

the other face half that has pixel values missing at random.

3.6.1 Linear example

We demonstrate the GPLVM-CCA model on a simple toy problem toshow the ability

of the model to find correlated features between two data sets. We create 200 data pairs
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according to

y1 = Ψ
1

2

1 (V1x + n1)

y2 = Ψ
1

2

2 (V2x + n2) (3.66)

with a 1 dimensional latent variablex, wherex ∼ N (x | 0, I1), and independent

noise variablesn1 ∼ N (n1 | 0, I2), n2 ∼ N (n2 | 0, I2), V1 = [2, 0]⊤,V2 = [2, 0]⊤,

Ψ
1

2

1 =







0.1 0.3

0.3 1






, Ψ

1

2

2 =







0.2 0.1

0.1 1






such that the first dimensions of the data

sets are correlated with each other. After training the model using two linear covariance

functions, the maximum likelihood estimates forΨ
1

2

1 andΨ
1

2

2 are given by:

Ψ
1

2

1 =







0.1142 0.3273

0.3273 1.0783






, Ψ

1

2

2 =







0.3102 0.1213

0.1213 0.9784






(3.67)

This demonstrates that the model is able to capture correlations within the data sets. The

latent coordinateŝX1 andX̂2 are calculated and plotted against each other in Figure

3.4. For comparison, we also find the latent coordinates for the original GPLVM (which

we term GPLVM-PCA) which does not capture the correlations between the data sets

(whereΨ = I): we see that the estimateŝX1 andX̂2 are highly correlated from our

model whereas those from GPLVM-PCA appear to have little structure. Thus we can

use one latent coordinate estimate as the best estimate of the other’s position and use

this to estimate the corresponding data coordinate.
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Figure 3.4: (a) The estimates of the positions of the latent points,X̂1 andX̂2, from
each data stream using GPLVM-CCA. (b) the equivalent estimates from GPLVM-PCA.

3.6.2 Nonlinear example

To illustrate our algorithm on a nonlinear CCA problem, we create two data sets ofN

= 100 samples each where thenth pair of data samples is given by:

y1,n =







0.7 0.5

0.5 0.7













cos(0.8xn) + n1,1

sin(0.8xn) + n1,2







y2,n =







0.5 −0.2

−0.2 0.5













cos(0.8xn) + n2,1

sin(0.8xn) + n2,2






(3.68)

where the noise componentsn = [n1,1, n1,2, n2,1, n2,2]
⊤ ∼ N (n | 0, σ2

nI), where

the noise varianceσ2
n = 0.1, andx ∈ [−π, π]. Both data setsY1 = [y1,n, ...,y1,N ]

andY2 = [y2,n, ...,y2,N ] lie near to 1-dimensional elliptical manifolds indexed by the

shared latent coordinatesx. Each data set is a linearly transformed portion of a noisy

circle; there are correlations within each data set.

3.6.2.1 Training the model

We train the model (GPLVM-CCA) on the data sets using SE kernels (see (3.54)) for

both GPLVM’s. For comparison, we also ran the experiment forthe model with the

parameterΨ fixed atI (GPLVM-PCA). This model assumes that the data in each di-
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mension are independent of each other, and is essentially two GPLVM’s (with different

covariance functions) which model a data set each, and sharethe same set of latent

coordinates. This allows us to see the effect ofΨ in the GPLVM-CCA model, which is

learned during the optimisation. For all the experiments, we initialise the hyperparam-

etersΘ1 = {α1, β1, γ1} andΘ2 = {α2, β2, γ2} of the kernelsK1 andK2 respectively

asα = 1, β = 1, γ = 1, and use a 1 dimensional latent space. For the GPLVM-CCA

model, we fix the scale of the kernelsα1, α2 to 1, since the scale is already captured in

Ψ1 andΨ2. After training the models on the data, the learned hyperparameters are:

GPLVM-CCA

α1 = 1, β1 = 144.93, γ1 = 19.95, Ψ1 =







1.0400 0.9686

0.9686 0.9658







α2 = 1, β2 = 129.87, γ2 = 25.87, Ψ2 =







0.2836 −0.2723

−0.2723 0.3786







(3.69)

GPLVM-PCA

α1 = 1.02, β1 = 1.77× 103, γ1 = 13.80, Ψ1 = I

α2 = 0.26, β2 = 131.59, γ2 = 13.59, Ψ2 = I

(3.70)

3.6.2.2 Visualising the mapping

To visualise the mapping between latent space and data space, we plot contour maps

of the estimated (1-D) latent coordinate corresponding to each data space. The lines

correspond to regions of data space which project to the samelatent coordinate. De-

noting the latent variables underlying the two data variablesy1 andy2 asx1 andx2

respectively,x1 is evaluated over the regiony1,1 ∈ [−1, 1],y1,2 ∈ [−1, 1] using (3.49)

andx2 over the regiony2,1 ∈ [−1, 1],y2,2 ∈ [−1, 1] using (3.50), each on a grid of

50× 50 points. The contour maps forx1 andx2 are plotted in Figures 3.5 and 3.6 for

GPLVM-CCA and GPLVM-PCA respectively, along with the data sets, whereY1 is

denoted by ‘+’ andY2 by ‘♦’. For the trained GPLVM-CCA model, the projection
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Figure 3.5: Contour plots of the latent coordinates found byGPLVM-CCA evaluated
over the data space region, whereY1 is shown as+ andY2 as♦. The lines correspond
to regions of data space that project to the same latent coordinate. (a) showsx1, (b)
showsx2

from data to latent space takes both data sets into account; Figure 3.5 illustrates how

the learned manifold for each data set twists around such that the latent representation

for the other set is coordinated with the first set. This is expected since we wishx1 and

x2 to reflect the shared information betweeny1 andy2, such thatx1 captures informa-

tion abouty2 and vice versa. This is shown particularly well in (a). In contrast, the

contour maps in Figure 3.6 show that the GPLVM-PCA model doesnot capture shared

structure with the latent coordinates.

We create a test data setY∗ = [Y∗
1,Y

∗
2] by drawing a further 20 data pairs using

(3.68). We evaluate the predictive power of the GPLVM-CCA and GPLVM-PCA mod-

els by predictingY∗
1 givenY∗

2 and vice versa for each model. To predictY∗
2 given new

values of the first datasetY∗
1, we first findX∗

1, the set of latent coordinates underlying

Y∗
1 by solving the nonlinear optimisation problem in (3.49). Figure 3.7 shows the pre-

dictive distribution over each data set for GPLVM-PCA, (a) and (c), and GPLVM-CCA,

(b) and (d), with the mean squared error per data point above each figure. The predic-

tive distributions are found by using (3.51). As can be seen,the richer noise model of

GPLVM-CCA allows the model to accurately approximate the predictive densities.
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Figure 3.6: Contour plots of the latent coordinates found byGPLVM-PCA evaluated
over the data space region, whereY1 is shown as+ andY2 as♦. The lines correspond
to regions of data space that project to the same latent coordinate. (a) showsx1, (b)
showsx2

3.6.3 Students’ exams data

We demonstrate GPLVM-CCA’s ability to find a visual representation of the shared

structure between two related data sets. We test our model ona real data set from

(Mardia et al., 1979), which is commonly used to test the performance of CCA-

type algorithms. The data set consists of 88 students’ marksout of 100 on 5 ex-

ams in the subjects of Mechanics (C), Vectors (C), Algebra (O), Analysis (O), and

Statistics (O), where C and O denote closed and open-book exams. We are inter-

ested in finding how highly a student’s performance on closed-book exams is cor-

related with his performance on open-book exams. Figure 3.8shows the set of 1-

dimensional latent coordinates (each representing a student) found for both the closed-

book (X1) and open-book exam data (X2). The SE kernel parameters for the trained

model areα = 1.2561, β = 0.7773, γ = 1.1140 for the closed book kernel, and

α = 1.9162, β = 0.6940, γ = 1.4154 for the open book kernel. Each student is

represented by their rank number in the class, where ‘1’ represents the student who

gained the highest average score across all exams, down to ‘88’, the lowest ranked stu-

dent. There is a clear correlation between a student’s performance on closed book and

open book exams, which suggests that the model is able to find arepresentation for the

students based on their ability.
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Figure 3.7: Predictive densities ofY∗
1 givenY∗

2 (first row) andY∗
2 givenY∗

1 (second
row). The first column corresponds the GPLVM-PCA model, and the second column
corresponds to the GPLVM-CCA model. The means of the predictive densities are
shown as+, the data is shown as• and 2 st.dev of the noise covariance is plotted for
each data point.
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Figure 3.8: Correlated latent coordinates for closed book (C) and open book (O) exams
(l) for the group of students ranked from ‘1’ to ‘88’. Each latent coordinate represents
a student.

Another feature of this method is that we can visually identify students who per-

form very well on one type of exam but less well on the other. For example we see

that student 81 does very much better on the closed book examsthan she does on the

open book exams while the opposite is true of students 66 and 76. In this case, we can

easily corroborate this fact from the original data sets butthis is a useful feature for

exploratory data investigation of much higher dimensionaldata sets.

3.6.4 Image data

We demonstrate the performance of the GPLVM-CCA model on a set of image pairs

which share the same underlying degrees of freedom. We use the Frey face dataset

(which can be found athttp://www.cs.toronto.edu/ ˜ roweis ) which con-

sists of consecutive frames from a digital movie. The data set contains 1965 grayscale

images of a single person’s face at a resolution of20× 28. We split each image verti-

cally in half to gain two sets of images, whereY1 is the set of left half images, andY2

is the set of right half images. The sets of images share a complex relationship due to
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x
1

x 2

Figure 3.9: The joint structure of the pairs of face images visualised in a 2D latent
space. The latent coordinate setX is shown with some of the corresponding image
pairs.

the interaction between the left and right halves of the faceto create different poses and

expressions. We train the GPLVM-CCA model on a training set of 600 image pairs,

using polynomial covariance functions and a 2 dimensional latent space. Due to the

large size of the data set, we use a sparse approximation to the model by using the in-

formative vector machine (IVM) (Lawrenceet al., 2003), which represents the model

by a smaller subset of input points that contain the most information about the relation-

ship between the two data sets. For more information about using the IVM with the

GPLVM see (Lawrence, 2004, 2005). Figure 3.9 shows the shared latent coordinate set

X underlying both data sets, shown with some corresponding image pairs, after train-

ing the model. As can be seen from the plot, the positions of the latent coordinates are

determined by the pose and facial expressions. After modelling the shared underlying

structure to the two sets of image pairs, we can use the trained model to make predic-
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Figure 3.10: Predicted image halves given the other halves.Top row: The mean of the
predictive distribution over the left half of the image given the right half. Middle row:
The mean of the predictive distribution over the right half of the image given the left
half. Bottom row: the true set of test images

tions about one set of images given the other. We show predictions of unknown image

halves for 10 test image pairs in Figure 3.10. The first two rows show the mean of the

predictive distribution over the unknown half of the 10 testimages after presenting only

the other image half to the model (top row: left given right, middle row: right given

left). The bottom row shows the true images. As can be seen from the figure, the model

is able to infer the missing image halves.

3.6.5 Image data with missing values

Since the model defines a probability density over the two sets of data variables, it is

possible to handle missing values in a principled way. In this section, we show how

the trained model of the previous section can be used to predict unknown image halves

when presented with the other image halves that have data values missing at random. If

we define an incomplete data point (for the first data set) asy1 = {yO
1 ,yM

1 }, whereyO
1

denotes the observed data dimensions andyM
1 denotes the missing data dimensions,

then the likelihood for the observed data dimensionsyO
1 given the training data and

corresponding latent coordinatesD = {Y1,Y2,X}:

p(yO
1 | D,x) =

∫

p(yO
1 ,yM

1 | D,x)dyM
1 (3.71)
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wherex is the corresponding latent coordinate foryO
1 . We make the approximation that

p(yO
1 ,yM

1 | D,x) = p(yO
1 , | D,x)p(yM

1 | D,x) (3.72)

= N (yO
1 |µ

O
1 (x), σ2

1(x)ΨO
1 )N (yM

1 |µ
M
1 (x), σ2

1(x)ΨM
1 )(3.73)

where

µO
1 (x) = [k(x)⊤K−1YO

1 ]⊤ (3.74)

µM
1 (x) = [k(x)⊤K−1YM

1 ]⊤ (3.75)

σ2
1(x) = k − k(x)⊤K−1k(x) (3.76)

andK = C(X,X) + β−1I, k(x) = [C(x,x1), ..., C(x,xN)]⊤, k = C(x,x). ΨO
1 and

ΨM
1 are the blocks ofΨ1 corresponding to the observed and missing data dimensions.

This ignores the correlations between the missing and data dimensions such that we

can ignore the missing dimensions and findx to maximise

p(yO
1 | D,x) = N (yO

1 |µ
O
1 (x), σ2

1(x)ΨO
1 ) (3.77)

We can then usex to find the distribution overy2.

For this experiment, we use a test set of 100 image pairs. We remove pixel values

at random from the set of left image halves, and then find the corresponding latent

coordinate set, and then use this to calculate the distribution over the right image halves.

We use the mean of the distribution as the predicted right half of the image; in Table

3.1 we show the root mean squared reconstruction error evaluated over the training set,

for different percentages of missing data, averaged over 20runs of each experiment.

Figure 3.11 shows the predicted right image halves next to the corresponding left image

halves which were presented to the algorithm (Figures 3.11ato (f)) for 10 test image

pairs, when different percentages of the left image pixels were removed at random.

