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Abstract

While there are numerous unsupervised learning methotie imachine learning liter-
ature for exploring the structure ofsingledata set, less attention has been paid to the
unsupervised learning of multiple data sets that have adtstructure. In this thesis,
we show how to handle this problem in a probabilistic gemezdtamework, limiting
our analysis to the case of two related data sets. Each datetsas @ontextto guide
the feature extraction for the other.

Chapter 2 presents the background to probabilistic madgltiimensionality re-
duction techniques, and existing methods for exploringrslated data sets. Based on
an information theoretic analysis of the dependencies &&tviwo related data vari-
ables, in Chapters 3 and 4 we develop two generative modsédlan the Gaussian
Process Latent Variable Model (GPLVM), providing a prollisbc interpretation of
nonlinear canonical correlation analysis. In Chapter 5pdure of probabilistic canon-
ical correlation analysers is used to model two data setsatieanonlinearly related to
a shared latent space. We then show how to overcome the pralbldetermining the
number of mixture components, through a fully Bayesianttneat of the model. A
Dirichlet process prior is placed on the indicator variagbllowing an infinite number
of components, such that the numberepresentedomponents is inferred automati-

cally.
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Chapter 1

Introduction

Humans have to continually make decisions based on senbsgrations of an un-
certain and changing environment, and learn to adapt tlekiaviour according to the
observations. The learning process can be thought of aBngeamodelof a set of
observed data, with the aim of making predictions aboutétbservations. This char-
acterisation of learning is the basis of the field of mach&aening. Machine learning is
concerned with the development of algorithms that allowramater to ‘learn’. Given
a set of data, a machine learning algorithm finds patternales that characterise in-
teresting aspects, or the structure, of the data. Constgutiodels of data observations
is not a trivial task; in general, a model will only be an apgneation to the true un-
derlying data generating process. The problem lies in oeténg which aspects, or
features of the data are useful (in the way a human extracts usefgbsgifieatures in
order to make sense of the environment) and capturing thelesg features interact

within the model.

In general, research in the machine learning field has facoseanalysing data
that is the output of a single sensor (a single data sourtie¢mrghan analysing data
from the output of several sensors. However, it seems adgaatis to learn from
multiple data sources because there is more informationtdbe underlying data gen-
erating process than if we had just considered a single sourbe relevance of this
research area is inspired by the human brain’s ability tegréte five different sensory

input streams into a coherent representation of its enmeot. Additionally, due to
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the increased availability of electronic recording desiaed advances in data analysis
techniques, there exist many scenarios in which it becomesssary to model multiple
data sources. The analysis of more than one data sourcentedcdst in fields such as
robotics (where it is known as sensor fusion), data fusiosetéllite observations, and
multimodal image registration.

A naive approach to the problem of multiple data set maugiivould be to extract
useful features for each data source in turn, and then canthimn features together.
Unfortunately, this approach neglects the potentialljulshared information between
the data sources; since we suppose that the multiple setssefvations are views
of the same underlying process, then the shared informatibcorrespond to some
knowledge about the process. In this thesis, we assumehbaigeful features of
the data can be found through learning a joint representatianultiple data sets,
and we create models that capture the interaction of thederés. We can think of
learning from each set as being guided by all the other set$hecontextguides the
learning process for each data set. This suggests thatingfean underlying process
from multiple sets of observations is more robust to errantkearning from a single

set of observations, since there is more information abmuuseful features.

1.1 Modelling two data sources

In this thesis, we focus on the case of two data sources, ththegmethods we con-
sider may be generalised to multiple data sources. We segpaswe haveV pairs
of samples from the two data sourcés = {y; 1, ....yin} andYs = {yo1,....y2n},
where thenth pair is given byy,, = {y1..,y2.,}. There are many techniques in the lit-
erature for analysing two data sources, which we can categas either discriminative
or generative models.

Discriminative techniques find pairs of features = {x; ,,x2,} for each data
pairy, to optimise a measure of similarity between the feature gdie methods dif-
fer according to the relationship betweenandy,,, and the definition of the similarity

measure. We can broadly categorise the different methanwdiog to the relation-
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ship between the features and the data being linear, e.gnizah correlation analysis
(CCA) (Hotelling, 1936) or nonlinear e.g. kernel CCA (Lai &fie, 2000). The nonlin-
ear methods hold more interest than the linear methods singeneral most real life
data sets can be described well by extracting nonlinealdye features. However, a
difficult aspect of the modelling problem is the specificatid the nonlinear mappings
to find useful features; when finding nonlinear related festietween two data sets,
an overly flexible mapping may find spurious correlationsveein the data sets, and an
inflexible mapping may not recover the true underlying rel&hip between the sets.
In general, the difficulty with nonlinear problems is thaété is an indeterminacy in

the solution.

While there are many discriminative techniques for findihgred features be-
tween data sets, there are comparatively few generatikaitpees in the literature. The
existing methods include probabilistic CCA (Bach & Jord2@05), a linear method,
which formulates standard CCA as a Gaussian density estim@toblem, and a non-
linear method in (Verbeekt al., 2004), where each data set is modelled by a mixture
of aligned local feature extractors. Generative method§iriding shared features are
attractive because we can place a prior over the extractdréss, and capture our in-
tuition about the problem through the model structure. Addally a joint density is
defined over the two sets of data variables, allowing us ttuata predictive densities

of one data set given the other set.

1.2 Nonparametric methods

One of the problems of creating a model for a set of observeliddhat in defining

the model, strong assumptions are made about the undedgitaggeneration process.
If these assumptions are incorrect then the model will faitapture the data’s true
underlying structure. Traditionally, the flexibility of ¢hmodel stems from a set of
model parameters, and training the model consists of finthagetting of the param-
eters which best fits the data. Suppose that we believe tledtad data points can be

represented as coming frofa distinct clusters. The problem lies in determiniAg
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Similarly, if we believe that the a set of data points are gateel from an underlying
function, then the problem lies in parameterising the fiomct If we choose a model
structure that is too flexible, then the model will overfit tth@ta. Conversely, if the
model structure is too inflexible, the model will fail to finkdet underlying structure of
the data.

Nonparametric Bayesian methods, originally developedhénstatistics field, are
rapidly receiving more interest in the machine learning samity. Nonparametric
Bayesian models have the attractive property that theiptexity scales with the num-
ber of data points. The models that we create in this thesidased on two types
of nonparametric Bayesian models, Gaussian processea@ait] 1978; Williams &
Rasmussen, 1996; Mackay, 1998; Rasmussen & Williams, 2006¢h define a dis-
tribution over functions, and Dirichlet processes (Feayysl973; Antoniak, 1974),

which define a distribution over distributions.

1.3 Scope of the thesis

In this thesis, we focus on learning from two data sources.us¢ea generative prob-
abilistic approach to the problem, such that each observagt consists of a shared
component (which is conditionally independent on a shaaezht variable) and mod-

els the between-set variation, and a non-shared comporméett wmodels the within-set

variation. We create three novel models which we discussepers 3, 4, and 5. The
models are all nonparametric Bayesian methods, a field wiashrecently attracted a
lot of interest in the machine learning community since ihisn elegant way to define

flexible models.

1.4 Overview of the thesis

Chapter 2
We introduce the problem of learning from two sets of obsgoua, and discuss the
advantages of a generative probabilistic approach ovesaidiinative approach. We

then review a number of models in the literature for learrfrogn data sources. The
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most important model that we discuss is probabilistic caarcorrelation analysis
(PCCA) (Bach & Jordan, 2005), which formulates canonicatalation analysis as a
Gaussian density estimation problem. This is one of the femegative approaches to
dependency seeking data analysis, and is a basis for theftb&t work in the thesis.
We also introduce nonparametric Bayesian methods andssigbeir use as flexible
priors in probabilistic modelling.

Chapter 3

We examine the problem of learning from two sets of obsemmatfrom an information
theoretic perspective. We derive an alternative formatatf PCCA as probabilistic
PCA (Tipping & Bishop, 1997) on two linearly transformed a@a&ources, where the
transformations are found automatically and capture thigimvset variation in the data
sources. We then extend this model, in the spirit of the Gangzocess latent vari-
able model (GPLVM) (Lawrence, 2004) to create a GPLVM foratiain of canonical
correlation analysis. This is a generative probabilistimded of nonlinear canonical
correlation analysis. We then evaluate GPLVM-CCA's perfance on a range of data
sets.