The true images are shown in (g). As can be seen from the figure,the algorithm can
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% missing pixels Average r.m.s error
in left image per pixel in right image

0 0.1299
10 0.1325
20 0.1336
30 0.1354
40 0.1372
50 0.1404
60 0.1423

Table 3.1: Pixel prediction error in the right image given the left image which has
pixels missing at random. Each pixel ranges from 0 to 1.

find the corresponding right image when presented with an incomplete left image when

the proportion of missing pixels is small (Figure 3.11a). Asthe percentage of missing

pixels is increased, the model’s predictive ability becomes worse (as seen in Table 3.1)

which is expected. However, the test images show that the model is still able to roughly

predict the underlying pose in the right image, even when up to 60% of the left image’s

pixels are missing at random. This is due to the learned shared embedding of the

training set, as shown in Figure 3.9, in which the underlyingfacial pose of the image

sets determines the latent coordinates’ positions.

3.7 Conclusion

In this chapter, we presented a generative probabilistic framework for representing the

shared structure between two related sets of data variables. Each data set is modelled as

being conditionally independent of a shared set of latent variables such that the latent

variable represents the features that are common to both sets of data. We also derived

that the noise model for each data set has to be of sufficient flexibility to capture the

within-set variation i.e. we require the noise model for thefirst data sety1 to capture

the conditional entropyH(y1 | y2) and the noise model for the second data sety2 to

captureH(y2 | y1). This constrains the model such that the functions underlying the

data are forced to model the mutual information between the data sets.

We then showed that the within-set variation could be modelled by using linear

transformationsΨ1 andΨ2 of each data set, and showed that the generative dependency
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seeking model, probabilistic canonical correlation analysis (Bach & Jordan, 2005),

could be interpreted within this framework. This linear model was then extended, in

the spirit of the Gaussian process latent variable model (GPLVM) (Lawrence, 2004),

to create a model where the shared feature space was nonlinearly related to the data

spaces. Rather than having a parameterised mapping from latent to data space, Gaus-

sian process priors were placed over the latent functions that relate the latent and data

spaces. We denoted this model as GPLVM-CCA.

This model relaxes the assumption that the data dimensions within each set are

independently distributed; by learning a linear transformation of underlying Gaussian

processes to model each data set, the model captures the within-set variation through

Ψ1 andΨ2. This formulation can be interpreted as inducing cross covariance functions

between the data dimensions within each data set (via the linear transformationsΨ1

andΨ2) to model the private variation, such that the latent variable set is forced to

model the shared relationship between the two data sets.

We then demonstrated the performance of the GPLVM-CCA modelon some data

sets. When using a pair of data sets that have a linear relationship, the model found

sets of maximally correlated latent features for each data set. This similarity to canon-

ical correlation analysis is due to the model’s derivation from probabilistic CCA. We

demonstrated the model on an example where the two data sets are nonlinearly related

to a shared 1 dimensional latent space, showing that the latent space can be recovered

and used to predict values of one data set given the other. Finally, we tested GPLVM-

CCA’s performance on a more challenging data set. We used a a set of image pairs that

share the same underlying degrees of freedom. We used the Frey face dataset which

consists of consecutive frames from a digital movie and split each image vertically

in half to gain two sets of images. The sets of images share a complex relationship

due to the interaction between the left and right halves of the face to create different

poses and expressions. The GPLVM-CCA found a shared latent embedding for the two

data sets that reflected the varying pose of the face throughout the data set. We then

demonstrated the quality of the embedding by showing that using the trained model,
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one image half could be predicted when the algorithm was presented with the other

image half. We also presented a mechanism for inferring the latent coordinate for an

image half that contains pixels missing at random. We showedthat this approximation

was good enough to predict the corresponding image half withreasonable accuracy for

up to 60% of missing pixels.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3.11: The predicted mean of the right half of the imagegiven the left half of
the image for 10 sets of test image pairs. The left image halves have pixels removed at
random (shown in green). The % of missing left image pixels for the experiments are
10% (a), 20% (b), 30% (c), 40% (d), 50% (e), and 60% (f). The true right halves are
shown in (g) along with the complete left halves.
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Chapter 4

Generative models for finding shared

and private structure

4.1 Introduction

In this thesis, we are interested in representing the relationship between two related

data sources probabilistically. Our approach is to represent each data source as the sum

of two independent components, a shared component with the other data source that

captures the common information, and a private component which captures the infor-

mation private to the data source. The interaction between the different components are

then modelled probabilistically in terms of a generative model of the two data sources.

The structure of the model reflect our assumptions about which aspects of the data are

useful; in the previous chapter, we placed importance on modelling the shared features

of the two data sets. After modelling the common process underlying the two data sets,

the joint relationship can be compactly represented in terms of a joint latent space. This

approach places less importance on modelling the components that areprivateto each

data set and represents them as a noise term using a simple model.

However, there may be situations in which the shared information is not the only

useful information, and interesting aspects of the data arenot common to both data sets.

Some useful features within one data set may not be present inthe other and vice versa;

this complementary property motivates the use of multiple data sources over single data
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sources which capture only one type of useful information. For instance, having two

eyes (and two streams of visual data) allows us to gain a 3-D impression of the world.

This ability of stereo vision combines both shared featuresand features private to each

data stream to form a coherent representation of the world; common shifted features

can be used in disparity estimation to infer depths of objects, while some features which

may be seen in one view but not in the other, due to occlusions,can provide additional

information about the scene.

If we wish to represent the private processes underlying each data set, this neces-

sitates the use of more complex models to capture their structure. The GPLVM-CCA

model that we described in Chapter 3 represents the private information for each data

set with multivariate Gaussians. However, these models maynot be sufficient for find-

ing interesting features that are only present in one data set and not the other, and vice

versa. In this chapter, we extend the GPLVM-CCA model and derive more complex

models for the private processes. A Gaussian process latentvariable model (GPLVM)

prior is placed over each set of private processes, creatinga flexible prior over the (op-

tionally nonlinear) private processes. Each set of privateprocesses is indexed by a latent

space which is private to the data set, such that each ‘private’ set of latent coordinates

captures the private information within its correspondingdata stream.

In Section 4.2 we derive a new noise model for the GPLVM-CCA model of the

previous section that is able to capture complex structure in the within-set variation.

In Section 4.3 we describe how to train the model and how to infer the dimensionali-

ties of the latent spaces, using an automatic relevance determination (ARD) procedure.

In Section 4.4 we use the algorithm to perform a part-based decomposition of a syn-

thetic image data set. The algorithm is able to represent theimage data set in terms

of a smaller basis of prototype images, where the basis consists of shared and private

features.
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4.2 Modelling a complex noise process

The GPLVM-CCA model discussed in the previous sections focuses on modelling

shared information between two data sets through a shared latent space. The varia-

tion within each data set is accounted for by the mixing matricesΨ
1

2

1 andΨ
1

2

2 , such that

the private processesn1 andn2 are modelled as multivariate Gaussian:

n1 ∼ N (n1 | 0,Ψ1) (4.1)

n2 ∼ N (n2 | 0,Ψ2) (4.2)

One of the problems with these noise models is that when the dimensionsm1 and

m2 of the data sets become large, it is computationally expensive to estimateΨ1 ∈

ℜm1×m1 andΨ2 ∈ ℜm2×m2 . A possible solution to this is to consider a reduced rank

representation ofΨ1 andΨ2, but this may fail to capture all of the within-set variation.

A more important problem with the noise model is that it may not be sufficient for

capturing complex within-set variation, since it models the private processes as noise

and neglects any underlying structure.

We now review the noise model of the GPLVM-CCA model of the previous chap-

ter, and show how it can be extended to model private processes that have underlying

structure. In the GPLVM-CCA model, each dimension of the noise processesn1 andn2

can be viewed as a linear function of underlying latent variablesx1 ∈ ℜq1 andx2 ∈ ℜq2

respectively such that the data is generated according to:

y1 = f1(x) + n1 = f1(x) + Ψ
1

2

1 x1 (4.3)

y1 = f2(x) + n2 = f2(x) + Ψ
1

2

2 x2 (4.4)

where bothx1 ∈ ℜq1 andx2 ∈ ℜq2 are uncorrelated withx ∈ ℜq, q1 = m1, q2 = m2,
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Figure 4.1: The corresponding graphical model for the unsupervised learning of two
related data variablesy1 andy2. Each data variable consists of two independent com-
ponents, the shared functionf , and the private functionn.
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Rather than restricting the noise model to linear mappings of x1 andx2, we can con-

sider any nonlinear function, by considering noise processes of the form:

p(N1 | X1) =

m1
∏

i=1

N (N1(:, i) | 0,Kn1
) (4.6)

p(N2 | X2) =

m2
∏

i=1

N (N2(:, i) | 0,Kn2
) (4.7)

wherem1 andm2 are the dimensionalities ofy1 andy2 respectively, and we have placed

Gaussian process priors on theith columns of the noiseN1 = [n1,1, ...,n1,N ]⊤ and

N2 = [n2,1, ...,n2,N ]⊤ evaluated atX1 = [x1,1, ...,x1,N ]⊤ andX2 = [x2,1, ...,x2,N ]⊤

respectively.Kn1
andKn2

are the covariance functions with respective inputsX1 and

X2. This noise model captures the within-set variation with the columns ofX1 andX2,

rather than withΨ, as in the original GPLVM-CCA model.

We also place Gaussian process priors on the shared functionsF1 = [f1,1, ..., f1,N ]⊤
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andF2 = [f2,1, ..., f2,N ]⊤, as before:

p(F1 | X) =

m1
∏

i=1

N (F1(:, i) | 0,Kf1
) (4.8)

p(F2 | X) =

m2
∏

i=1

N (F2(:, i) | 0,Kf2
) (4.9)

whereKf1
andKf2

are covariance functions whose input is the shared latent variable

setX. The resulting model is as follows, after integrating over theF’s andN’s:

p(Y1 | X,X1) =
1

(2π)
m1N

2 |K1|
m1

2

exp

(

−
1

2
tr(K−1

1 Y1Y
⊤
1 )

)

(4.10)

p(Y2 | X,X2) =
1

(2π)
m2N

2 |K2|
m2

2

exp

(

−
1

2
tr(K−1

2 Y2Y
⊤
2 )

)

(4.11)

whereK1 = Kf1
+ Kn1

, andK2 = Kf2
+ Kn2

. Each data stream is modelled as

a GPLVM, whose covariance function consists of a shared component (dependent on

X) and a private component (dependent on eitherX1 or X2). This is similar to the

GPLVM-CCA model introduced in Chapter 3, except that the private information to

each data set is now captured as a function of a private latentvariable. The dimensions

within each data set are modelled as independently and identically distributed, and

X1 andX2 capture the correlations withinY1 andY2 respectively.X captures the

correlations betweenY1 andY2. The graphical representation of the model is shown

in Figure 4.1.

4.2.1 Relationship to other models

The model is related to probabilistic canonical correlation analysis (PCCA) (Bach &

Jordan, 2005), which can be shown by deriving the model from aGPLVM approach to

PCCA. Under the PCCA model, each pair of data pointsy = [y⊤
1 ,y⊤

2 ]⊤ is generated

according to:







y1

y2






=







W1

W2






x +







n1

n2






(4.12)
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where we have assumed zero mean data. Each set of data variables is linearly related

to a shared underlying latent variablex ∈ ℜq, by the matricesW1 ∈ ℜm1×q,W2 ∈

ℜm2×q. The noise variablesn1 ∈ ℜm1 andn2 ∈ ℜm2 can be interpreted as linearly

related to a set of underlying latent variablesx1 ∈ ℜ
m1 andx2 ∈ ℜ

m2 respectively by

matricesΨ
1

2

1 ∈ ℜ
m1×m1 andΨ

1

2

2 ∈ ℜ
m2×m2 .






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
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
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
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2

1 0

0 Ψ
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2






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
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where
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We can then write that the complete set ofN data pointsY1 = [y1,1, ...,y1,N ]⊤ and

Y2 = [y2,1, ...,y2,N ]⊤ are generated according to:

Y1 = XW⊤
1 + X1Ψ

1

2

1 (4.15)

Y2 = XW⊤
2 + X2Ψ

1

2

2 (4.16)

To derive the model from the PCCA model, we place conjugate Gaussian priors on the

rows ofW1, W2, Ψ
1

2

1 , andΨ
1

2

2 :

p(W1) =

m1
∏

i=1

N (w1,i | 0, Iq) (4.17)

p(W2) =

m2
∏

i=1

N (w2,i | 0, Iq) (4.18)

p(Ψ
1

2

1 ) =

m1
∏

i=1

N (Ψ
1

2

1,i | 0, Im1
) (4.19)

p(Ψ
1

2

2 ) =

m2
∏

i=1

N (Ψ
1

2

2,i | 0, Im2
) (4.20)
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wherew1,i, w2,i, Ψ
1

2

1,i andΨ
1

2

2,i are theith rows ofW1, W2, Ψ
1

2

1 , andΨ
1

2

2 respectively.

Integrating overW1, W2, Ψ
1

2

1 , andΨ
1

2

2 , we obtain the model:

p(Y1 | X,X1) =

∫ ∫

p(Y1 | X,X1,W1,Ψ
1

2

1 )p(W1)p(Ψ
1

2

1 )dW1dΨ
1

2

1

=
1

(2π)
m1N

2 |K1|
m1

2

exp

(

−
1

2
tr(K−1

1 Y1Y
⊤
1 )

)

(4.21)

p(Y2 | X,X2) =

∫ ∫

p(Y2 | X,X2,W2,Ψ
1

2

2 )p(W2)p(Ψ
1

2

2 )dW2dΨ
1

2

2

=
1

(2π)
m2N

2 |K2|
m2

2

exp

(

−
1

2
tr(K−1

2 Y2Y
⊤
2 )

)

(4.22)

whereK1 = XX⊤ + X1X
⊤
1 , andK2 = XX⊤ + X2X

⊤
2 . The covariance functions are

linear functions ofX, X1, andX2, but we can consider any valid (nonlinear) kernel of

the inputs, which imply nonlinear mappings ofX, X1, andX2 to their respective data

spaces. Using a nonparametric Bayesian prior over the private functions underlying

each data space is an elegant and flexible prior over underlying private structure of

the data sets. Since the resulting model can be derived from probabilistic CCA, it can

be viewed as a probabilistic interpretation of nonlinear canonical correlation analysis,

where the underlying structure to the within-set variationis modelled explicitly.

Another model which explicitly models the within-set variation is the dependent

Gaussian process model (Boyle & Frean, 2005a) which models multiple dependent out-

puts using Gaussian process regression. This model assumesthe existence of multiple

shared and private latent processes which are combined to form the outputs. The pa-

rameterisation of the covariance functions differs from our model; convolution kernels

rather than covariance functions are used for the GP’s.

4.3 A GPLVM-CCA model with complex noise process

4.3.1 Training the model

Learning the model, given two sets of related dataY1 andY2, consists of finding the

latent coordinatesX,X1, andX and the hyperparametersΘKni
, ΘKfi

, i = 1, 2, of the

two covariance functionsK1 andK2 to maximise the log likelihood function. The log
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likelihood is given by:

LY|X,X1,X2
= LY1|X,X1

+ LY2|X,X2
(4.23)

sinceY1 andY2 are conditionally independent givenX, where the likelihood functions

for Y1 andY2 are given by:

LY1|X,X1
= ln p(Y1 | X,X1)

= −
m1N

2
ln(2π)−

m1

2
ln|K1| −

1

2
tr(K−1

1 Y1Y
⊤
1 )

LY2|X,X2
= ln p(Y2 | X,X2)

= −
m2N

2
ln(2π)−

m2

2
ln|K2| −

1

2
tr(K−1

2 Y2Y
⊤
2 )

(4.24)

whereK1 = Kf1 + Kn1
, andK2 = Kf2 + Kn2

, the sum of a shared and private

kernel. The optimisation is similar to before; we use scaledconjugate gradients and the

GPLVM toolbox. The optimisation takes place in two steps; first we jointly optimise

X and the parameters of the shared kernelsΘKfi
, i = 1, 2, then we jointly optimiseX1,

X2 and the private kernel parametersΘKni
, i = 1, 2.

4.3.1.1 Optimisation of the latent pointsX,X1, andX2

The gradients ofLY|X,X1,X2
with respect toKi is given by:

∂LYi|X,Xi

∂Ki

= −
mi

2
K−1

i +
1

2
K−1

i YiY
⊤
i K−1

i (4.25)

The gradients ofLY|X,X1,X2
with respect toX can be obtained by combining (4.25)

with
∂Kfi

∂X
, i = 1, 2 using the chain rule, where

∂Kfi

∂X
depends on the form of the co-

variance functionKfi
. Similarly, the gradients ofLY|X,X1,X2

with respect toXi can be

obtained by combining (4.25) with∂Kni

∂Xi
. As before, we seek MAP estimates for the

latent coordinates by first specifying priors overX,X1, andX2.
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4.3.1.2 Optimisation ofΘKfi
,ΘKni

, i = 1, 2

The gradients ofLY|X,X1,X2
with respect toΘKni

can be obtained by combining (4.25)

with ∂Kni

∂ΘKni

, i = 1, 2 using the chain rule. Similarly, the gradients ofLY|X,X1,X2
with

respect toΘKfi
can be obtained by combining (4.25) with

∂Kfi

∂ΘKfi

, i = 1, 2. As before,

we constrain the parameters to be positive, and seek MAP solutions.

4.3.2 Initialisation of the latent spaces

One important problem in the implementation of the originalGPLVM-CCA model is

the initialisation of the latent spaceX, since the algorithm may become trapped in a

local minimum and fail to recover the true embedded space. When extending GPLVM-

CCA to explicitly model the structure of the private processes through latent spacesX1

andX2, as we describe in this chapter, the initialisation problembecomes more difficult

since the degrees of freedom of the optimisation problem is increased, due to the con-

sideration of an additional two latent spaces. Since the variation in each data set dimen-

sion is effectively shared between the shared latent setX and the private latent setX1

orX2, due toK1 = Kf1(X,X)+Kn1
(X1,X1), andK2 = Kf2(X,X)+Kn2

(X2,X2),

the model is very sensitive to its initialisation. In our experiments we use CCA to ini-

tialise the positions ofX, sinceX represents the shared features betweenY1 andY2.

To initialise the private latent spaces, we calculate the off-subspace variances forY1

andY2, Ψ1 andΨ2 respectively, which are the noise covariance matrices of the proba-

bilistic CCA method which we reviewed in Section 2.5.4. We then findX1 andX2 by

projecting the corresponding data set onto the firstq1 andq2 dominant eigenvectors of

Ψ1 andΨ2 respectively.

4.3.3 Inferring the dimensionality of the latent spaces

A problem of dimensionality reduction methods is choosing the dimensionality of the

latent spaceq. A too low value ofq can result in the model discarding some of the

important information in the data as noise, and a too highq value allows the model

to fit to spurious correlations in the data. In our model, we have three different latent

spacesX, X1 andX2, which capture different parts of the data - the private information
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in each data set and the shared information between the data sets. The dimensionalities

of the latent spacesq < min(m1, m2), q1 < m1, andq2 < m2, enable the model to find

a compact representation of the relationship betweenY1 andY2, and the underlying

structure to their within-set variation. Determining the dimensionality of the latent

spaces is therefore important since this will affect how theinformation in the data sets

is shared betweenX, X1 andX2.

A solution to this problem is to use automatic relevance determination (ARD)

methods, as suggested in (MacKay, 1995; Neal, 1998) from theneural networks lit-

erature, which advocates the use of continuous hyperparameters to avoid the problem

of a discrete model search to find the best setting of latent dimensionality. To imple-

ment ARD in the model, the dimensionality of the latent spaces is set to a maximum

valueqmax. Hyperparameters are added to the covariance functions that weight each

input dimension, and a hyperprior is placed on the weights todiscourage large values.

Irrelevant input dimensions can then be effectively removed during the training of the

model i.e. the weight of the irrelevant input goes to zero, allowing the data to be best

explained with as few latent dimensions as necessary. In ourexperiments we use an

ARD polynomial covariance function for each latent processwhich is given by:

k(xi,xj) = α
(

x⊤
i Axj + γ

)d
+ β−1δi,j (4.26)

with hyperparametersΘKpoly
= {α, β, γ, d,A}, and A = diag(a)2, where a =

[a1, ...aqmax
]⊤ is a vector of positive values. Each elementai is the inverse of the squared

correlation length scale of the process in theith dimension. Sincea controls the scale

of each input dimension, a small scale will cause the covariance function to become

almost independent of that input, deeming it ‘irrelevant’ to the model. We also place a

zero mean Gaussian hyperprior ona such that small scales are favoured.
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Figure 4.2: Examples of the training images. The top three rows are from the first data
set (the first 24 columns ofY1), and the bottom three rows are from the second data set
(the first 24 columns ofY2). Each image consists of a horizontal bar chosen at random
from the 8 possibilities, which corresponds to the process shared by both sets. The first
data set contains a vertical bar chosen at random from the left half of the image, and
the second data set contains a vertical bar chosen from the right half of the image.

4.4 Experiments

In this section we demonstrate the model’s performance on two data sets of images.

We separate the images into a set of latent images. The latentimages form a basis

of prototype images, consisting of three sets of images, a set of images that represent

the features common to both sets of data, and two sets of images that represent the

features that are only present in their corresponding data set. In our experiments, we

use a variation of the bars problem, which is a test problem defined in (Földiák, 1990).

4.4.1 Bars data

The bars problem e.g. (Földiák, 1990; Dayan & Zemel, 1995;Freyet al., 1997; Charles

& Fyfe, 1998), is a benchmark task for learning independent components from an im-

age. While the original problem consists of decomposing a set of images into a set

of underlying features (vertical and horizontal bars), in this experiment we consider

a modified version of the problem that illustrates our algorithm’s ability to find both
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shared and private features for two image sets. We create twosets of 8× 8 images;

24 examples from each set are shown in Figure 4.2. Each image is generated by first

instantiating one of the 8 possible horizontal bars, chosenwith equal probability. For

the first set of images (top three rows of Figure 4.2), one of the 4 possible vertical bars

in the left half of the image is instantiated with equal probability, and similarly, for the

second set of images, (bottom three rows of Figure 4.2) one ofthe 4 possible vertical

bars in the right half of the image is instantiated with equalprobability. Producing the

two image sets involves a shared process in the generation ofthe horizontal bars, and

private processes in generating the vertical bars.

Our aim is to recover the set of eight shared features - the horizontal bars - and the

two sets of four private features - the vertical bars. One of the difficulties with the bars

data is that each image is nonlinearly related to the underlying features (the bars), since

the superposition of the features to form the image results in occlusion, or overlap, of

the features. Each image can be thought of as a linear combination of horizontal and

vertical bars which is then passed through a nonlinearity which models the overlap i.e.

for theith image of both data sets:

Y1(:, i) = Gf1
(XWf1

) + Gn1
(X1Wn1

) (4.27)

Y2(:, i) = Gf2
(XWf2

) + Gn2
(X2Wn2

) (4.28)

whereGf1
, Gf2

, Gn1
andGn2

are nonlinear output functions,Wf1
∈ ℜq×m1 , Wf2

∈

ℜq×m2 , Wn1
∈ ℜq1×m1 andWn2

∈ ℜq2×m2 are mixing matrices. For our experiment,

we use polynomial covariance functions of degree 2 for each process to reflect our

knowledge about the data generation process; the polynomial covariance function is

given by:

k(xi,xj) = α
(

wx⊤
i xj + γ

)2
+ β−1δi,j (4.29)

with hyperparametersΘKpoly
= {α, β, γ, w}, whereα is a scale parameter,β is the
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inverse noise variance,w controls the scale of the dot product component, andγ is a

bias parameter. Polynomial kernels have proved effective for high dimensional classi-

fication problems when the input data set are binary or grayscale images i.e.(Schölkopf

& Smola, 2002).

We use an 8-dimensional shared latent spaceX, and a 4-dimensional private latent

spacesX1 andX2 (where the columns are the underlying images). We use a training

data set of 200 pairs of images (some examples are given in Figure 4.2) such that the

200 columns ofY1 ∈ ℜ64×200 andY2 ∈ ℜ64×200 are8×8 images that contain a vertical

bar in the left and right half of the image respectively, and ahorizontal bar. We also

constrain the latent points’ values to lie between 0 and 1, such that they correspond to

underlying image pixels. Each latent pointx is reparameterised asx′, using a sigmoid

transformx = log(x′/(1−x′)), such that the optimisation takes place in a transformed

space. Figure 4.3 shows the discovered latent images ( the columns ofX, X1, and

X2), after training the model on the 200 pairs of training images. As can be seen, the

model manages to decompose the training images into the setsof underlying shared

and private features.

4.4.1.1 Reconstruction of the images

In this section, we show how the shared and private latent images which we found

in the previous section can be used to reconstruct the original images. This involves

finding the posterior distributions of the underlying private and shared functions given

the dataY1 andY2, and the latent featuresX, X1 andX2. This investigates how well

the algorithm is able to model the overlap between features.The posterior distribution

over theith column of the first set’s shared underlying function (underlying the ith

image of the first data set)F1(:, i)
∗, evaluated atX∗ givenD = {Y1(:, i),X,X1} is
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Figure 4.3: The recovered latent images. The first two rows correspond to the 8
columns ofX, and are the shared features i.e. the horizontal bars. The third row
corresponds to the 4 columns ofX1, the vertical bars in the left half of the image, and
the fourth row corresponds to the 4 columns ofX2, the vertical bars in the right half of
the image.

given by:

p(F1(:, i)
∗ | X∗,D) = N (F1(:, i)

∗ | µF1
(X∗), σ2

F1
(X∗)) (4.30)

where

µF1
(X∗) = (kf1

(X∗))K−1
1 Y1(:, i) (4.31)

σ2
F1

(X∗) = kf1
− (kf1

(X∗))K−1
1 (kf1

(X∗))⊤ (4.32)

andkf1
(X∗) = Cf1

(X∗,X), whereCf1
denotes the first set’s ‘shared’ kernel without

the white noise variance,K1 is as before, andkf1
= diag(Cf1

(X∗,X∗)).

The posterior distribution over theith column of the first set’s private underlying
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Figure 4.4: 24 reconstructed images from the first data setY1 (top three rows) and the
second data setY2 (bottom three rows)

functionN1(:, i)
∗, evaluated atX∗

1 givenD = {Y1(:, i),X,X1} is given by:

p(N1(:, i)
∗ | X∗

1,D) = N (N1(:, i)
∗ | µN1

(X∗
1), σ

2
N1

(X∗
1)) (4.33)

where

µN1
(X∗

1) = (kn1
(X∗

1))K
−1
1 Y1(:, i) (4.34)

σ2
N1

(X∗) = kn1
− (kn1

(X∗
1))K

−1
1 (kn1

(X∗
1))

⊤ (4.35)

andkn1
(X∗

1) = Cn1
(X∗

1,X1), whereCn1
denotes the first set’s ‘private’ kernel without

the white noise variance, andkn1
= diag(Cn1

(X∗
1,X

∗
1)). We can similarly find the

posterior distributions over the shared and private functions for the second data set. We

evaluate the posterior means forF∗
1 andF∗

2 evaluated atX, andN∗
1 andN∗

2 evaluated

at X1 and X2 respectively. Figure 4.4 shows the first 24 reconstructed images for

each data set, given by the posterior means forY∗
1 = F∗

1 + N∗
1 andY∗

2 = F∗
2 + N∗

2
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(a)

(b)

Figure 4.5: The posterior mean of the underlying shared functions is shown in (a)
for the first 24 images ofY1 (top three rows) andY2 (bottom three rows). (b) shows
the posterior mean of the underlying private functions forY1 (top three rows) andY2

(bottom three rows)
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Figure 4.6: The latent images and associated scales after training the model using an
ARD polynomial kernel. From top to bottom, the first three rows show the sets of latent
images found for the shared space, the private space underlyingY1, and underlyingY2.
The next three rows show the scales of each latent image for the shared space, and the
first and second private spaces.