Chapter 4

We extend the model of the previous chapter to model contplicaoise processes.
Whereas the original model modelled the variance privagath data source as multi-
variate Gaussian, in this chapter we place Gaussian prpdesson the noise function.
The ability of the model to find shared and private componkats two correlated data
sources is demonstrated on synthetic data.

Chapter 5

We extend probabilistic canonical correlation analysiSCR) to a mixture of PCCA
to model two data sources that lie close to nonlinear maastdiVe then further extend
the model to a Dirichlet process mixture of PCCA, which alkdiwe number of mixture
components to be automatically determined from the data.

Chapter 6

Directions for future work are given in this chapter.
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1.5 Publications

The thesis builds on work from the following publications:

e LEEN, G., & FYFE, C. 2006. A Gaussian Process Latent Variable Model For-
mulation of Canonical Correlation Analysi®ages 413—-418 of: Proceedings of
the 14th European Symposium of Artificial Neural NetworkSANN)(Chapter
3)

e FYFE, C., & LEEN, G. 2006. Stochastic Processes for Canonical Correlation
Analysis. Pages 245-50 of: Proceedings of the 14th European Sympaxium
Artificial Neural Networks (ESANNY hapter 5)

1.6 Notation and conventions

In the mathematical notation, we use italicgo indicate scalars, bold lowercase
to indicate vectors, and bold uppercaAeto indicate matrices. The vectors, unless
otherwise stated, are column vectors. The transpose oftanaca matrix is indicated
by the superscript. The identity matrix is denoted bl Also, a subscript may be

used to show'’s dimension.



Chapter 2

Background

Given multiple sets of sensory data, an organism repressnksiowledge about the
world internally by means of synaptic structures in the toyréine internal representa-
tions are believed to be formed in such a way such that theymenative and can be
used to reason about the environment. Incredibly, the ¢sifpam the different senses
are combined in such a way to create a coherent descriptidwe o¥orld. This problem
of jointly extracting the useful features from multipleféifent outputs is the focus of
the thesis. The relevant information is extracted from eadiput in turn, depending
on the current state of the other outputs, which we defineeasdhtext. We therefore
refer to this type of learning asontext assisted learning

Learning from multiple sources of data sources is a timebb@mm. Due to
the increasing availability of electronic recording dedc such as cameras and mi-
crophones, along with the advances in feature extractidheofecorded information
from these sensors, there are many situations in which xoassisted learning could
be applied. Additionally, it is common to encounter mukiplbservations of the same
phenomenon, yielding multiple sets of data which all shareescommon information.

Some examples are:

e A human’s five senses: sight, hearing, touch, taste, and,sgighg him /her

five sets of observations of his/her environment.

e Many witnesses’ accounts of an alleged crime.
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e Translations of a set of documents in several differentlagegs.

e Audio-visual person authentication.

Each example describes sets of observations of one pheoopgrch that there must
be some shared information between the different observagts. For instance, dif-
ferent translations of a document (as in the third exampl#)cantain some shared
information since the text in each of the translations walvé& the same meaning, re-
gardless of language.

Suppose that we want to group a set of documents accordirgiotbpic. We
want to learn a semantic (and language independent) repatiee of the text in the
documents, which could be then be used for any retrieval tagoaisation task in
both a standard and cross-lingual scenario. The reprdégentsf the documents in
this semantic, or topic, space is a compact way of expregsbmgnformation that is
seen to be useful for this learning problem. By represergach document using the
well known bag-of-words representation, i.e. as a vectavarfd count frequencies in
a vector space where there is a dimension for every possitid im the vocabulary
of the language, we would expect word occurrence pattermsdioate a particular
topic. Across languages, these patterns will differ, butwesild expect there to be
correlations between the patterns for different transetiof the same document. This
problem was addressed in (Vinokourewal.,, 2003) by using a technique called Kernel
Canonical Correlation Analysis.

Audio-visual person authentication systems attempt tiytre identity of a per-
son through both an audio stream (such as the user speakememse) and a corre-
sponding video stream (of the user’s face as he is speakigahtence). Using two
sources of information can yield better results than usimly one; each stream can
help the other to filter out the noise independent of the uyihey process, and also to
learn from incomplete data. For instance, parts of the velezam may be missing, due
to noise or occlusion of the user’s face. The audio streanhelmto infer the missing

parts of the video data, so that both can be used to jointiytifyethe user.
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To summarise, the context assisted learning problem liembining the in-
formation from the multiple data sources so that we can firdntiost likely process
underlying the observations. Since the sets of obsenatbare a common source, it
is expected that there are dependencies between the setseofations. Learning con-
sists of exploiting statistical regularities across npl#ticodings of the same process to
extract common features. In this thesis, we derive seveaahime learning algorithms
for modelling two data sources that share some common irgbom However, our

methods may be generalised to modelling multiple relatéa slaurces.

2.1 A probabilistic view of the problem

For modelling two data sources, we want to find a compact septation of the infor-
mation contained in both the data sources, in the same wagia dgn compress two
sources of information into an internal manageable reptasen. At first it may seem
that a probabilistic approach is not necessary for the apowklems. For instance,
a possible solution to the problem of designing an audiaaliperson authentication
system is to construct a classifier which outputs a decissoio avhether the identity
claim is true. This involves finding a deterministic mappfrgm the audio-visual data
to the decision, which does not involve any random varialifage choose to output a
measure of the uncertainty associated with the classtiisrréquires estimation of the
parameters of a binary random variable which does not cathiouse of sophisticated
probabilistic models. This type of approach is knowndacriminative modelling,
and is only concerned with optimising a mapping from the tsga the desired out-
puts. By adjusting the classification boundary or functippraximation accuracy, the
model focuses on the given task to produce a good perform&xeenples of discrim-
inant models include support vector machines (Vapnik, 1,.988d traditional neural
networks e.g. (Haykin, 1994).

This approach neglects the true underlying structure tgptbblem; the genera-
tive process (such as the physical systems like the glattisvacal tract that interact

to create speech, the interaction of facial features toterttee video signal) is not
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taken into account by the model. An approach that explicglyresents the underly-
ing structure to a problem - the features (observed and @nedd) and probabilistic
relationships between them - is callgenerative modelling The generative approach
defines a joint probability density over all the variablesha problem, which can then
be manipulated to find desired classification or regressioctions. Working in the
joint distribution space offers a great degree of flexipifihd a sense of completeness
since we can insert knowledge about the system such as indepees, dependencies
and prior distributions in a principled manner. For a congmar of discriminative and

generative approaches, see (Jebara, 2001).

In this thesis, we choose to use generative models for find@pendencies be-
tween sets of observations. This is because the focus ofaferemodelling is to
represent a phenomenon and resynthesise certain configqugr&tom it, and for our
problem we wish to represent the two data sources such thaawealculate quan-
tities such as the predictive distribution over one souigergthe other, and the pre-
dictive distribution over the underlying processes givea data. Another reason for
using generative models is that we are dealing with more din@set of observations,
and probabilistic techniques are very good at reasoninigdnricreased complexity of
the problem domain, due to the modelling of two sources atste a single source.
Furthermore, there are many existing generative modefgiding an informative rep-
resentation of a single data source, and the probabilisticéwork allows these models

to be extended in a principled way to the modelling of moretbiae data source.

The interdependencies between variables of a model canpbesented simply
through agraphical model, (also known as a directed acyclic graph or Bayesian net-
work) and the structure and parameters of the model can beeléavithin the Bayesian
framework from the data. Graphical models provide a goodalisepresentation of the
prior structure that we enforce on our generative modelchviéflects our prior as-
sumptions about the way in which the data is generated. Eadf of the graphical
model represents a random variable, and the arcs (or linksgss the probabilistic re-

lationships between the variables. We use directed grapmmaodels, in which directed
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links (or arrows) are used to express conditional distridmg. Unobserved random
variables are denoted by shaded nodes in this thesis. A go@dluction to graphical

models is given in (Jordan, 1999) and (Frey, 1998).

2.2 Density estimation using parametric models

In this section, we review some techniques for fitting graphmodels to data. Given
a finite sample of dat® = {yy,...,y~}, @ common way of modelling this data is to
assume that it is drawn from an unknown probability disttitrup (y), which we have
to model. This method, called density estimation, allowsousummarise the data (see
(Bishop, 1999) for an introduction). A standard approaathiosity estimation involves
choosing a specific form for the density as a parametric mog@el ©), which contains

a number of adaptive parameté€¥sThis approach is known gmrametric modelling.
Learning then consists of inferring the parameter vatoegven the observed data set
Y i.e. findingp(© | Y). To infer the distribution over a data poip, with the trained

model, the following equation is used:

p<yn|Y>:/p<yn|@>p<@|Y>de 2.1)

By integrating ove©®, we are considering all possible parameterisations of theain
The Bayesian approach is to estimate full distributiong dweparameters, using Bayes

rule, for use in (2.1):

p(Y[©)p(©) p(Y[©)p(©)

PO =T’ T Y 0)n(©)d®

(2.2)

In practice, it may be necessary to make approximations .t),(8ince computing
the integral is not always straightforward. Two common apphes argnaximum

likelihood (ML) and maximum a posteriori (MAP) learning, which replacg (© | Y)



22 Chapter 2. Background

with a point estimat®* such that:

p(y|Y)=p(y|©O") where9* = argmélxp(Y |©) ML (2.3)

O = argmax p (©1Y) MAP (2.4)

In general, it is easier to maximise the log of the above giti@s, which results

in the same solution. The maximum likelihood criterion onbynsiders the training
examples. The a posteriori estimate uses both the trainageles and also a prior
on O to regularise the estimate 6f*. When viewed as a function of the parameters
O, p(Y | ©) is called the likelihood function. Choosing the likelihofachction as an
objective function for optimisation is intuitively app@aj since if (as is often the case)
the chosen model differs from the true distribution, masiation of the likelihood cor-
responds to minimisation of the Kullback-Leibler divergerbetween the empirical
distribution and the model. This results in the trained nag@roximating the empir-

ical distribution subject to the constraints of modelling.

2.2.1 Latent variable models

A way of constraining the model is through the introductidiabent or hidden vari-
ables, which reduces the number of degrees of freedom in teinby expressing
p (y) in terms of a smaller number of variables. This makes themagsan that the in-
trinsic dimensionality of the data is lower than the dataefisionality i.e the data lies
close to a manifold embedded in the data space. By fitting argéwe latent variable
model to the empirical data, it is expected that the latenalsées capture some useful
statistical properties about the observed data variabiesto reflect some aspect of the
underlying data generating process. This lower dimenslatent representation of the
observed variables can then be obtained by using BayesAukdent variable model
is defined by specifying the joint distribution over the Hteariablesx € 17 and the
observed variableg € R”, whereq < D. The joint distribution is decomposed as
p(y,x) = p(x)p(y | x) wherep (x) is a prior distribution over the latent variables

andp (y | x) is a conditional distribution which expresses the uncetyain the map-
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Figure 2.1: A graphical model for modelling a single datarsety as generated by a
latent (or hidden) variable.

ping from the latent variables to the observed variabless Jinucture is represented as
the graphical model in Figure 2.1. The conditional disttid p (y | x) is expressed

in terms of a mapping from toy. y is assumed to be generated framaccording to:
y=/(x,0)+n (2.5)

where f (x, ©) is a function ofx parameterised by a set of paramet®rsandn is a
x-independent zero mean noise process. After specifyingiiloe distributionp (x),

the desired distribution overis found by marginalising out the latent variables:

p<y|@>:/p<y\x,@>p<x>dx (2.6)

Fitting the model to the data corresponds to determiningpinameter® of the model

by maximum likelihood, where the likelihood function is givby (2.6). Given N data
samplesY = {yi,...,y~} and under the assumption that the samples are indepen-
dently identically distributed (i.i.d) i.ep(Y | ©) = [T\_, p(y. | ©), the log of the

likelihood function is given by:
N N
L=1ogp(Y|0)=log[[p(ys|©) = logp(y.|®) (2.7)
n=1 n=1

In practice, the integral in (2.6) is intractable except ¢ertain forms ofp (x) and

p(y | x,0). One of the simplest latent variable models assumes thabliberved
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variables are linearly related to the latent variables aitled noise:
y=Wx+pu+n (2.8)

wherey € P, x € R, W € RP*4 is the matrix describing the linear relationship
betweenx andy, u € R” is a parameter vector allowing the model to have a non zero
mean, anch € 17 is a noise term, taken to be an independent sample from a i@auss

distribution with zero mean and covariantg:
pm) =N(n|0,%,)
This gives a Gaussian likelihood for a data pgipt
P(Yn | X0, W, B0) = N(yn | Wy + p2, 3n) (2.9)

A conjugate prior is placed on the latent variablés, ) = N(x,, | 0,1) and integrated

out, giving a marginal likelihood:

p(yn | W, X, = /p(}’n | X, W, 30)p(%n ) dX,, (2.10)

= Ny |1, WWT +3,) (2.11)

The likelihood of the parameters given alldata pointsY = [y,,...,y~]' is given by

N
p(Y | W, S0) = [[N(yn | 1. WWT + 5y) (2.12)

n=1

(assuming that the data points are independent). Paranadters are then found to
maximise the likelihood function (2.12). From inspectidi{2212), it can be seen that
one solution would béV = 0 andX, = ¥, the sample covariance matrix of the
data. However, this is not an interesting solution sincedidt@ is solely modelled by

noise; instead the form At,, is constrained such th&V is forced to model interesting
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variation in the data e.g in factor analysis (Bartholome®87), probabilistic principal
component analysis (Tipping & Bishop, 1999), and probatidicanonical correlation
analysis (Bach & Jordan, 2005). For a more complete intriolido latent variable

models, see (Bishop, 1999).

2.2.1.1 Finding the latent representation of the data

The latent representatian of the observed datg is found by applying Bayes rule.
This can be thought of graphically as inverting the arrowhs graphical model in

Figure 2.1. The posterior distribution over the latentahles is given by:

p(x|y,©)= W (2.13)

For the Gaussian model given in the previous section, it mwknthat since both
p(y,x | ©)andp (y) are Gaussian, the posterior dengitk | y, ©) will also be Gaus-

sian, with mean.y, and covarianc&,,,:

pxy = WH(WW' +3,) " (y — p) (2.14)

Sy = I-WI(WW' +3,)7'W (2.15)

An equivalent formulation can be found by applying the Waaghdentity to the above

equations giving:

iy = (WISJW+D)7WTS, (y — p) (2.16)

Sy = (WEJ'WI)™! (2.17)

The advantage of this formulation is that we only have tornhae x ¢ matrix rather

than aD x D matrix in (2.14) and (2.15).

2.2.2 Extending latent variable models

We have reviewed a simple Gaussian latent variable modelwdan be used to model

data that is thought to be linearly related to an underlyatgrit variable of lower di-
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mensionality i.e. the data is assumed to lie close to a lisebspace. However, the
model may not be sufficient for modelling more complex dats,ser instance the
data may be better described as lying close to a nonlineaifaldanThe linear latent
variable model can be extended within the probabilistioeaork to create more com-
plex models that assume a nonlinear relationship betwestatent and data spaces.
One approach to this problem is to model the global nonlinggpping. In this chap-
ter we review two models which use this approach and can heedias probabilis-
tic nonlinear principal component analysis models, thedgative Topographic Map-
ping (GTM) (Bishopet al, 1998) and the Gaussian Process Latent Variable Model
(GPLVM) (Lawrence, 2004). The second is to use a mixture tefiavariable models
as a set of local linear approximations to the nonlinear folhiwhich is reviewed in

Chapter 5.

2.3 Nonparametric Bayesian models

The models that we reviewed in the previous section are petresmmodels which
assume some finite set of parametersSince the parameter set is finite, the complexity
of the model is bounded, such that the model is not very flexalold may not be able
to infer the correct model complexity for the data. Nonpagtaiima models, on the other

hand, assume an infinite set of parameters and hence areesbjdimodels.

2.3.1 Gaussian processes

Gaussian processes (GP) (O’Hagan, 1978; Williams & Rasem)sk996; Mackay,
1998; Rasmussen & Williams, 2006) are probability disttidtaus over functions. In
this section we illustrate how GP’s can be used to infer theedging function in
a regression problem. Suppose that we have a supervisethniggroblem i.e. we
want to learn a mapping from an inpxto an output (or target) from empirical data
D= ((xs,y:) | i=1,.,N).

To make predictions of the targgtgiven new input points, we need to find an
underlying functionf which will make predictions for all possible input values.eW

assume that the output is a noisy version of the functionegju= f(x) + n wheren
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isi.i.d. Gaussian noise with variange!. There are two main approaches to specifying
the preferred characteristics 6f The first is to restrict the class of possible functions,
such as in parametric modelling tools like the latent vdeahnodels introduced in
Section 2.2.1, in which only linear functionsofare considered. The second approach
specifies which functions are more preferable (for instafwections that are smooth)
by placing a prior over the space of all possible functiomgng higher probability to
functions that have the desired characteristics. Thisrskapproach is more flexible
since a rich class of functions can be considered. Gauss@ess (GP) methods
use this approach; a Gaussian process is the generaligdtooaussian probability
distribution to a distribution over functions. Learningtimee GP framework involves
placing a prior over functions, then after seeing the dataalculating the posterior
distribution over functions.