The top three rows are reconstructions for the first set, and the bottom three rows are

reconstructions for the second set. The reconstructed images are a good approximation

to the original images shown in Figure 4.2. The reconstructions for the second set

model the overlap between bars more accurately than for the first set. Figure 4.5 shows

the shared and private components of each image. (a) shows the posterior mean of

the shared functionsF∗
1 (top three rows) andF∗

2 (bottom three rows), and (b) shows the

posterior mean of the private functionsN∗
1 (top three rows) andN∗

2 (bottom three rows).

An interesting observation is that in some of the images, a pixel is missing from one of

the bars. This is due to the latent images being put through the nonlinear map implied

by the polynomial covariance function. This aids in the successful reconstructions of

the original image; the overlap between bars is taken into account by removing a pixel

at the point in the image where the bars intersect.
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4.4.2 Automatically finding the latent dimensionality of the shared

space

In the previous set of experiments, we set the dimensionalities of the latent spaces -

for the shared spaceq = 8, and the private spacesq1 = q2 = 4, to reflect our prior

knowledge about the problem. We show how the dimensionalityof the latent spaces

can be automatically determined by using ARD polynomial kernels for the shared and

private processes. This automatically finds the scaleai of each input latent dimension

to the kernel, such that irrelevant dimensions can be discarded (ai = 0). We found

that this procedure was very sensitive to the initialisation of the model because this

increases the degrees of freedom of the model to the extent that the model always got

stuck in a local optimum of the log likelihood function. However, we found that if we

set the private spaces to the correct dimensionalityq1 = q2 = 4, the model was able

to correctly infer the dimensionality of the shared latent space. Figure 4.6 shows the

latent images and their associated scales after settingq = 12, q1 = q2 = 4. As can be

seen, the model correctly detects that the shared space has an intrinsic dimensionality

of q = 8, by pruning out 4 unnecessary inputs.

4.5 Conclusion

In this chapter, we have presented a probabilistic generative framework for analysing

two sets of data, where the structure of each data set is represented in terms of a

shared component and a private component. In the previous chapter, we presented

the GPLVM-CCA model which modelled the private (or noise) processes underlying

each data set as a multivariate Gaussian. We extended this model to allow for a com-

plex noise process that reflects the underlying structure tothe within-set variation. We

explicitly modelled this structure as private latent spaces for each data set, and placed

Gaussian process priors over the private functions in data space. The resulting model

can be interpreted as two GPLVM’s, where the covariance function of each GPLVM

is dependent on a shared latent space, which captures the common information, and a

private latent space, which captures the private information.
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We then demonstrated that the model was able to extract shared and independent

components from two sets of images, which would not be possible using the GPLVM-

CCA model of the previous chapter. While including a complexnoise model is ben-

eficial since it avoids an oversimplified representation of the within-set variation, the

difficulty of the optimisation problem is increased becausewe have to optimise three

latent spaces. We found that the model often became trapped in local minima during

the optimisation and it was necessary to find a good initialisation of the model. We also

showed that the model was able to infer the dimensionality ofthe shared latent space

when using automatic relevance determination (ARD) kernels for the GP’s.
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Chapter 5

Mixture models for finding shared

structure

5.1 Introduction

In this chapter, we present a model for finding a joint probabilistic representation of two

data sources, which builds on work in (Fyfe & Leen, 2006). In general, existing meth-

ods for finding shared structure are discriminative methods, which find a set of features

for each set that optimise a similarity measure between the features e.g. (Hotelling,

1936; Borga, 1998; Lai & Fyfe, 2000). Using these methods canbe problematic; a

probability density is not defined over the two sets of data variables, and therefore we

cannot evaluate quantities such as the predictive density over one data set given the

other. Additionally, these methods do not model the underlying data generating pro-

cess. Though this may be efficient in that the modelling poweris focused on optimising

the quantity of interest - the similarity of the extracted features - it is difficult to incor-

porate prior knowledge about the feature space. With this lack of knowledge about the

problem, care has to be taken in designing appropriate nonlinear mappings for find-

ing nonlinearly related pairs of features using discriminative techniques. An inflexible

mapping may not recover the true underlying shared structure between the data sets,

and an overly flexible mapping may find spurious correlationsbetween the data sets.

This problem of inferring the appropriate complexity of themodel can be ad-
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dressed using nonparametric Bayesian methods. The complexity of the model is al-

lowed to grow with the number of data points such that the necessary complexity is

inferred from the data. This involves placing a prior over a family of probability dis-

tributions over the data generating process to allow a flexible prior on the underlying

data distribution. One such prior from the nonparametric statistics field is the Dirich-

let process (DP) (Ferguson, 1973), which is a distribution over distributions. In this

chapter, we assume that each data set lies close to a nonlinear manifold in data space,

each indexed by a shared set of latent coordinates, which reflects the shared structure

underlying the data sets. We extend the probabilistic formulation of canonical corre-

lation analysis (PCCA) (Bach & Jordan, 2005), which we reviewed in Section 2.5.4

to a mixture of PCCA in the spirit of the mixture of probabilistic principal component

analyzers (Tipping & Bishop, 1997) to find a low dimensional representation of two

related data sources. The resulting model approximates thepair of nonlinear manifolds

by pairs of local linear submodels. We use the DP as a nonparametric prior for the

parameters of the mixture model, allowing the number of mixture components to grow

with the number of data points, such that the flexibility of the manifolds is inferred

from the data automatically. We call this model a Dirichlet process mixture model of

probabilistic canonical correlation analysers.

In Section 5.2 we review mixture models, and derive a mixtureof probabilistic

canonical correlation analysers (PCCA). We show that it is not possible to infer an ap-

propriate number of mixture components when using maximum likelihood methods.

In Section 5.3 we review a Bayesian approach to the problem, and show how a finite

mixture model can be generalised to an infinite mixture modelby placing a nonpara-

metric Dirichlet process on the model parameters. In Section 5.4 we present a Dirichlet

process mixture model of PCCA, and evaluate the model’s performance on a toy data

set.
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5.2 Mixtures of latent variable models

Since canonical correlation analysis (CCA) defines linear subspaces for each data

space, this is insufficient for modelling the relationship between two data sets where

the underlying shared structure is nonlinear. However, it may be reasonable to assume

that local regions of the data spaces can be modelled by linear approximations, where

the accuracy of the approximation depends on factors such asthe locations of the local

regions that are chosen, their size, and the strength of the nonlinearity in the data. There

are a number of techniques proposed in the literature for modelling a single data set by

approximating a global nonlinear structure with a combination of local principal com-

ponent analysis (PCA) models. These methods are generally atwo stage procedure; the

data is first partitioned into local regions, and then the principal subspace is estimated

within each partition. The arbitrariness in this procedureis reflected in the variety

of algorithms that have been proposed i.e. (Hintonet al., 1995; Bregler & Omohun-

dro, 1995; Kambhatla & Leen, 1997), and none define a probability density. However,

the probabilistic formulation of principal component analysis proposed in (Tipping &

Bishop, 1999) can be naturally extended to a mixture of probabilistic principal compo-

nent analyzers (Tipping & Bishop, 1997) in the probabilistic framework, overcoming

thead hocnature of the previously mentioned algorithms by estimating the partitions

and principal component vectors through maximisation of a single likelihood function,

and defining a probability density for the model.

Following this idea, in this chapter we extend the probabilistic formulation of CCA

to a mixture of PCCA in the spirit of the mixture of probabilistic principal component

analyzers (Tipping & Bishop, 1997) to find a low dimensional representation of two

related data sources. This models each data set as lying close to a nonlinear manifold

in data space, each indexed by a shared set of latent coordinates. Corresponding local

regions of each manifold are modelled by a linear approximation with a probabilistic

canonical correlation analyser. Within the probabilisticframework, it is easy to extend

a latent variable model to a mixture of latent variable models. A mixture model models

the density for a data pointyn as a weighted average ofK latent variable model den-
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sities, whereK is the number of mixture components. The probability foryn is given

by:

p(yn | θ) =

K
∑

k=1

p(yn | θk, cn = k)p(cn = k | π) (5.1)

where c ∈ {1, ..., K} is a discrete variable which indicates which latent variable

model has been chosen,π = [π1, ..., πK ]⊤ is a vector of mixing proportions (such that
∑K

k=1 πk = 1). p(c | π) is a multinomial distribution overc, wherec = {c1, ..., cN} is

the set of indicators for allN data points, such thatp(cn = k | π) = πk. To simplify

notation, we will writecn = k ask from now on.p(yn | θk, k) is the probability ofyn

under thekth latent variable model, with the corresponding set of parametersθk, and

θ = {θ1, ..., θK} is the complete set of parameters.

To create a mixture of probabilistic Canonical CorrelationAnalysers, thekth latent

variable model density has the form:

p(yn | θk, k) =

∫

p(yn | xn, θk, k)p(xn | k)dxn (5.2)

= N (yn | µk,WkW
⊤
k + Ψk) (5.3)

where

p(yn | xn, θk, k) = N (yn |Wkxn + µk, Ψk) (5.4)

p(xn | k) = N (xn | 0, Iq) (5.5)

with yn defined as the concatenation of two sets of data variables i.e. yn = [y⊤
1,ny

⊤
2,n]⊤,

wherey1,n ∈ ℜ
m1 ,y2,n ∈ ℜ

m2 with m1 andm2 being the dimensions of the two data

variable sets,Wk = [W⊤
1,kW

⊤
2,k]

⊤ with W1,k ∈ ℜm1×q,W2,k ∈ ℜm2×q, µk is the

bias parameter andxn ∈ ℜq is the corresponding shared latent variable, whereq is the

dimension of the latent space. The noise covariance matrix is constrained to be of block
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Figure 5.1: The generative model for the mixture of PCCA. A submodelk (indi-
cated bycn) is chosen by drawing fromp(cn | π), andxn, the shared latent vari-
able is drawn fromp(x). Given cn, xn and the corresponding set of parameters
θ1,k = {W1,k, µ1,k,Ψ1,k} andθ2,k = {W2,k, µ2,k,Ψ2,k}, thenth pair of data variables
y1,n andy2,n are drawn fromp(y1,n | xn, θ1,k) andp(y2,n | xn, θ2,k) respectively.

diagonal form:

Ψk =







Ψ1,k 0

0 Ψ2,k






(5.6)

whereΨ1,k ∈ ℜm1×m1 ,Ψ2,k ∈ ℜm2×m2 . We have assumed that the prior on the latent

variable is the same for allK mixture components and that each Gaussian cluster has

the same intrinsic dimensionalityq, so from now on we will omit the indicator variable

when denoting the latent priors, and rewritep(xn | k) asp(xn). The generative model

for the mixtures of probabilistic canonical correlation analyzers is shown in Figure

5.1. A pair of data points is generated by first choosing a submodel k according to

p(cn = k | π), and then drawing from thekth PCCA modelp(yn | θk, cn = k).



122 Chapter 5. Mixture models for finding shared structure

5.2.1 EM algorithm for mixture of PCCA

The log likelihood function is given by:

L =
N
∑

n=1

ln p(yn | θ) (5.7)

=

N
∑

n=1

ln
K
∑

k=1

p(k | π)

∫

p(yn | xn, θk, k)p(xn)dxn (5.8)

For thekth latent variable model, the corresponding set of latent variables{xk,n} is con-

sidered to be ‘missing’ data. As well as the latent variable sets, the indicator variables

cn, which show which submodel generatedyn, are also ‘missing’. The Expectation-

Maximisation (EM) algorithm (Dempsteret al., 1977) can be used to handle such

incomplete data problems. It finds maximum likelihood estimates of the model pa-

rameters, where the Expectation (E) step involves computing a bound on the log likeli-

hood function by applying Jensen’s inequality, followed bythe Maximization (M) step,

which is the standard ML calculation that would be used for a complete data model.