A formal definition for a Gaussian process is as follows. @dgrsa stochastic
process which defines a distributigrif), over functionsf, wheref maps some input
spacey to R. If e.g. x = R, f is infinite dimensional; however thevalues index the
function, f(x), at a countable number of points and so we use the data atgbegs
to determinep(f) in function space. Ip(f) is multivariate Gaussian for every finite
subset ofy, the process is a GP and is then determined by a mean funeatiepand

covariance functiork’(x, x'):

m(x) = E[f(x)] (2.18)

K(x,x) = E[(f(x) —m(x))(f(x) —m(x))] (2.19)

These are often defined by hyperparameters, expressingioubpliefs on the nature

of K (x,x’) andm(x), whose values are learned from the data.

2.3.1.1 Aregression example
Regression within the GP framework involves finding the ulyaleg function f of the
datay. We want to predict the function at a finite number of test inpaints which

we denote byX*, given a training data s&? = [X, Y]. We first place a prior over the
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space of functions evaluated¥t; typically this a zero mean Gaussian process:

£ ~ N(f* | 0, K(X*, X)) (2.20)

To find the posterior distribution over functions (evaluhtd X*) given the training

data,p(f* | y, X*, X), we condition over the joint distribution

p(f*, Y | X*, X):
—1 *
<};)~N (};)IO, KX, X)+ 67T K(X,X*) (2.21)
£ £ K(X*X) KX X
to gain
£ XY, X ~ N(f|uX*),o%(X")) (2.22)
where
p(X) = KX X)EX,X)+ 6710y, (2.23)

oi(X*) = K(X*,X*) - K(X*,X)[K(X,X)+ 31 K(X, X*(2.24)

Graphically we can think of inference in the GP frameworkeysating functions from
the prior that do not agree with the observati@hsFigure 2.2 illustrates the inference

steps for an example using 1-dimensional input and targethlas.

2.3.2 Dirichlet processes

The Dirichlet process (DP) is a nonparametric distributordistributions, or equiva-
lently, a measure on measures (Ferguson, 1973). A DP is ptedsed by a scaling
parametery, > 0, and a base measurg. We can view DP’s as an infinite dimensional
Dirichlet distribution, which we review in the next sectiolmhe DP can be used as a
nonparametric prior over the parameters of a mixture mdéetguson, 1973; Anto-
niak, 1974; Escobar, 1994); in Chapter 5 we derive a DP nextuwdel of probabilistic

canonical correlation analysers.
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f(x)
o

(@) (b)

Figure 2.2: Two functions-) drawn at random from a GP prior, evaluatedXat

(a). Given the data seéb and the prior, we can calculate the posterior distribution
f* | X*, Y, X over functions. (b) shows the data (0), the mean (-) of theepios
distribution (evaluated a&*), and two functions-f drawn at random from the posterior
distribution. In both diagrams, the grey shaded area repteghe pointwise mean
plus and minus 2 standard deviations for each input valu¢hiprior and posterior
respectively.

2.3.2.1 The Dirichlet distribution

The Dirichlet distribution is a distribution over discretistributions (over thé dimen-
sional probability simplex). Suppose thgis a K dimensional probability distribution
on a discrete space, i.g.= {¢1, ..., gx } is a K dimensional vector s.t/i : g; > 0 and

Zfil g; = 1. A Dirichlet distribution ong is written as:

/

K
bl | o) = Dir(g | i) = i Lo 2.25)

wherea’ = {o], ..., o/ } is the parameter vector antd : o/ > 0. The first term is a

normalisation constant, wheféz) = [ u(*~Ye~“du denotes the Gamma function.

0
!
o

>ray’
the probability of K events occurring arg = {g1, ..., gk }, given that theth event has

The mean of the distribution is given 8Yg;) = This gives the probability that

been observed, — 1 times. It is convenient to reparameterise by defining:

aozzfila; al:z_évlz]-vaK a:{al,...,O[K} (226)

With this formulation,£(g;) = «;, anda, can be considered as tpescisionor con-

centration parameter. When, is large,g is likely to be neara, the mean of the
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distribution, and whemy, is small,g can be spread far away arouad

2.3.2.2 Conjugacy to the multinomial distribution

The Dirichlet distribution is conjugate to the multinomiistribution. Suppose that we
have a discrete observed varialtde having K possible state$6!, ..., 9%}, such that

© ~ Multinomial(g), with likelihood function:
pO=0|g)=g, fori=1,...K (2.27)

After observing® = #°, the posterior oveg is also a Dirichlet:

gla)pO="0|g)

. p(
0=0a)= :
p(g ‘ ) P(@ g | O/)

= Dir(g | ") (2.28)

wherea” = {af, ..., a} is the parameter vectow = «; + 1 andVj # i : o} = o).
This shows that the posterior overs based on the updated ‘counts’ of the observed
states 0f9. For a data seD = {04, ..., On}, (IV observed states @), the posterior

overg is:

p(g | D,d) = Dir(g| o} + Ny, ..., + Nk) (2.29)

where N; is the number of time® = 6’ in D. The probability of the next data point

Oy41 given the observed dafa, is:

pOxa =0 D) = [pO5 =0 gnie| Dadis @30
= /giDir(g | &) + Ny, ..., o + Ng)dg  (2.31)
apQ; + Nz
= 2 " 2.32
Y (2.32)

This shows the effect of the Dirichlet prior ovet the parameters of the multino-
mial distribution. Without the prior, the maximum likelibd estimate og is given

by Mt = 58 i = 1,..., K, which is a point estimate of(g | D, ). If some of the
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(b)

(a) (b)

Figure 2.4: lllustration of a Dirichlet process prior 6n

countsNV; are very small, and&v < K, the parameterg may incorrectly be estimated
to be zero. When using the Dirichlet prior as in (2.32), thisds towards the maximum

likelihood estimate when the count§ become large and the data dominates the prior.

Figure 2.3a shows a generative model for= {©,,...,0Oy}. This combines a
multinomial likelihood model with a Dirichlet prior; a digbution over©,, is generated
from the Dirichlet priorp(g | o, @), and then a value fo®,, is drawn from®,, ~
Multinomial(g). It is not straightforward to sample frogy an alternative is to sample
0, by directly (integrating oveg) using the predictive distribution in (2.32), whefe
is the previously generated samples.

Suppose that7, is a distribution over a measurable spé&tes depicted in Figure
2.4a. This acts as the base measure for the DP, and this caneppréted as the
continuous version of the parameter veetoe {«ay, ..., ax }, the mean of the Dirichlet

distribution. A Dirichlet process is defined to be the dimition of a random probability



32 Chapter 2. Background

measur&sy over® i.e.

such that for anyK finite partitions of©, {A, ..., Ax}, (as shown in Figure 2.4b),
{G(Ay), ..., G(Ak)} follows a finite dimensional Dirichlet distribution with peEmeters
{a0Go(Ar), ..., Go(Axk )}

{G(Al), ceny G(AK)} ~ Dir(aoGo(Al), PN CMQGQ(AK)) (234)

where oy > 0 determines the concentration dfG(A,),...,G(Ak)} around
{Go(A1),...,Go(Ak)}. Asag — oo, G — Gy. The graphical model for the Dirichlet
process is shown in Figure 2.3b.

The posterior ovet;y givenD = {04, ..., Oy} is given by:

=1

p(G | D,ao,Go) =DP <G

N
1
P <a0G0 +Z(5@i> . Qo +N> (2.35)

wherede, is a discrete measure (or atom) concentrate®;atThe Dirichlet process
allows us to model deviations away from a baseline ptgr We present two perspec-

tives on the Dirichlet process.