The expected complete data log likelihood is given by repeatedly applying

Jensen’s inequality to (5.8). For thekth latent variable model, if{xk,n} were

known, then it would be straightforward to find ML estimates of the parameters

θk = {θ1,k, θ2,k}. However, the joint distribution of the observed and latentvariables

p(y,x) is known, and the expectation of the corresponding completedata log likelihood

can be calculated:

E(LC) =
N
∑

n=1

K
∑

k=1

p(xn, k | yn)ln p(k | π)p(yn | xn, θk, k)p(xn) (5.9)

whereE(a) denotes the expected value ofa. The quantitiesp(xn, k | yn) = p(xn |

yn, k)p(k | yn) are calculated in the E step of the EM algorithm. We note that

p(xn | yn, k) is the posterior distribution over the latent variable for the kth mix-

ture component, given thenth data pointyn, andp(k | yn) = Rkn is the posterior
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responsibilityof mixture componentk for generating data pointyn, calculated as

Rkn =
p(yn | k, θk)p(k | π)

p(yn)
=

{
∫

p(yn | x, k, θk)p(x)dx}p(k | π)
∑K

k=1{
∫

p(yn | x, k, θk)p(x)dx}p(k | π)
(5.10)

The updates for the parameters (which aim to optimise the expected log likelihood

function given in (5.9)) are as follows:

π̃k =
1

N

N
∑

n=1

Rkn (5.11)

µ̃k =

∑N
n=1 Rknyn
∑N

n=1 Rkn

(5.12)

which are the standard updates for a Gaussian mixture model.For the rest of the pa-

rameter updates, we follow the approach in (Tipping & Bishop, 1997) and combine

the E and M steps, gaining the intuitive result that the weights Wk and noise covari-

anceΨk can be found in terms of the local responsibility-weighted covariance matrix

Sk = 1
π̃kN

∑N
n=1 Rkn(yn − µ̃k)(yn − µ̃k)

⊤:

W̃k = SkΨ
−1
k WkMk(Mk + MkW

⊤
k Ψ−1SkΨ

−1WkMk)
−1 (5.13)

Ψ̃k =







(Sk − SkΨ
−1
k WkMkW̃

⊤
k )11 0

0 (Sk − SkΨ
−1
k WkMkW̃

⊤
k )22






(5.14)

whereMk = (I −W⊤
k Ψ−1

k Wk)
−1, and the subscripts11 and 22 denote the upper

m1 ×m1 block and the lowerm2 ×m2 block on the diagonal respectively.

Figure 5.2 shows some trained mixture models of PCCA, whose parameters have

been estimated by ML, using the Expectation Maximisation algorithm, where the fixed

number of components are 1, 3 and 10 (see figure caption for further details). These

simulations show the drawback of using maximum likelihood to evaluate the best struc-

ture for the model, since the likelihood increases with the number of components.

When 10 components are used, the model can be seen to overfit the data, which is

not penalised by the ML approach.
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Figure 5.2: Three mixture models trained on a pair of data sets where the first data
set (column 1) follows an arc, and the second data set followsa sine curve (column 2).
The graphs show the plotted data (black dots) with the ML estimate of the component
means (red cross) and 2 st.dev of the component noise covariance (green line). Each
experiment uses a different fixed number of components, in (a) K = 1, which underfits
the data, (b)K = 3, and (c)K = 10, which overfits the data.
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5.3 Bayesian approach

The previous section uses a maximum likelihood (ML) approach to finding the parame-

ters of the mixture of PCCA, in which the model parameters areassigned specific values

which correspond to a (local) maximum of the likelihood function. One problem with

the ML framework is that there are singularities in the likelihood function, in which

one or more component densities may collapse onto a single data point - the compo-

nent mean becomes equal to the data point, and the corresponding covariance goes to

zero - such that the model has assigned infinite density to thedata point’s location. This

phenomenon is known as overfitting. Another problem with themaximum likelihood

method is that the method does not take model complexity intoaccount, and the data

is more likely under more complex model structures, which again leads to overfitting.

For instance, in the previous section it was found that the likelihood increased with

the number of components in the model, such that the likelihood is maximised for the

extreme case where each data point is attributed to a separate mixture component.

One approach to overcome the model selection problem unaddressed with max-

imum likelihood techniques is cross validation, in which a number of models, each

with a separate number of components up to some maximum value, are optimised to a

training set, and the predictive performance compared on anindependent training set.

However, this approach can be computationally expensive and does not allow for the

possibility that a new data point comes from an as yet unseen component.

An elegant solution to the model selection problem is a Bayesian approach which

avoids the problem of overfitting because no parameter is actually fit to the data; in-

stead their posterior distributions are inferred, and usedto make predictions for new

data points. By integrating out those parameters whose cardinality scales with model

complexity, more complex models are penalised since they can a priori model a greater

range of data sets. Unfortunately when using a fully Bayesian approach, it is, in gen-

eral, computationally and analytically intractable to perform the required integrals.

There are several Bayesian approaches to mixture modellingin the literature which

approximate the integrals required for Bayesian inference, using sampling techniques
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(Neal, 1991; Rasmussen, 2000), and variational approximations (Ghahramani & Beal,

2000; Corduneanu & Bishop, 2001). In these models, the number of components is

found automatically. One approach is to set a maximum numberof potential com-

ponents, and then when the model is trained to some data, unwanted components are

suppressed, such as in (Corduneanu & Bishop, 2001), where the parameters of each

Gaussian component and the latent variables are integratedout, using variational tech-

niques, to calculate an approximation to the marginal likelihood, and the mixing coef-

ficients are optimised using type II maximum likelihood. Similarly, in (Ghahramani &

Beal, 2000), variational approximations to a full Bayesianintegration over the model

parameters are derived for a Bayesian mixture of factor analyzers. However, rather

than starting with a maximum number of potential components, the model is initialized

with a single component, and the number of components that fitthe training data is

found by adding new components through a stochastic procedure, and removing zero

responsibility components when necessary.

Another way to address the model selection problem is to use nonparametric

Bayesian techniques, in which Bayesian models with an infinite number of parame-

ters are considered, such as the infinite mixture of Gaussians in (Rasmussen, 2000).

This allows the model to be of the necessary complexity through considering a contin-

uum of models and averaging with respect to all of these simultaneously, rather than

controlling the complexity through limiting the number of parameters. Modelling data

as coming from an infinite mixture has been seen to work well inthe infinite mixture of

Gaussians when there are only a small finite number of components in the actual mix-

ture. The infinite mixture of Gaussians is similar to existing models in nonparametric

statistics known as Dirichlet process mixture models (Ferguson, 1973; Antoniak, 1974;

Escobar, 1994) but derives the model as a limiting case of a finite mixture model rather

than from the Dirichlet process itself such as in (Westet al., 1994).
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(a) (b)

Figure 5.3: Two perspectives on the finite mixture model

5.3.1 Dirichlet process mixture models

The Dirichlet process (DP) is a nonparametric distributionon distributions, or equiva-

lently, a measure on measures (Ferguson, 1973). A DP is parameterised by a scaling

parameterα0 > 0, and a base measureG0. In Section 2.3.2 we reviewed the Dirichlet

process and its different perspectives and showed how it could be used to place a dis-

tribution over the distribution for a parameter setΘ. We now show how to incorporate

an observation model for whenΘ is not observed directly, and use the DP as a non-

parametric prior on the components of a mixture of probabilistic canonical correlation

analyzers. This follows the approach described in (Rasmussen, 2000) and the resul-

tant model is an infinite mixture of canonical correlation analyzers. This overcomes

the model selection problems with the maximum likelihood method detailed in Section

5.2.

5.3.1.1 The finite mixture model

We interpret the parameter setting for each data point as a random variable which is

drawn from a measure over the parameter space. Going back to the finite mixture

model that we introduced earlier, the probability of thenth pair of data pointsyn under

thekth latent variable model can be written as:

p(yn | θk) =

∫

p(yn | Θn)p(Θn | cn = k, θ)dΘn (5.15)
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where Θn are the parameters associated withyn, p(yn | Θn) =
∫

p(yn |

xn, Θn)p(xn)dxn and p(Θn | cn = k, θ) = δ(Θn − θk) = δθk . cn is a discrete

variable that indexes the latent variable submodels, andθ is the set of parameter values.

For allK latent variable models, the distribution overΘn is:

p(Θn | θ, π) =

K
∑

k=1

p(Θn | cn = k, θ)p(cn = k | π)

=
K
∑

k=1

πkδθk (5.16)

whereπ = {π1, ..., πK} are the mixing coefficients as before, andp(c | π) is a multi-

nomial distribution. The corresponding graphical model for this mixture model rep-

resentation is shown in Figure 5.3a. Since the mixture modelis finite, Θn is equal to

one of the underlyingθk, such that the subset of{Θn} that maps toθk is exactly the

kth cluster. We can interpret this as placing a measure over the parameter space if we

definep(Θn | θ, π) asG, a measure. The parameter setΘn for each data point is in-

dependently drawn fromG, as seen in Figure 5.3b. The probability ofyn under allK

latent variable models is given by:

p(yn | θ, π) =

∫

p(yn | Θn)

(

K
∑

k=1

p(Θn | cn = k, θ)p(cn = k | π)

)

dΘn(5.17)

=

∫

p(yn | Θn)

(

K
∑

k=1

πkδθk

)

dΘn (5.18)

5.3.1.2 Incorporating a Dirichlet process prior

We extend the finite mixture model of the previous section to allow an infinite number

of components, which allows the number ofrepresentedcomponentsK to be deter-

mined automatically. A Dirichlet process prior is placed onG, the random measure

over the parameter space,

G ∼ DP (G | G0, α0) (5.19)
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(a) (b)

Figure 5.4: Two perspectives on the infinite mixture model

with G0 andα0 defined as before. The parameters for each data pointyn are drawn

from G, as shown in Figure 5.4b (compare with Figure 5.3b). This model is a Dirichlet

process mixture model. To clarify this further, we can interpret this as generalising the

G of the finite case in (5.16) to the infinite case:

G =

∞
∑

k=1

πkδθk (5.20)

which is just the stick breaking representation of the distribution drawn from a Dirichlet

process (Sethuraman, 1994), reviewed in Section 2.3.2.5. The parametersΘn for each

data point take on valueθk with probabilityπk. This is equivalent to placing a prior on

the mixing proportionsπ (an infinite sequence) and the parameter spaceθ:

π ∼ Stick(α0) θk ∼ G0 (5.21)

This perspective on the infinite mixture model is visualisedas a graphical model in

Figure 5.4a (compare with the finite case in Figure 5.3a).

5.3.1.3 Generalising from the finite to the infinite mixture model

The Dirichlet process mixture model can be derived as the limiting case of the finite

mixture model detailed in Section 5.3.1.1. Suppose that we place a symmetric Dirichlet

prior on the mixing proportions of the K component mixture modelπ = {π1, ..., πK},
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which is conjugate to the multinomialp(c | π), the distribution over the indicator

variablesc = {c1, ..., cN}:

p(π | α0) = Dir (π |
α0

K
, ...,

α0

K
) = C(α0)

K
∏

k=1

π
α0/K−1
k (5.22)

whereα0 > 0 is a positive scaling parameter,C(α0) = Γ(α0)
Γ(α0/K)K is a normalisation

constant, andE(πk) = 1/K. Integrating out the mixing proportions we get:

p(c1, ..., cN | α0) =

∫

p(c | π)p(π | α0)dπ

=
Γ(α0)

Γ(N + α0)

K
∏

k=1

Γ(Nk + α0/K)

Γ(α0/K)
(5.23)

It is difficult to samplec from this distribution; instead, the indicators are Gibbs sam-

pled to capture their dependencies. The conditional prior over the indicator variable for

thenth data point given all the other indicator variables is given by:

p(cn = k | c−n, α0) =
N−n,k + α0/K

N − 1 + α0
(5.24)

wherec−n denotes the set of indicators not includingcn, andN−n,k is the number of

data points in thekth cluster, not including thenth data point. If we allowK → ∞,

i.e. we allow an infinite number of mixture components, the conditional prior oncn

becomes:

p(cn = k | c−n, α0) =
N−n,k

N − 1 + α0
(5.25)

p(cn 6= cn′∀n′ 6= n | c−n, α0) =
α0

N − 1 + α0
(5.26)

where the last equation is the probability that the data point is assigned to a new cluster.

The parameters{Θ1, ..., ΘN} for the data points are generated according to:

p(Θ1, ..., ΘN | θ, α0) =
∑

c

(

N
∏

n=1

p(Θn | cn, θ)

)

p(c | α0) (5.27)
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(a) (b)

Figure 5.5: Graphical models for (a) the Dirichlet process mixture model and (b) the
Dirichlet process mixture model of PCCA

This involves a summation overc i.e. over all possible assignments of data points to

the components, but it is easier to evaluate in terms of the Gibbs sampling scheme as in

(5.23), and ifcn takes on an existing value, then the data pointn inherits the parameter

setθcn : Θn = θcn. If cn takes on a new value (starts a new cluster) then the parameter

set is generated from the priorp(θ | h), whereh is the set of hyperparameters. This

is equivalent to the Pólya urn sampling scheme which we reviewed in Section 2.3.2.3.

This model is a Dirichlet process mixture model, but derivedin a different manner to

the previous sections.

5.4 An infinite mixture of probabilistic CCA

In this section, we describe the Dirichlet process mixture model of probabilistic CCA,

which uses a Dirichlet process prior on the parameters for each data point, as detailed

in the previous sections.

5.4.1 Overview of the model

A DP prior is placed on the indicatorsc = {c1, ..., cN} (which show the latent submodel

with which theN pairs of data points are associated), and we integrate over the mixing

proportionsπ. Priors are placed on the component parametersθk. The graphical model
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is shown in Figure 5.5. The probability of the data setY = [y1, ...,yN ]⊤ is given by:

p(Y | α0, γ) =
∑

c

N
∏

n=1

∫

p(yn | cn, θ)}p(c | α0)p(θ | γ)dθ (5.28)

wherep(θ | γ) is the distribution over the parameter spaceθ (equivalent toG0), with

hyperparametersγ. This is chosen to be a conjugate prior to the probabilistic CCA

likelihood. p(c | α0) is the distribution over the indicator variables, where thecon-

ditional priors are given in (5.25) and (5.26), the Pólya urn scheme.p(yn | cn, θ) is

the likelihood for a data point under thecnth latent submodel in the probabilistic CCA

model. Whencn = k, this is written as:p(yn | cn = k, θk) =
∫

p(yn | xn, θ
k, cn =

k)p(xn)dxn. We can write the probability of the data set in terms on theK represented

clusters:

p(Y | α0, γ) =
∑

c

K
∏

k=1

(

∏

n:cn=k

∫

p(yn | θ
k)p(θk | γ)dθk

)

p(c | α0) (5.29)

=
∑

c

K
∏

k=1

(
∫

p(Yk | θk, c)p(θk | γ)dθk

)

p(c | α0) (5.30)

wherep(Yk | θk, c) is the probability of all the data pairs assigned to thekth cluster,

given the assignmentsc of all the data, parameterised byθk. Additionally, we define

separate parameters and hyperparameters for the two data setsY1 andY2 such that we

can write:

p(Y | α0, γ) = p(Y1 | α0, γ1)p(Y2 | α0, γ2) (5.31)

where fori = 1, 2

p(Yi | α0, γi) =
∑

c

K
∏

k=1

(
∫

p(Yk
i | θ

i,k, c)p(θi,k | γi)dθi,k

)

p(c | α0) (5.32)

whereYk
i is thekth cluster of theith data set,θi,k is the set of parameters for thekth

latent submodel for theith data set, governed by the set of hyperparametersγi. The
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graphical model for this configuration of the parameter priors is given in Figure 5.5b,

clearly showing the shared structure of a data pair[y1,n,y2,n]. With this formulation,

it is easy to see how to compute the posterior distributions over the indicatorsc, the

parametersθ = {θ1, ..., θK}, and the hyperparametersγ andα0.

5.4.1.1 Posterior over the parameters

The posterior distributions over thekth set of parameters are given by:

p(θ1,k | Y1,k, c, γ1) ∝ p(Y1,k | θ1,k, c)p(θ1,k | γ1) (5.33)

p(θ2,k | Y2,k, c, γ2) ∝ p(Y2,k | θ2,k, c)p(θ2,k | γ2) (5.34)

5.4.1.2 Posterior over the hyperparameters

The posterior distributions over the hyperparameters given theK sets of parameters

are:

p(γ1 | θ
1,1, ..., θ1,K) ∝

K
∏

i=1

p(θ1,i | γ1)p(γ1 | ξ1) (5.35)

p(γ2 | θ
2,1, ..., θ2,K) ∝

K
∏

i=1

p(θ2,i | γ2)p(γ2 | ξ2) (5.36)

wherep(γ1 | ξ1) andp(γ2 | ξ2) are vague priors over the hyperparameters, parame-

terised byξ1 andξ2.

5.4.1.3 Posterior over the indicators

The conditional posterior distribution over the indicators is given by:

p(cn = k | c−n,yn, θ
k) ∝ p(yn | θ

k, cn = k)p(cn = k | c−n, α0) (5.37)

5.4.2 Graphical model

The complete graphical model for the Dirichlet process mixture model of probabilistic

CCA is shown in Figure 5.6, illustrating the layered structure of the hierarchical priors.

Each pair of data observationsyn = {y1,n,y2,n} is generated from one of theK rep-
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Figure 5.6: The complete graphical model for the Dirichlet process mixture model of
probabilistic CCA.

resented pairs of mixture components, which is indicated bycn. Each pair of mixture

components is governed by a set of parameters, where thekth component pair’s pa-

rameters areθ1,k = {µ1,k,A1,k,W1,k} andθ2,k = {µ2,k,A2,k,W2,k}. The parameter

sets are governed by a set of hyperparametersγ1 andγ2, which in turn are governed by

vague priorsξ1 andξ2. The model and a Gibbs sampling scheme is derived in the next

section in detail.

5.4.3 Priors and posteriors over the component parameters and

their hyperparameters

5.4.3.1 Mean vectorµk

The mean vector for thekth latent variable model is drawn from a Gaussian distribution

with hyperparametersλ andR which are common to all components.

µ1,k ∼ N (µ1,k | λ1,R
−1
1 ) (5.38)

µ2,k ∼ N (µ2,k | λ2,R
−1
2 ) (5.39)
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The posterior distribution over the mean vectorµ1,k is given by combining the likeli-

hood function forµ1,k with the prior:

p(µ1,k | Y1,X, c, λ1,R1) ∝ p(Y1 | X, c, θ1,k)p(µ1,k | λ1,R1) (5.40)

We can write the likelihoodp(Y1 | X, c, θ1,k) in terms ofµ1,k as:

p(Y1 | X, c, θ1,k) =
∏

n:cn=k

N (y1,n |W1,kxn + µ1,k,Ψ1,k) (5.41)

∝
∏

n:cn=k

N (µ1,k | y1,n −W1,kxn,Ψ1,k) (5.42)

∝ N
(

µ1,k | ȳ1,k −W1,kx̄k, N
−1
k Ψ1,k

)

(5.43)

whereȳ1,k = 1
Nk

∑

n:cn=k y1,n, x̄k = 1
Nk

∑

n:cn=k xn, and whereNk is the number of

data points in thekth cluster. By combining this with the prior from (5.38) and using

(5.40), the posterior distribution overµ1,k is given by:

µ1,k | θk,Y1 ∼ N
(

µ1,k | µµ1,k
,Σµ1,k

)

(5.44)

whereΣµ1,k
= (NkΨ

−1
1,k + R1)

−1 (5.45)

µµ1,k
= Σµ1,k

(Ψ−1
1,kNk(ȳ1,k −W1,kx̄k) + R1λ1) (5.46)

and similarly,

µ2,k | θk,Y2 ∼ N
(

µ2,k | µµ2,k
,Σµ2,k

)

(5.47)

whereΣµ2,k
= (NkΨ

−1
2,k + R2)

−1 (5.48)

µµ2,k
= Σµ2,k

(Ψ−1
2,kNk(ȳ2,k −W2,kx̄k) + R2λ2) (5.49)
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whereȳ2,k = 1
Nk

∑

i:ci=k y2,i. The hyperparametersλ1, λ2 andR1,R2 are given vague

Normal and Wishart conjugate priors respectively,

λ1 ∼ N (λ1 | µy1
,Σy1

), R1 ∼ W(R1 | m1,Σ
−1
y1

) (5.50)

λ2 ∼ N (λ2 | µy2
,Σy2

), R2 ∼ W(R2 | m2,Σ
−1
y2

) (5.51)

whereµy1
andΣy1

are the sample mean and covariance of the first data setY1, andµy2

andΣy2
are the sample mean and covariance of the second data setY2.

The posterior distribution overλ1 given the mean vectors for allK components

for the first data set is given by:

p(λ1 | µ1,1, ..., µ1,K,R1) ∝
K
∏

1=1

p(µ1,i | λ1,R1)p(λ1) (5.52)

∝
K
∏

i=1

N (µ1,i | λ1,R
−1
1 )N (λ1 | µy1

,Σy1
)

∝ N (λ1 |
1

K

K
∑

i=1

µ1,i,
1

K
R−1

1 )N (λ1 | µy1
,Σy1

)

∝ N

(

λ1 |
R1

∑K
i=1 µ1,i + Σ−1

y1
µy1

KR1 + Σ−1
y1

,
1

KR1 + Σ−1
y1

)

(5.53)

Similarly, the posterior distribution overλ2 is given by:

λ2 | µ2,1, ..., µ2,K,R2 ∼ N

(

λ2 |
R2

∑K
i=1 µ2,i + Σ−1

y2
µy2

KR2 + Σ−1
y2

,
1

KR2 + Σ−1
y2

)

(5.54)

The posterior distribution overR1 given the mean vectorsµ1,1, ..., µ1,K is given by:

p(R1 | µ1,1, ..., µ1,K , λ1) ∝
K
∏

1=1

p(µ1,i | λ1,R1)p(R1) (5.55)

∝
∏

k

N (µ1,k | λ,R−1
1 )W(R1 | m1,Σ

−1
y1

) (5.56)
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We can write the likelihood forR1 in terms of a Wishart distribution:

∏

k

N (µ1,k | λ,R−1
1 ) ∝

∏

k

W

(

R1 | D + 2,
D + 2

(µ1,k − λ1)(µ1,k − λ1)⊤

)

(5.57)

∝ W

(

R1 | K + D + 1,
K + D + 1

∑

k(µ1,k − λ1)(µ1,k − λ1)⊤

)

(5.58)

The posterior distribution overR1 is thus given by:

p(R1 | µ1,1, ..., µ1,K , λ1) ∝ W

(

R1 | K + D + 1,
K + D + 1

∑

k(µ1,k − λ1)(µ1,k − λ1)⊤

)

× W(R1 | m1,Σ
−1
y1

)

∝ W(R1 | m1 + K,
m1 + K

Sµ1
+ m1Σy1

) (5.59)

whereSµ1
=
∑K

k=1(µ1,k − λ1)(µ1,k − λ1)
⊤. Similarly,

R2 | µ2,1, ..., µ2,K , λ2 ∼ W

(

R2 | m2 + K,
m2 + K

Sµ2
+ m2Σy2

)

(5.60)

whereSµ2
=
∑K

k=1(µ2,k − λ2)(µ2,k − λ2)
⊤.

5.4.3.2 Covariance matrixΨ1,k,Ψ2,k

We work with the inverse ofΨ1,k andΨ2,k: A1,k = Ψ−1
1,k andA2,k = Ψ−1

2,k. The priors

overA1,k andA2,k are Wishart distributions:

A1,k ∼ W(A1,k | β1,C
−1
1 ) (5.61)

A2,k ∼ W(A2,k | β2,C
−1
2 ) (5.62)

The posterior distribution over the precision matrixA1,k is given by combining the

likelihood function forA1,k with its prior:

p(A1,k | Y1,X, c, β1,C1) ∝ p(Y1 | X, c, θ1,k)p(A1,k | β1,C1) (5.63)
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We can write the likelihood function in terms of a Wishart distribution overA1,k:

p(Y1 | X, c, θ1,k) =
∏

n:cn=k

N (y1,n |W1,kxn + µ1,k,A
−1
1,k) (5.64)

∝ W

(

A1,k | Nk + m1 + 1,
Nk + m1 + 1

Sy1,k

)

(5.65)

Sy1,k
=
∑

n:cn=k(y1,n − (W1,kxn + µ1,k))(y1,n − (W1,kxn + µ1,k))
⊤. Substituting

this expression into (5.63), along with the prior given in (5.61), the posterior overA1,k

becomes:

p(A1,k | Y1,X, c, β1,C1) ∝ W

(

A1,k | Nk + m1 + 1,
Nk + m1 + 1

Sy1,k

)

× W(A1,k | β1,C
−1
1 )

∝ W

(

A1,k | Nk + β1,
Nk + β1

NkSy1,k
+ β1C1

)

(5.66)

Similarly, the posterior overA2,k is given by:

p(A2,k | Y2,X, c, β2,C2) ∝ W

(

A2,k | Nk + β2,
Nk + β2

NkSy2,k
+ β2C2

)

(5.67)

whereSy2,k
=
∑

n:cn=k(y2,n − (W2,kxn + µ2,k))(y2,n − (W2,kxn + µ2,k))⊤.

The hyperparametersβ1, β2,C1 andC2 are common to allK components.(β1 −

m1 + 1) and(β2 −m2 + 1) are given vague Gamma priors, andC1 andC2 are given

vague Wishart priors:

(β1 −m1 + 1)−1 ∼ G((β1 −m1 + 1)−1, 1, 1) (5.68)

(β2 −m2 + 1)−1 ∼ G((β2 −m2 + 1)−1, 1, 1) (5.69)

C1 ∼ W(C1 | m1,Σy1
) (5.70)

C2 ∼ W(C2 | m2,Σy2
) (5.71)
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The posterior distribution overC1 given allK precision matrices is given by:

p(C1 | A1,1, ..,A1,K , β1) ∝
K
∏

i=1

p(A1,i | β1,C1)p(C1) (5.72)

∝
K
∏

i=1

W(A1,i | β1,C1)W(C1 | m1,Σy1
) (5.73)

We can write
∏K

i=1W(A1,i | β1,C1) as a function ofC1:

K
∏

i=1

W(A1,i | β1,C1) ∝
K
∏

i=1

W

(

C1 | β1 + m1 + 1,
β1 + m1 + 1

β1A1,i

)

(5.74)

∝ W

(

C1 | β1K + m1 + 1,
β1K + m1 + 1

β1

∑

i A1,i

)

(5.75)

Putting this expression back into (5.73), the posterior distribution overC1 is derived

as:

p(C1 | A1,1, ..,A1,K, β1) ∝ W

(

C1 | β1K + m1 + 1,
β1K + m1 + 1

β1

∑

i A1,i

)

× W(C1 | m1,Σy1
)

∝ W

(

C1 | β1K + m1,
β1K + m1

m1Σ−1
y1

+ β1

∑

i A1,i

)

(5.76)

Similarly, the posterior distribution overC2 given the precision matricesA2,1, ...,A2,K

is given by:

p(C2 | A2,1, ..,A2,K, β2) ∝ W

(

C2 | β2K + m2,
β2K + m2

m2Σ−1
y2

+ β2

∑

i A2,i

)

(5.77)

The posterior distribution overβ1 given allK precision matrices is given by:

p(β1 | A1,1, ..,A1,K ,C1) ∝
K
∏

i=1

p(A1,i | β1,C1)p(β1) (5.78)

∝
K
∏

i=1

W(A1,i | β1,C1)G((β1 −m1 + 1)−1 | 1, 1)

(5.79)
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and similarly,

p(β2 | A2,1, ..,A2,K ,C2) ∝
K
∏

i=1

W(A2,i | β2,C2)G((β2 −m2 + 1)−1 | 1, 1)

(5.80)

Since the latter densities are not of standard form, independent samples are generated

from log β1 | A1,1, ...,A1,KC1 andlog β2 | A2,1, ...,A2,K,C2 (which can be shown to

be log concave distributions) using the Adaptive RejectionSampling (ARS) technique

(Gilks & Wild, 1992).