2.3.2.3 Plya Urn Scheme

One perspective on the Dirichlet process is provided by tilgaPurn scheme (Black-
well & MacQueen, 1973), which demonstrates the clustermog@rty of draws front.
Suppose that we have already generated a sequencdata point = {0, ...,On}
according toG; {©4,...,©x} are conditionally independent giver, and exchange-

able. Integrating ovetr, we get

P(@N+1 | Dﬂo,Go) = /p(@N+1 | G)p(G | D>ao,Go)dG (2.36)

1 N
= <a0G0(9N+1) +) 592.) (2.37)

Oé()—i—N i—1
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With the Polya urn sampling scheme, we assume that them israwhich contains
coloured balls. The balls are drawn from the urn with proligiproportional to their
mass. The coloured balls have unit mass and there is an@ddiblack ball that has
massy. After drawing a coloured ball from the urn, we replace thiéibahe urn with
an additional ball of the same coloulf the black ball is drawn, it is replaced along
with a ball of a new colour, where the colour is drawn from iiligttion G,. In (2.37),

a data poinB,, represents a draw from the urR, = {O, ..., Oy} is the current state

of the urn, and theth colour is represented I#y. If we rewrite (2.37) as:

Qo

C) D Go) =
p( N+1| , O, 0) o+ N

Go(On41) +

N (1L
o (Nigaei) (2.38)

we can see that it is a mixture of distributions. With prolﬁ@biﬁ, Opy41 IS drawn
from G, as we can see from the first term of (2.38). Analogously,istise probability
that we draw the black ball from the urn. The second term &gRshows that with
probability ao% On41 is drawn uniformly from{©,, ..., ©x}, or equivalently, one
of the coloured balls is drawn from the urn (and hence the raistdkes on the same
colour as one of the existing balls). The values of the previdata points (or balls in
the urn) are not necessarily distinct. The probability that= 6; (is theith colour) is

given by:

p(On = 0" | D, g, Go) = (2.39)

Oé()—i—N

The Polya urn sampling scheme shows the clustering prppéthe draws fronG, in

that a set of sample®), ..., Oy} are not necessarily distinct. This means that the data
is divided into K partitions, or clusters, where each partition has the saamanpeter
setting?’. The more ofter®’ is drawn, the more likely it is to be drawn in the future.
ap controls the tendency to form clustersaif is very small, it is likely that there will

be few clusters, and i, is large, there will be many small clusters. Another analogy

for the clustering mechanism is given by the Chinese restdyorocess.
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.Q Q‘

Figure 2.5: The Chinese restaurant process. The custofgjsafe seated at the
tables (circles), where thigh table corresponds to the unique vaitie

2.3.2.4 Chinese restaurant process

In the Chinese restaurant process (Aldous, 1985¢ustomers sit down in the restau-
rant which has an infinite number of tables. The tables reptethe distinct values
0,1 = 1,..., K, whereK is the number of occupied tables, mpresented clusters

Theith customer represents.
e The first custome®; sits at the first tablé'. N; = 1, K = 1.

¢ Either theith customer sits at already occupied tadflevith probability

N_ik

2.40
g + N ( )

whereN_; ,, denotes the number of customers at tableot including the current

customer. Théth customer inherit§*. N, — N;, + 1.

e or with probability

o

241
g + N ( )

the ith customer sits at a new tabi+!. For the new tableg**! is generated

fromGo. NK+1 =1 K« K+ 1.

The Chinese restaurant process is shown in Figure 2.5. Thedants (the customers)
©,, are clustered according to the parametethey have inherited (the table which

they are occupying).
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I B, (1-8,)

Tr‘l
B,(1-B,) (1-8,)(1-B,)
Tr2

B-B)(1-B)|  (1-B)(1-B,)(1-B,)
> :

Figure 2.6: The stick breaking construction

2.3.2.5 Stick breaking representation

We can get an insight int@, the distribution drawn from & P(G | Gy, o), through

the stick breaking construction (Sethuraman, 1984¢an be represented as:
G=> mby (2.42)
i=1

whered,: is a probability measure concentrateddgtand; and ¢’ are defined be-
low. The stick breaking construction is based on two indépeaninfinite sequences of

independent random variablés; }2, and {0}

Bi ~ Beta(1, ap) (2.43)

0" ~ Gy (2.44)

The infinite sequence = {r;}:2, is defined recursively as:

i—1

i=1

which can be interpreted as breaking of parts of a stickiallytof unit length, as
depicted in Figure 2.6, and therefore we write~ Stick(ay). We can show that
S m = 1sincel — K m = T1%,(1 = 8,) 2= 0. This shows thatr can be

interpreted as a random probability measure on positiegars.
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2.4 Modelling a single data source

In this section, we look at different ways of modelling a $endata source, since later

on we extend these models to modelling more than one dataesour

2.4.1 Probabilistic principal component analysis

Principal component analysis can be obtained from a spdoifia of latent variable
model, as will be seen in this section. Principal componealysis (PCA) (Joliffe,
1986) is a well established statistical technique for disi@mality reduction. In gen-
eral, mapping the data into a lower dimensional space isnaganied by the loss
of some information contained in the data, so a desired pip@é a dimensional-
ity reduction technique is to preserve as much of the usefotination as possible.
Given a set ofV D-dimensional data vectors,,n € {1,..., N}, the principal axes
u;,j € {1,...,D}, are defined as the eigenvectors of the sample covariana&mat

Y=L 5N (vn—tty)(yn—py)T, wherepy is the sample mean of the data, such that
U =UA (2.46)

whereU is the matrix of column eigenvectous, j € {1, ..., D}, andA is the diagonal
matrix of corresponding eigenvalugs, j € {1, ..., D}. The principal components are
given by the linear projection of the data onto the princgpads. For a data poigt,, the
principal components are given lry, = U'y,. Suppose that we only retain a subset
¢ < D of the principal axes, i.e. the dominant eigenvectors &, as the columns
of the matrixU, € RP*?, By projecting the data ontty,,, a reduced dimensionality
representationgédimensional) of the data is obtained. For thh data pointy,, the
corresponding latent variable is givenky = U;yn. These projections are of interest

because they minimise the squared reconstruction erroitiogevhole data séY':

N
1 -
n=1
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Figure 2.7: lllustration of principal component analysppbed to two dimensional
data.

wherey,, = U,x,, is the reconstruction of theth data point. This formulation of PCA
suggests an alternative approach to finding the principalpoments of the data, by

minimising (2.47). This approach forms the basis for nagdinextensions of PCA.

A probabilistic formulation of PCA called probabilistic RQPPCA) was intro-
duced in (Tipping & Bishop, 1999) in the form of a Gaussiartdtvariable model.
By assuming that the noise covariance is isotropic X.g.= oI, PCA can be derived
from within a Gaussian density estimation framework as ictiSa 2.2.1. For this noise

model, the log likelihood is given by:

N
L = ) logp(yn)
n=1
ND N N ~
= —~—"log2r — —log|C| — =Tr{C™'x} (2.48)
2 2 2
whereC = WW ' + ¢2I andX is the sample covariance matrix of the data. There

exists an exact analytical solution for the parametersefibdelW ando?; the max-

imum likelihood solution of the parameteW ,;;, ando?,, (obtained by maximising
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(2.48) with respect tdV ando?) are given by:

Wi = Uy (A, — 02, 1)2R (2.49)
1 D
j=q+1

whereU, € RP*¢ is a matrix whose columns are the figsigenvectors of i.e. the
first ¢ principal axes, with corresponding eigenvalues;j = 1, ..., ¢ in the diagonal
matrix A, € R7*?, andR is a rotation matrix. Suppose that we now want to find
the latent variable representation of the data. This isddmnevaluating the posterior
density over the latent variables. Using (2.16) and (2.hd)the ML estimates for the

parameters, we get:

p(Xn [ ¥n) = NXn | bxly, Exiy) (2.51)
wheregig, = (Wi Wz + 03, D)7 Wiy, (2.52)
Sy = (Wi W + 03,17 (2.53)

The reduced dimensionality representation for a data ggjcan be obtained by sum-
marisingp(x,, | y.) by its mean, which is given in (2.52). Due to the noise vamanc
o2, this does not represent an orthogonal projection into tatpace as in standard
PCA, since the latent projection becomes skewed towardwiti@. If we leto?,, — 0
when defining the model, the density model will become siagahd therefore un-
defined. However, if necessary we can still obtain the ogtm@eonstruction of the

data from the latent mean by omitting the noise term in themstruction by using

Yo = (Wi W) "Wiy,.

2.4.2 Nonlinear PCA

The PPCA model is limited since we only find latent repregeota that are linearly
related to the data, and we can only model the data as coneimggfiunimodal Gaussian

density. In this section we consider a latent space thatnimearly related to the data
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space. Nonlinear dimensionality reduction is generallyilaposed problem, since
the space of nonlinear functions is very large and hences thvdl not be a unique
solution when fitting a nonlinear function to data. To ovenecthis problem, we have

to constrain the form of the solution, as we will see in théolwing sections.