5.4.3.3 Weight vectorsW1,k,W2,k

The weight matrices for thekth latent variable model areW1,k andW2,k. The rows of

these matrices are drawn from a Gaussian prior such that:

Wi
1,k ∼ N (Wi

1,k | γ1,i, v
−1
1 Iq) (5.81)

Wi
2,k ∼ N (Wi

2,k | γ2,i, v
−1
2 Iq) (5.82)

whereWi
1,k andWi

2,k are theith rows ofW1,k andW2,k respectively,γ1,i andγ1,i are

the means of the corresponding distributions, andv1 andv2 are the inverse variance.

The posterior distribution overWi
1,k given the dataY1, the latent variablesX, the

indicatorsc, and parametersθ1,k, is given by

p(Wi
1,k | Y1,X, c, γ1,i, v1) ∝ p(Y1 | X, c, θ1,k)p(Wi

1,k | γ1,i, v1) (5.83)
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Rewritingp(Y1 | X, c, θ1,k) in terms ofWi
1,k gives:

p(Y1 | X, c, θ1,k) =
∏

n:cn=k

N (y1,n |W1,kxn + µ1,k,Ψ1,k) (5.84)

=
m1
∏

i=1

N (Yi
1,k | XkW

i
1,k + µi

1,k,Ψ1,k(i, i)INk
) (5.85)

=

m1
∏

i=1

N (Wi
1,k | (X

⊤
k Xk)

−1X⊤
k (Yi

1,k − µi
1,k),Ψ1,k(i, i)X

⊤
k Xk)

(5.86)

where we have approximatedΨ1,k by its diagonal in (5.85).Yi
1,k = {yi

1,n}n:cn=k is the

ith dimension of the subset ofY1 assigned to thekth cluster.Xk = {xn}n:cn=k is the

latent variable set associated with thekth cluster,µi
1,k is theith dimension of the mean

vectorµ1,k, andΨ1,k(i, i) is theith diagonal element ofΨ1,k. Using this expression

with (5.83), the posterior distribution overWi
1,k becomes

p(Wi
1,k | Y1,X, c, γ1,i, v1) ∝

m1
∏

i=1

N (Wi
1,k | (X

⊤
k Xk)

−1X⊤
k (Yi

1,k − µi
1,k),Ψ1,k(i, i)X

⊤
k Xk)

× N (Wi
1,k | γ1,i, v

−1
1 Iq)

∝ N (Wi
1,k | µWi

1,k
,ΣWi

1,k
) (5.87)

where

ΣWi
1,k

=
(

Ψ1,k(i, i)
−1X⊤

k Xk + v1Iq

)−1

µWi
1,k

= ΣWi
1,k

(

(Ψ1,k(i, i))
−1X⊤

k (Yi
1,k − µi

1,k) + v1γ1,i

)

(5.88)

Similarly, the posterior distribution overWi
2,k is given by:

p(Wi
2,k | Y2,X, c, γ2,i, v2) ∝ N (Wi

2,k | µWi
2,k

,ΣWi
2,k

) (5.89)

where

ΣWi
2,k

=
(

Ψ2,k(i, i)
−1X⊤

k Xk + v2Iq

)−1

µWi
2,k

= ΣWi
2,k

(

(Ψ2,k(i, i))
−1X⊤

k (Yi
2,k − µi

2,k) + v2γ2,i

)

(5.90)
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The hyperparameters are given the following vague priors:

v1 ∼ G(v1 | 1, 1) (5.91)

v2 ∼ G(v2 | 1, 1) (5.92)

γ1,i ∼ N (γ1,i | 0, τ
−1Iq) (5.93)

γ2,i ∼ N (γ2,i | 0, τ
−1Iq) (5.94)

The posterior distribution over the inverse scale hyperparameterv1 is given by

p(v1 |W1,1, ...,W1,K, γ1,i) ∝
K
∏

k=1

p(W1,k | v1, γ1)p(v1)

∝
m1
∏

i=1

K
∏

k=1

N (Wi
1,k | γ1,i, v

−1
1 Iq)G(v1 | 1, 1)

∝ G

(

v1 | m1K + 1,
m1K + 1

1 + SW1

)

(5.95)

whereSW1
=
∑m1

i=1

∑

k(W
i
1,k − γ1,i)

⊤(Wi
1,k − γ1,i). Similarly, the posterior distribu-

tion overv2 is given by:

p(v2 |W2,1, ...,W2,K , γ2,i) ∝ G

(

v2 | m2K + 1,
m2K + 1

1 + SW2

)

(5.96)

whereSW2
=
∑m2

i=1

∑

k(W
i
2,k − γ2,i)

⊤(Wi
2,k − γ2,i). The posterior distribution over

the hyperparameterγ1,i is given by:

p(γ1,i | {(W1,k)
i}Kk=1, v1) ∝

K
∏

k=1

p(Wi
1,k | v1, γ1)p(γ1,i)

∝
K
∏

k=1

N (Wi
1,k | γ1,i, v

−1
1 Iq)N (γ1,i | 0, τ

−1Iq)

∝ N

(

γ1,i |
v1

∑

k Wi
1,k

Kv1 + τ
,

1

Kv1 + τ

)

(5.97)
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Similarly, the posterior overγ2,i is given by:

p(γ2,i | {W
i
2,k}

K
k=1, v2) ∝ N

(

γ2,i |
v2

∑

k Wi
2,k

Kv2 + τ
,

1

Kv2 + τ

)

(5.98)

5.4.3.4 Latent variablex

The latent variablexn for thenth pair of data pointsyn = [y⊤
1,n,y⊤

2,n]⊤ is drawn from a

Gaussian prior with zero mean and unit variance:

xn ∼ N (xn | 0, Iq) (5.99)

The posterior distribution overxn is given by:

p(xn | θ,y1,n,y2,n) ∝ p(y1,n,y2,n | xn, θ)p(xn)

∝ N (xn | µxn,Σxn) (5.100)

where

µxn = W⊤
cn

(WcnW
⊤
cn

+ Ψcn)−1(yn − µcn) (5.101)

Σxn = Iq −W⊤
cn

(WcnW
⊤
cn

+ Ψcn)−1Wcn (5.102)

wherecn ∈ {1, ..., K} denotes the component index which generatedyn, Wcn, µcn

and Ψcn are the parameters of the corresponding component, withWcn =

[W⊤
1,cn

W⊤
2,cn

]⊤, µcn = [µ⊤
1,c1

µ⊤
2,c1

]⊤, andΨcn =







Ψ1,cn 0

0 Ψ2,cn







5.4.3.5 Indicatorscn

The conditional priors on the indicators is given by:

cn = k | c−n, α0 =
N−n,k

N − 1 + α0
(5.103)

cn 6= cn′∀n′ 6= n | c−n, α =
α0

N − 1 + α0
(5.104)
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where−n indicates all the indices exceptn, such thatc−n denotes all the indicators

except thenth, andN−n,k is the number of data points associated with thekth compo-

nent, excluding thenth data point. The first equation shows that the conditional prior

probability of thenth data point being assigned to thekth component, given the assign-

ments of the other data points, is proportional to the numberof data points in thekth

cluster. The second equation shows that the combined prior for thenth data point being

assigned to one of the infinite unrepresented classes is onlydependent onα0 andN . α0

is the concentration parameter, and controls the amount of ’left over’ probability mass

corresponding to data being assigned to the currently unrepresented classes. A vague

Gamma prior is placed overα0:

α0 ∼ G(α0 | 1, 1) (5.105)

The posterior distributions over the indicators is given bythe following: for compo-

nents for whichN−n,k > 0

cn = k | c−n, θk, α0 ∝

N−n,k

N−1+α0

N (yn |Wkxn + µk,Ψk) (5.106)

for all other components:

cn 6= cn′∀n′ 6= n | c−n, γ, α0 ∝

α0

N−1+α0

∫

p(yn | xn, θk)p(xn)p(θk | γ)dxndθk (5.107)

The likelihood for currently unrepresented classes (whichhave no parameters asso-

ciated with them) is found by integrating over the parameterpriors. The posterior

distribution overα0 is given by:

α0 | K, N ∝
αK

0 Γ(α0)

Γ(α0 + N)
G(α0 | 1, 1) (5.108)
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This only depends on the number of observationsN and the number of represented

componentsK, and not on how the observations are distributed among the components.

Samples are generated fromp(log(α0) | K, N), which is log concave, using ARS.

5.4.4 Inference in the model

As noted before, exact analytical inference is not possiblein this model, and Gibbs

sampling is used to update the parameters, hyperparametersand indicator variables.

Each variable in turn is updated by sampling from its posterior distribution conditional

on all the other variables as follows:

• The parameters are updated by sampling fromp(θ | γ, c,Y)

• The hyperparameters are updated by sampling fromp(γ | θ, c,Y)

• The indicator variables are updated by sampling fromp(c | θ, γ,Y)

• The concentration parameter is updated by sampling fromp(log(α0) | K, N)

This process (a Gibbs sweep) generates a sample from the joint posterior distribution

p(θ, γ, c | Y). Many Gibbs sweeps are performed to repeatedly update all the variables.

Since consecutive samples are likely to be correlated, in order to generate independent

samples from the joint posterior, the mixing time of the Markov chain is calculated and

a sample is taken in every period of this length.

5.5 Experiments

To illustrate the model, we use a pair of toy data sets (each 2 dimensional) where the

first data set follows an arc, and the second data set follows asine curve.

To perform inference for the model, we initialise the model with one component

and then perform a large number of Gibbs sweeps to update the hyperparameters, pa-

rameters, and indicator variables, storing the values at each iteration. Initially, we do

not know how the Markov chain will mix and converge for this particular data set so we

perform 10000 iterations to assess the mixing and convergence times. Figure 5.7 shows

the number of represented componentsK plotted for each Monte Carlo iteration.K
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Figure 5.7: The number of represented componentsK growing with each Monte Carlo
iteration. The burn-in time is estimated to be 3000 iterations.

grows with time and the convergence time (or the burn-in time) is approximately 3000

iterations. Discarding the 3000 iterations produced during the burn-in phase, the mix-

ing time for the Markov chain is estimated by plotting the autocovariance for different

parameters against time (based on 10000 iterations) and finding the maximum correla-

tion length. The autocovariance against lag plot is shown inFigure 5.8, and it can be

seen that there are no significant correlations for any of theparameters. We choose the

effective correlation length to be 10 iterations.

We then perform 10000 iterations for modelling purposes - 3000 for the burn-in

period, and a further 7000 which generates 700 independent samples from the posterior

distribution (spaced evenly 10 apart). Figure 5.9 shows four sets of samples from the

posterior distribution for the mixture models at iterations 1, 500, 4000, and 6000 (from

the 10000 iterations). During the burn-in period, as shown in iterations 1 and 500, the

model underfits the data. As more samples are drawn and the Markov chain converges,

the model finds that 4 mixture components are the best fit for the data. There is a small

amount of probability mass (controlled byα0) which allows the model to consider an

additional component (at iteration 4000). As there is not enough evidence for this

component provided by the data, it is removed in the next Gibbs sweep. Figure 5.10

shows the histograms for some parameters of the mixture model, based on the 700
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Figure 5.8: The autocovariance plotted against lag, based on 10000 iterations, for
various parameters of the mixture model. The effective correlation length is chosen to
be 10 iterations.

independent samples from the posterior distribution.

5.5.1 Examining the distribution over the latent space

In the mixture model, there is a set of latent variablesX that underlies both data spaces

Y1 andY2. In this section, we find the distribution overX given just one of the data

sets. This distribution can then be used to predict one data set given the other, and vice

versa. The posterior distribution over thenth latent variablexn given the corresponding

data point from the first data set, is given by:

p(xn | y1,n) =

∫

p(xn | y1,n, θ)p(θ)dθ (5.109)

=
1

I

I
∑

i=1

p(xn | y1,n, θi) (5.110)

=
1

I

I
∑

i=1

N (xn | (µxn)i, (Σxn)i) (5.111)

where

(µxn|y1,n
)i = (W1,cn)i⊤((W1,cn)i(W1,cn)i⊤ + (Ψ1,cn)i)−1(y1,n − (µ1,cn)i)

(Σxn|y1,n
)i = Iq − (W1,cn)i⊤((W1,cn)i(W1,cn)i⊤ + (Ψ1,cn)i)

−1
(W1,cn)i
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Figure 5.9: Four sets of samples from the posterior distribution for the mixture model,
at iterations 1, 500, 4000, and 6000. Each row shows a sample over the first data set
Y1 (first column) and the second data setY2 (second column), and a graph for the
probability mass in each component and the unrepresented components (third column).
The ellipses indicate 2 standard deviations of the noise covariance matrices of each
component, and the labels for each component 1,...,K are positioned at the means.
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Figure 5.10: Some histograms for the posterior over different parameters in the model,
given the data, based on 700 independent samples from the posterior

whereI is the number of independent samples, and the superscripti denotes theith

independent sample, such thatθi describes theith sample of the posterior overθ.

5.5.2 Predictive distribution

After finding the posterior distribution over the latent space given one data set, we can

evaluate the predictive distribution over the other data space, according to:

p(y2,n | y1,n) =

∫

p(y2,n | xn, θ)p(xn | y1,n)p(θ)dxndθ (5.112)

=
1

I

I
∑

i=1

∫

p(y2,n | xn, θi)p(xn | y1,n)dxn (5.113)

Figure 5.11 shows the predictive distribution over each data set given the other. As can

be seen from the figure, the model is able to infer the distribution over the nonlinear

manifold underlying each data set given the other, using an appropriate number of

mixture components.
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Figure 5.11: The predictive distribution over each data setgiven the other. The predic-
tive mean is shown in black, 2 standard deviations of the predictive variance in grey,
and the data is shown in red

5.6 Conclusion

In this chapter, we presented a model for finding a joint probabilistic representation of

two data sources, where each data source lies close to a nonlinear manifold embedded

in the data space, each indexed by a shared set of latent coordinates. One of the prob-

lems of defining nonlinear mappings between the latent and data spaces is that a unique

solution does not exist, and the mappings have to be constrained appropriately so that

they do not underfit or overfit the data. When approximating a nonlinear manifold with

a mixture of local linear latent variable models, inferringthe correct model complexity

from the data is an important issue; we have to use an appropriate number of mixture

components since this governs the flexibility of the manifold. Additionally, since we

want to model two nonlinear manifolds, the difficulty of the problem is increased. Un-

fortunately, when using maximum likelihood methods, as is the standard procedure for

mixture models, we cannot infer the number of mixture components for the model.

We considered a mixture model of probabilistic canonical correlation analysers
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such that the pair of nonlinear manifolds was approximated by local linear submodels;

at corresponding local regions of the two data spaces, the relationship between the

data was modelled by a local PCCA model. To address the model selection problem,

we used nonparametric Bayesian techniques which allowed the data to determine the

necessary complexity of the model.

A nonparametric Dirichlet process prior was placed over theparameters of the

mixture model of PCCA. This allowed the number of represented mixture components,

and hence the flexibility of the nonlinear manifolds, to be determined automatically.

We call this model a Dirichlet process mixture of PCCA. The data is modelled as being

generating from an infinite mixture of PCCA, in the same spirit as the infinite mixture

of Gaussians (Rasmussen, 2000).

We demonstrated the model on a toy problem, and found that themodel was able

to correctly infer the necessary number of mixture components to represent the rela-

tionship between the data spaces.
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Chapter 6

Conclusion

6.1 Discussion

6.1.1 Probabilistic generative approach to context assisted learning

In this thesis, we have presented a probabilistic generative framework for analysing

two sets of data, where the underlying structure to each dataset is learned by taking its

context (the other data set) into account. We represent the structure of each data set as

the sum of a shared function and a private, or noise function.The two shared functions

are related through a common latent variable which forms a low dimensional represen-

tation, or embedding, of the relationship between the two data sets. The relationship

between the two sets of data variablesy1 andy2 is described probabilistically in terms

of the shared structure in the latent variablex, and the noise processes. After learning

the shared structure of the model, we can then manipulate thejoint probability density

over the variables to calculate such quantities as the predictive densitiesp(y1 | y2) and

p(y2 | y1), or p(x | y1) andp(x | y2), the posterior distributions over the latent space

(the representation of the data in the feature space). The advantage of the dependency-

seeking models that we describe in this thesis is that they are fully probabilistic, and

that they could also be generalised to multiple data sets. The models can be interpreted

as probabilistic nonlinear canonical correlation analysis models.
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6.1.2 Nonparametric Bayesian methods and probabilistic nonlin-

ear CCA

We are interested in modelling two data sets that have a complex relationship. We

model each data set as lying close to a nonlinear manifold indexed by a shared set of

latent coordinates i.e. we assume that we can represent eachdata set as a set of low

dimensional features that are nonlinearly related to the data space. One of the problems

of modelling nonlinear structure is that there is an indeterminacy in the solution, and

it is necessary to appropriately constrain the mappings such that the model does not

overfit or underfit the data. Additionally, since we require two nonlinear mappings, the

complexity of the problem is increased. If the mappings are too flexible, then the model

may find spurious correlations between the data sets. If the mappings are too inflexible,

then the model may not find the underlying shared structure between the data sets.

One approach to specifying nonlinear functions is toa priori define the form of

the function whose complexity is controlled by a finite set ofparameters. Learning

the function then consists of finding the best setting of the parameters from the data

by maximum likelihood or maximum a posteriori methods. However, the problem of

inferring model complexity still remains since the structure of the model is seta pri-

ori and is not learned during the optimisation. In this thesis, we used nonparametric

Bayesian methods to overcome the problem of modelling nonlinear structure. Non-

parametric Bayesian methods can be used to place flexible priors over models, such

that the model complexity is automatically inferred from the data set and can adapt to

new data points.

In Chapters 3 and 4, we used Gaussian processes as a prior overthe functions

from latent to data spaces. This does not restrict the class of possible functions, as in

parametric modelling. By placing a prior over the space of functions, and giving higher

probability to functions that have the desired characteristics (e.g. smoothness), this al-

lows a rich class of possible functions to be considered within a principled framework.

In Chapter 5, we approximated the nonlinear manifolds underlying the data by a mix-

ture of probabilistic canonical correlation analysers. The problem of constraining the
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mapping arises in setting the number of mixture components for the model. We resolve

this problem by using a nonparametric Dirichlet process (DP) prior on the parameters

for each pair of data points. When drawing the parameter set from the DP prior, there

is a clustering effect i.e. the draws from the priors are not necessarily distinct, and may

take on values of previous draws. Pairs of data points that share the same setting of

the parameters can be viewed as belonging to the same mixturecomponent (or cluster).

This does not require the number of mixture components to be set in advance. Instead

the model considers an infinite number of mixture components, where the number of

representedcomponents are determined by the data. This allows the necessary com-

plexity of the mappings between latent and data spaces to be determined automatically.

6.2 Review of the thesis

Chapter 2 provided a background to the work in this thesis, and Chapters 3, 4 and 5

provided the new work in the thesis. In Chapter 3 we introduced a Gaussian process la-

tent variable model of canonical correlation analysis (GPLVM-CCA). We then showed

that the within-set variation in two related data sets couldbe modelled by using linear

transformationsΨ−1/2
1 andΨ

−1/2
2 of each data set, and showed that the generative de-

pendency seeking model, probabilistic canonical correlation analysis (Bach & Jordan,

2005), could be interpreted within this framework. We then extended this model in

the spirit of the Gaussian process latent variable model (GPLVM) (Lawrence, 2004) to

model two related data sets. Gaussian process (GP) priors are placed over each dimen-

sions of each data set. The covariance functions for each data set define an implicit

nonlinear mapping from the latent space to the data space. The shared information is

captured in a shared set of latent coordinates (which are theinput to the GP’s), and

the private information is captured in the linear transformationsΨ1 andΨ2, which is

automatically learned in the training of the model. The model was applied to various

problems where we show that the model can learn an appropriate shared structure be-

tween two related data sets when the features are both linearly and nonlinearly related

to the data sets. We also demonstrated the algorithm on a pairof large data sets, where
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each pair of data points consists of a left and right half of a face under various poses

and expressions. The model was able to learn a shared latent space that reflects the

different poses in the data set. Since the model defines a joint probability density for

the data sets, we also demonstrate the model on prediction and missing value problems.

Chapter 4 extended the GPLVM-CCA model with a more complex noise process.

We created additional latent spaces which underlie the noise processes in each data

sets to model structure in the within-set variation. We placed GP priors on the noise

functions and optimised the GP’s inputs, such that the noiseinformation was modelled

by a covariance function with an input private to each data set. We illustrated this

model on a standard artificial data set to demonstrate parts-based decompositions of

images. Each image contains a shared feature (a horizontal bar) and a private feature (a

vertical bar from either the left or right half of the image).Given a large training set of

images, the model was able to find a smaller basis of prototypeimages containing both

the shared and private features.

Finally, in Chapter 5, we presented a Dirichlet process mixture model of proba-

bilistic CCA (PCCA). The pair of underlying nonlinear manifolds for each data set is

approximated by local linear submodels; at corresponding local regions of the two data

spaces, the relationship between the data is modelled by a local PCCA model. A non-

parametric Dirichlet process prior is placed over the parameters of the mixture model

of PCCA. This allows the number of represented mixture components, and hence the

flexibility of the nonlinear manifolds, to be determined automatically. The data is mod-

elled as being generated from an infinite mixture of PCCA, in the same spirit as the

infinite mixture of Gaussians (Rasmussen, 2000).

6.3 Future work

There are a number of avenues for future research:

• Sparse approximations. One of the problems with using nonparametric Bayesian

methods is that they can be inefficient in terms of the computation time, since the

computing memory required scales prohibitively with the number of data points.
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For instance, using Gaussian processes involves manipulation of anN × N co-

variance function matrix which is impractical for large data sets. In Chapter 3, we

used the informative vector machine (Lawrenceet al., 2003; Lawrence, 2004) to

create a sparse approximation of GPLVM-CCA. An interestingarea of research

would be to investigate different sparse approximations for the model since there

are many sparsification algorithms in the literature i.e. (Csató, 2002) . Creat-

ing a sparse version of the GPLVM-CCA model with complex noise processes

(Chapter 4) would also be an interesting area of research. However, there exists

a number of problems in this approach due to the richness of the model, such as

what criterion would be used to create a sparse version of thecovariance function

matrix - the accuracy of the noise process or the shared process?

Similarly, the Monte Carlo methods associated with Dirichlet process inference

can be computationally costly. A future direction of research would be to use a

variational approximation to the inference, as in (Blei & Jordan, 2006).

• Non-Gaussian Processes. A future direction of research would to investigate

non-Gaussian noise models for all of our three models.

• Extension of our models to find shared structure for more thantwo related data

sets, following ideas from (Kettenring, 1971).

• Complex structure between two data sets. Since all of our models are probabilis-

tic, it may be interesting to include more prior knowledge about the underlying

latent processes into the model. For instance, we could assume that the shared

latent variable follows a Markov process (perhaps incorporating dynamics as in

(Wang, 2005; Wanget al., 2006)) to model stereo audio data. It would also be in-

teresting to model stereo image data which is a complex problem, and use priors

over the latent variables that reflect the data generation process.
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Appendix A

Probability distributions

A.1 Normal distribution

x is aD-dimensional vector distributed according to:

x ∼ N (x | µ,Σ) (A.1)

∼
1

(2π)
D
2 |Σ|

1

2

exp

(

−
1

2
tr
(

Σ−1(x− µ)(x− µ)⊤
)

)

(A.2)

whereµ ∈ ℜD is the mean, andΣ ∈ ℜD×D is the covariance matrix.

A.1.1 Product of normal distributions

N (x | µ1,Σ1)N (x | µ2,Σ2) ∝ N (x | µ3,Σ3) (A.3)

where

µ3 = Σ3(Σ1
−1

µ1 + Σ2
−1

µ2) (A.4)

Σ3 = (Σ1
−1 + Σ2

−1)−1 (A.5)
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A.2 Gamma distribution

x is a scalar distributed according to:

x ∼ G(x | α, β) (A.6)

∼
β−α/2

Γ(α/2)
xα/2−1 exp(−αx/2β) (A.7)

whereα is the shape parameter, andβ is the mean.

A.3 Wishart distribution

X is aD ×D matrix distributed according to:

X ∼ W(X | v,S) (A.8)

∼
1

ZvS
|X|(v−D−1)/2 exp

(

−
1

2
tr(vS−1X)

)

(A.9)

where the normalisation constantZvS = 2vD/2πD(D−1)/4 |S|v/2

v

∏D
i=1 Γ

(

v+1−i
2

)

, with

degree of freedomv and meanS.

A.3.1 Product of Wishart distributions

W(X | v3,S3) ∝ W(X | v1,S1)W(X | v2,S2) (A.10)

where (A.11)

v3 =
∑

i

(vi −D − 1) + D + 1 (A.12)

S3 =
v3

v1S
−1
1 + v2S

−1
2

(A.13)
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SCHÖLKOPF, B., SMOLA , A., & M ÜLLER, K.-R. 1998. Nonlinear Component Anal-

ysis as a Kernel Eigenvalue Problem.Neural Computation, 10, 1299–1319.
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Advances in Neural Information Processing Systems, vol. 16. MIT Press.

STUDHOLME, C., HAWKES, D.J., & HILL , D.L.G. 1999. An overlap invariant en-

tropy measure of 3D medical image alignment.Pattern Recognition, 32, 71–86.

SVENSÉN, M. 1998.GTM: The Generative Topographic Mapping. Ph.D. thesis, Aston

University.

TEH, Y. W., SEEGER, M., & JORDAN, M. I. 2005. Semiparametric latent factor

models. Pages 333–340 of:COWELL, ROBERT G., & GHAHRAMANI , ZOUBIN

(eds),Proceedings of the Tenth International Workshop on Artificial Intelligence and

Statistics. Society for Artificial Intelligence and Statistics.

TIPPING, M., & B ISHOP, C. 1997. Mixtures of Probabilistic Principal Component

Analysers. Tech. rept. NCRG/97/003. Neural Computing Research Group, Aston

University.

TIPPING, M., & B ISHOP, C. 1999. Probabilistic principal component analysis.Journal

of the Royal Statistical Society, Series B, 21(3), 611–622.

TISHBY, N., F.C, PEREIRA, & B IALEK , W. 1999. The Information Bottleneck

method. Pages 368–377 of:HAJEK, B., & SREENIVAS, R. S. (eds),Proc. of the

37th Annual Allerton Conference on Communication, Controland Computing.

TORKKOLA , K. 2003. Feature Extraction by Non-parametric Mutual Information

Maximization.Journal of Machine Learning Research, 3, 1415–1438.



170 BIBLIOGRAPHY

VAPNIK , V. 1995.The Nature of Statistical Learning Theory. Springer-Verlag.

VERBEEK, J., ROWEIS, S., & VLASSIS, N. 2004. Nonlinear CCA and PCA by align-

ment of local models.Pages 297–304 of:THRUN, S., SAUL , L. K., & SCHÖLKOPF,
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