Suppose that we have a data set that is intrinsically low dgiomal but is em-
bedded nonlinearly in a high dimensional space i.e. it liesoo close to, a nonlinear
manifold. This is a generalisation of the linear dimensiibpaeduction problems that
we reviewed in Section 2.2.1, but whereas before we restrigtir analysis to finding
linear transformations of the data i.e. approximation efdiata by a linear subspace,
we now consider any nonlinear mapping, giving us a nonlipegcipal component
analysis problem. In this context, looking for the greatestlinear direction of vari-
ance in the data is problematic. Instead, nonlinear PCA tgpthods try to find a

manifold which minimises the squared reconstruction error

One approach to constructing a nonlinear model is to asshatdinear approxi-
mations can be made in local regions of the data space. Ipifig@& Bishop, 1997),
the authors extend their probabilistic model of PCA to aeaivell defined mixture
model of principal component analysers, whose paramed@rbe estimated by an EM
algorithm, to capture data that lies on a nonlinear manifisidhis method, the nonlin-
ear manifold is approximated by linear PCA models. A nordmatent variable model
called the generative topographic mapping (GTM) was intoed in (Bishopet al,
1996), (see also (Svensén, 1998; Bistlebal, 1998)) where the nonlinear function
f(x,0) of the latent variablex € 7 underlying the data is given by a generalised

linear regression model of the form:

f(x,0) = Wo(x) (2.54)

whereW € RP*M "andg(x) € ®Y, whose elements;(x) consist ofM fixed basis
functions evaluated at. The relationship between the latent and data variablages g

by the mapping with some added noisec P which is taken to be from an isotropic
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Figure 2.8: Schematic illustration of the GTM: a grid of lattepoints is mapped
through a parameterised nonlinear mappfiig, W) to a corresponding grid of Gaus-
sian centres embedded in data space. Adapted from (Betredp 1996)

Gaussian distribution with variane€. The conditional distributiop(y|x, W, o?) is

given by:
p(ylx, W,0%) = N(y | Wo(x) + p,0°T) (2.55)

wherep is typically incorporated as a bias term into the basis fionst As we men-
tioned in Section 2.2.1, the integral in (2.6) is generatifractable; in order to for-
mulate a tractable nonlinear latent variable model thermistribution is chosen to

be:

px) =2 > o(x—xi) (2.56)

i.e. a set of" equally weighted delta functions on a regular grid. Thegraein (2.6)

becomes a sum:

K
1
2\ 2
p(y|W,o%) = 5= ;le(y | x4, W, 0?) (2.57)

Each delta function maps to the centre of an isotropic Gansshich lies on a mani-
fold nonlinearly embedded in data spacef (k, W) is chosen to be continuous, then
the ordering of the centering of the Gaussians in data spaocesponds to the ordering

of the latent points, as shown in Figure 2.8, i.e. the topolgyaf the data is preserved
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in its latent representation. Since the centres of the Gansgsannot move indepen-
dently of each other, since they are constrained by the mgfitx, W), the GTM can

be viewed as a constrained mixture of Gaussians.

To train the model, the log likelihood function is maximiseshich could be
achieved by any standard nonlinear optimisation techniouiethe authors use the Ex-
pectation Maximisation algorithm (Dempstdral, 1977) due to the model’s similarity

to a mixture of Gaussians.

One of the disadvantages of the nonlinear mapping assdorte the GTM,
as noted by its authors, is due to the parameterisation.qltires a decision on the
number of fixed basis function&/, which puts a hard constraint on the mapping’s
flexibility. Rather than using a generalised regressioneha Gaussian process can
be used instead which allows the flexibility of the nonlineepping to be determined

by the hyperparameters of the covariance function.

2.4.3 The GPLVM

The Gaussian Process Latent Variable Model (GPLVM) wasdhiced in (Lawrence,
2004, 2005). Latent variable models are parametric modiets; assume a certain
form for the data density and thus may be a bad fit for the datzeitrue density is
very different to the model’'s assumptions. A novel intetatien of Probabilistic PCA,
termed Dual Probabilistic Principal Component Analysi®HTA) takes the alterna-
tive approach of marginalising the parameters and optiigitie latent variables. For
a particular choice of Gaussian likelihood and prior, DPRG#S out to be equivalent
to the standard PPCA model, and a special case of a more felsms of models,
Gaussian Process Latent Variable Models (GPLVM). The GPIloaM be viewed as a
nonparametric model since the mapping between the latehtlata space is not ex-
plicitly parameterised.

The GPLVM uses Gaussian Processes (GP’s) in an unsupemeeaer for non-

linear dimensionality reduction. The inputs to the GP’satent variables are mapped

to a distribution over the data space byindependent GP’s, wherP is the dimen-
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sionality of the data space. The latent coordinates andytperparameters of the GP
covariance function are then adjusted to maximise the Géliidod. To show the
link between latent variable models and Gaussian processasow study the DPPCA
model. In (Lawrence, 2004), a conjugate prior is placed enlittear mappingW of
the PPCA modelp(W) = Hi’il N(w; | 0,1I), wherew; is theith row of W, and then

W is marginalised giving a likelihood:

N

oY 1%) = ] [ o %0 W ap(W)aw (2.58)
D

= [[N(Y.a] 0,XX" +57'T) (2.59)
d=1

— o) D_}V ‘K‘%exp(—%tr(K‘lYYT)) (2.60)

where we have used (2.9) and the PPCA noise model from Sez#oh in (2.58) ,
3, = 371, whereg is the inverse noise varianc¥, = [yi, ..., yy] ' with correspond-
ing latent variableX = [xi,...,xy|", Y.; denotes théth column ofY i.e. theN

independent realisations of thi#h data dimension, anK = XX + 5~'I. The log

likelihood is given by the log of (2.60):

DN

L=-="
2

D 1
In(27) — §In|K| — §tr(K—lYYT) (2.61)

Writing S = D-'Y'Y ", we optimise the log likelihood with respect 3, giving

oL
0L | _KISK-'X 4+ K!X = 2.62
X + 0 (2.62)

Pre-multiplying byK gives

ST+ XXT'X =X (2.63)
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SubstitutingX with its eigendecompositio®X. = ULR ' gives

S(UB 1+ L*'UTULR' = ULR'

SU[L+ 87 'L7'I"'RT = ULR' (2.64)
Right multiplying both sides bR, we get
SU =U(B 1+ L? (2.65)
so thatU are eigenvectors & with eigenvaluegs—'1 + L?), giving
X =U/[LR' (2.66)

whereU, € RV*¢ is a matrix whose columns are the fitseigenvectors o¥Y', L

A

is a diagonal matrix whosgth element is; = (3 — 6‘1)%, where); is the eigenvalue

associated with theth eigenvector oY ', andR is a rotation matrix.

This eigenvalue problem is equivalent to that solved in PEAre the projections
of the data onto the principal component axes, and DPPCAHesame underlying
structure as PPCA. We note that the DPPCA model has the adyeint that it can eas-
ily be extended to allow for nonlinear processes by reptatie inner product kernel
K with a nonlinear covariance function. (Lawrence, 2004¢reto this general class
of models as Gaussian Process Latent Variable Models, dietGaussian process

‘mappings’ from the latent space to distributions over tagadspace.

2.4.4 Kernel Principal Component Analysis

Kernel methods are a relatively new family of algorithmd tt@mbine the simplicity of
linear algorithms with the flexibility of nonlinear systen¥he basis of kernel methods
is to embed the data into a Hilbert space and to find lineatioaks within this space.
The embedding of the data in this space is performed imiglicthe embeddings are

defined in terms of inner products between pairs of pointeémiew space rather than
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explicitly by their coordinates. This is known as ‘the kdrtrek’. Therefore, kernel
methods can be viewed as a way of nonlinearising linear dihgos that depend only

on inner products between data points.

Suppose that we have a data space (or input sga@)d an embedding vector
space (or feature spacé&) and we define a feature map: Y — F. Given two
data pointsy; € Y andy; € ), the corresponding feature vectargy;) and ¢(y;)
are not calculated explicitly, but instead, their innerdarct is defined by the kernel
functionk(y:,y;) = ¢(y:)"¢(y;). Principal component analysis, as we reviewed in
Section 2.4.1, is conventionally defined in terms of the davee, or outer product
matrix of the dataY = [y/,...,yx]" (which we have assumed to be zero mean),
¥, =+ 3N v.y, = +YTY. Thisis called the primal formulation of the problem.
To derive the dual formulation, it is noted that the printigeesU lie in the span ofY’

since:

U=%UA"'= %YT(YUA*) (2.67)

i.e. it can be writtedJ = Y "o wherea are the dual variables. Substituting this into

the primal formulation of PCA to obtain the dual, we get:

EN)yYToz = Y'aA

YE, Yo = YY'aA
1

NYYTYYTQ = YY ' aA
1 T
NYY a = aA (2.68)

From (2.68) it can be seen that the principal akéxan be found in terms of the
eigenvectorsy of the inner product matriY' Y. The projectionx,, of a data point
y. ontoU is given byx,, = y, YT« i.e. in terms of inner products between the data
points. This derivation is fundamental for implementingried PCA (Smolaet al.,

1999, 2001; Scholkopét al., 1998, 1999).
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Suppose that each data point is mapped into a feature spacebpf)/ functions
¢y, — o(yn), and the inner products between the vectors in feature spackefined
by the kernelk(y;,y;) = ¢(y:) ¢(y;). To perform PCA on the feature vectors, we

require the eigenvectofs, of the covariance matrix in feature space:
®TOU, = UyA (2.69)

where we have defined < R¥*M as the design matrix in feature spade =
[6(y1) T, ...,0(yn)]". Instead of using (2.69) which involves calculating eackh,, )
(which may be unknown) we can use the dual formulation of PC&i68) and replace
the inner product of the feature vectab® " with a kernel matrix (or Gram matrix)
K € RV*N whereK;; = k(y;, y;), andk is the kernel function, giving the kernel PCA

eigenproblem:
Ka = aA (2.70)

Calculating the eigenvectot$; = ® "« of the covariance matrix in feature space in-
volves calculatingb, which may be unknown. Instead, we can calculate the piioject

x, of a data poiny, ontoU,, asx, = k| a, wherek, = [k(y.,y1), - k(¥ yn)] -

2.5 Modelling two data sets

In the previous sections we have reviewed graphical motiksnt variable models,
and techniques for finding a reduced dimensionality repitesen of a single data set,
where our models were based on the graphical model showngurd=2.9. In this
section, we show how these methods can be extended to nmadslio data sets, and
we also highlight some of the difficulties associated wittséh methods.

It is assumed there is some dependency between the two daga sedy, that
we are trying to model. A key feature of methods that try to fimeresting structure
between two data sources is that some kind of dimension&duyction is used; the

modelling of the dependency is constrained by assumindtlika is a reduced dimen-
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sionality representation of the relationship, which existsome feature spase This
allows the signal and noise subspaces to be separated. Wkedba mapping of;
andy, to the feature space as andx, respectively. These sets of extracted features
should reflect the information common to both data sets. heg#, discriminative
modelling approaches estimate the parameters of the nggpforthe two sets of fea-
tures to try to explicitly optimise some dependency critefibetweerx; andx,, while
generative modelling approaches are based on the estimddtithe joint probability
densityp(y;,y2) of the observed data, tuning the parameters of a model thaldwo
generate the observations. A key feature of the existingige¢ine models for two data
sources is the assumption of a shared latent varwalihat underlies the data sources,
and that the data sources are conditionally independerdatf ether, given the latent
variable. After training the model, the latent space regméstions of each set are given
by the posterior distributiongx | y;) andp(x | y2). With both the discriminative and

generative modelling approaches, the same problems exist:

¢ Defining the mappings from each data space to the shareddestace.

¢ Defining some dependency measure between the two sets attextifeatures

for optimisation.

Within the generative modelling framework, it is difficudt put constraints on the pos-
terior distributions, and thus difficult to explicitly inatle some dependency measure.
Instead we have to encode our prior knowledge about the twa s#ds as we see in
Figure 2.9; i.e. structuring our model such that the two data interact only through
a shared latent process. However, this does not guararaeaftér observing the data,
there will be strong dependency between the posteriorilligions. Conversely, a
discriminant model will explicitly try to optimise some demdency measure between
the two extracted feature sets, but this can sednmog and since we do not define

a full probability density over all the variables we cannalctlate quantities such as

p(y1 | y2) andp(y, | y1) for prediction.



2.5. Modelling two data sets 47
2.5.1 An overview of discriminative techniques

A well established statistical technique for finding lingarorrelated features between
data sets is canonical correlation analysis (CCA) (Hatg]lL936; Borga, 1998; Lai &
Fyfe, 1999). Correlation is a good measure of dependengyeeet signals because un-
like covariance, it is invariant to the signal magnitudeswidver, methods that rely on
correlation have their limitations since they are basedemod order statistics, which
is only well justified for Gaussian distributed data. One wégxtending CCA is by
taking higher order statistics into account, which couldabkieved by extending ex-
isting independent component analysis (ICA) algorithmisvio data sets as in (Akaho
et al, 1999), (de Bie & de Moor, 2002). Kernel canonical correlatanalysis was
introduced in (Lai & Fyfe, 2000), where kernel functions inajly define nonlinear

transformation of the data sets into a feature space whezarliCCA is performed.

Information theory offers a theoretical framework in whadpendencies between
variables can be analysed. Given two variablegndx,, a common measure of de-
pendency is mutual information, which is a measure of thewarhof information that
x; contains abouk, (andx, contains abouk;). It is defined ad (x;;xy) = H(x1) —
H(xy | x2) (or alsoH (xg) — H(x2 | x1)) WwhereH (x;) = — [ p(x1) log p(x1)dx; is
the marginal entropy anff (x; | x2) = — [ [ p(x1 | x2)p(x2) log p(x; | x2)dx1dxs is
the conditional entropy. Given two signals that are expktdehave a dependency on
each other, from an information theoretic point of view timgans that there should be

features in the signals that have a high mutual informatetwben them.

There are many methods in the literature that use ideas frtmmaation theory for
the unsupervised modelling of a single data source. Thefigot®use some measure
based on the mutual information between the gadad its coded representatirrsuch
thatx is informative abouy. This was first introduced to the machine learning field
as the principle of maximum information preservation (m#x) in (Linsker, 1988).
However, computing mutual information exactly can be difisince it requires prob-
ability densities over the variables in question and ingslintegration over functions

of the densities. As a result, a lot of the methods that useiahutformation specify
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the forms of the densities such that the required calculatéze analytically tractable.
Generally, jointly Gaussian distributions are chosenlfsag in (Linsker, 1988)), but
unfortunately this can result in loss of modelling power dgoi¢he oversimplification
of the statistical relationship between variables, anttiot®n to linear mappings be-
tween the data and codes. A number of methods have been pobjwosxtend Infomax
to arbitrary densities and (possibly) nonlinear mappinga$ing Parzen window den-
sity estimation to directly estimate the required entrepmuch as in (Viola, 1995),
and the Information Theoretic Learning framework of Pnogciet al (Principeet al,

2000). A different approach is taken in (Agakov, 2005; AgakoBarber, 2004), in

which a family of variational lower bounds on mutual infortioa between the data
and its coded representation is introduced to give a thieatigtrigorous approach to

information preservation.

One problem with using mutual information for an unsupegdigearning prob-
lem is that it does not explicitly define which parts of theoimhation are useful. One
way to extract ‘useful’ information is by specifying somesfixed architecture for the
model to implicitly define some measure of usefulness. Aaotiay of constraining
the extracted information is by approaching the problemmfip semisupervised per-
spective, in which another variable, which signifies whatgaf the information in the
data is relevant, is used to guide the feature extractioantgkes of using mutual infor-
mation in a semisupervised setting are the feature extraedigorithms of (Torkkola,
2003), in which the mutual information between class labeld the transformed data
is maximised, and the family of Information Bottleneck (IBethods (Tishbyet al,
1999) which maximise the amount of information that the coesped representation
x of a data variablg’ contains about some relevant variablesvhile minimising the
information between the compressed representation andatiae This can be stated

formally as the minimisation of the Lagrangiéfx;y) — 81(x;t).

The problem of extracting features from two related datacesiis similar to the
semi-supervised information preservation problem fomaglsi data source. Whereas

the latter methods use an additional variable to indicatehvfeatures in the data is
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useful, learning a representation for two data souggeandy, usesy; to guide the
feature extraction fog,, and vice versa, such that each data variable acts as the rel-
evance variable for the other. For this reason, semi-sigahinformation theoretic
frameworks for feature extraction could be extended to eoblem of modelling two
data sources. Two interesting extensions to the IB framlea relevant to our prob-
lem. Whereas the original framework was based on a singedigdinciple, in that
only the data variable and not the relevance variable is cessed, in (Friedmaet al.,
2001) a symmetric form of the problem is proposed such thtkt bariables are com-
pressed. Given two data variablgsandys, y; is compressed int&; andy, into x,
such thatx; extracts the informatiory; contains abouy,, and at the same time,
extracts the informatiog, contains aboug,. This is achieved through minimising the
Lagrangiani (xi;y1)+1(x2;y2) —vI(x1;x2). Another extension of the IB framework
is the extension to continuous variables in (Chedtikl., 2003), (Chechik & Glober-
son, 2003), in contrast with earlier work which focused otegarical variables. By
assuming that the data varialeand the relevance variabteare jointly multivariate
Gaussian variableg, is compressed via a linear transformation irtehile preserving
information about. The analytic closed form solution of the optimal linearjpobion

is shown to be the canonical basis vectors (from CCA)fandt.

Several methods have been proposed specifically for lgarinom two data
sources using mutual information. In this context, the ralinformation is maximised
between the coded representations of the data sourceserBaatt Hinton presented
Imax in (Becker, 1992; Becker & Hinton, 1992; Becker, 1996yariant of Infomax,
which aims to maximise the information between outputs af heighbouring neural
networks. This architecture can be used to extract spatialierent features in simu-

lations of visual processing. A similar approach is preseim (Kay, 1992).

As we detailed above, methods for the analysis of two dateceswsing mutual
information suffer from complications, due to the difficge in calculating mutual in-
formation. Another complication exists in the constragnof the model. Suppose that

we have two data sourcgs andy., from which we want to extract features (or a new
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representationk; andx, respectively, that have maximum mutual information. The
extracted feature sets would be expected to be a compaeseyation of the relation-
ship between the two data sources. However this may not lmagee we also desire the
joint entropy H (x4, x2) to be small, i.e. we want to minimise the conditional entespi
H(x;|x2) and H (x2|x;) such that the features only capture the common information

betweeny,; andy,.

This problem of finding ’efficient’ features was addressedButz & Thiran,
2005) by introducing the feature efficiency coefficient whiimth maximises the mu-

tual information between features and minimises the jaittopy, given by:

I(Xl, Xg)

A% %2) (2.71)

€<X17 XQ) =

Since H (x1,x3) > I(x1,x2) and both terms are positive, < e(x;,x3) < 1. For
highly efficient featurese(x;,x,) should be close to 1. A similar functional called
normalised entropy (Studholne¢ al., 1999) is used in the field of multi-modal medical

image registration.

2.5.2 An overview of generative techniques

While there are many discriminative techniques for modglliwo data sources, there
are comparatively few generative techniques. Some pesgéierative models of two
data sets are represented by the graphical models in Figur&igure 2.9a shows the
two observed data variablgs andy, and their relationship; modelling the two data
sources is equivalent to estimating their joint distribotp(y;, y»). Direct estimation
of this joint distribution is problematic, particularly yf; andy, are high dimensional,
thus itis necessary to further constrain the model. In FEg@:9b and 2.9c we enforce a
prior structure on our data which assumes that the datalsats a common underlying

sourcex, and also that the data sets are conditionally independestoh other:

p(yny2 [ x) = p(y: | X)p(y2 | x) (2.72)
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(@) (b) ()

Figure 2.9: Possible graphical models for modelling twadatturces.

Figure 2.9b represents our intuition that the dependentyd®sny; andy, is due to
their being different manifestations of the same undegyirocess. This is represented
by the hidden (shown by the grey shade))aient variable x. An alternative graph-
ical model is shown in (c). This model explicitly represetits ‘private’ information
associated with each sensor by a random variable. Both (bjc@rtonstrain the joint
distribution such that it has fewer degrees of freedom leeiois directly estimated
from the data. After training the model, we can apply Bayés tw calculate quantities

such as:

Py [ x)p(x)

p(ya | x)p(x) (2.73)
p(y1)

p(x|y1) = (x| y2) =

the low dimensional representations of each data sourdeharpredictive distributions

over one data set given the other:

Py, ¥2)

p(y2)

. py2|y1) = e

p(y1 | y2) =

These models serve as a good basis for modelling dependemitiegenerative mod-
els; some models that already exist in the literature canldsed within this frame-
work. One recent technique is the probabilistic canonicatetation analysis model
(PCCA) in (Bach & Jordan, 2005), which places CCA in a Gausdensity estimation
framework with the model structure as in Figure 2.9b.

There are various extensions to this model. In (Archambedaai., 2006), the
Gaussian densities are replaced with Student-t densitieeate a model that is more

robust to outliers, and a variational Bayesian versionappsed in (Wang, 2007) (in the
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same spirit as the variational Bayesian extension (Bish®®9) of Probabilistic PCA)
which allows the dimensionality of the latent space (andckeihe effective number
of canonical correlations) to be determined automaticallijese methods assume a
linear relationship between each data variable and itesponding set of features, and

consequently models the relationship between the two @#daas linear.

One feature of the PCCA model is that each data source is tedded the sum of
two independent componentg; = f; + n;,y, = f5 + ny, wheren; andn, are noise
components which model the within-set variati6nandf, are components which are
linearly related to a shared latent variakland model the between-sets variation, and
x,n; andn, are independent of each other. The structure shown in Fig@e is
implicitin the PCCA model, and as noted in (Klami & Kaski, B)Qit is necessary for
each noise component to be flexible enough to completely htlbeenarginal density
of its corresponding data variable, and hence all of theimAgiet variation. This allows
the other ‘shared’ components to solely model the betwetragiation, since none of
their modelling capacity is wasted on modelling the vaoiativithin the sets. This can
be thought of constraining the model in such as way to findiefftcfeatures (as we

saw in (2.71)) that only represent shared information betwibe data sources.

It is difficult to extend this idea to more complicated mods|zecifying the noise
components to completely model all the within-set varai®difficult when the data
follows a more complex distribution than a unimodal expdrarfamily distribution.
Another complication is that when considering nonline&atrenships between the data
space and the latent space, the noise and shared comporani®tibe independent.
However, there are a few nonlinear extensions of canonaatkation analysis that are

formulated as generative models.

In (Verbeeket al, 2004), the authors propose a nonlinear canonical coioelat
analysis method. The two data sets are assumed to come fparasenonlinear man-
ifolds that share an underlying global coordinate systehgr& each manifold is mod-
elled by a mixture of aligned local models. Interestinghg tmethod is different from

standard mixture models in that it integrates local feagxteactors into a single global
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representation in the spirit of (Rowegdt al., 2002). The global coordination of the
local models is achieved by adding a regularizer term to thedard maximum like-

lihood objective function, similar to a variational appcba However, this model does
not model the within-set variation, and instead assumedstibadata lies close to each

nonlinear manifold.

Another approach to nonlinear canonical correlation asiglyould be to use a dif-
ferent specification of the nonlinear relationship betwi#endata and the latent space.
Instead of modelling the nonlinear relationship by a migtofaligned local models, an
alternative is to specify a global nonlinear mapping, fatamce by placing a Gaussian
process prior over the space of nonlinear functions of ttemtasariables. The Gaussian
process regression framework is extended in (Boyle & Fr2@@5a,b) to handle mul-
tiple coupled outputs by assuming that dependent outpetsetated through a shared
latent process, and the variation within an output is meddtly a separate latent pro-
cess, following the structure in Figure 2.9c. However, thisdel is formulated for
regression problems and assumes that the latent coorsliasteknown. In the next
section, we review canonical correlation analysis andiftsrént variants, and use it

as a starting point for creating dependency seeking gevnerabdels.

2.5.3 Canonical correlation analysis

Canonical correlation analysis (CCA) (Hotelling, 1936)poses a way for dimension-
ality reduction by taking the relationship between two s#tgariables into account.
CCA is concerned with finding linear relationships betwdsntivo sets of variables.
Given two sets of zero mean data variabygsc R andy, € R"2, wherem; and

mo are the dimensions gf; andy, respectively, CCA finds linear projections of each
variablex; = U]y, andx, = U, y,, termed the canonical variates, such that the cor-
relation betweerx; andx, is maximised, andJ; € R™*7 andU, € R™2*9, where

¢ < min (my, ms), are matrices whose columis, ;, Uy, = 1,.., ¢ form theq pairs

of canonical vectors. We can fild, and U, as the eigenvectors of the generalised
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eigenvalue problem:

0 212 U1 _ 211 0 U1 p (275)

5]21 0 U2 0 222 Ug

wherep is the diagonal matrix of canonical correlations, and

. T ¥, X
S—FE ((”) (“) ) - 7" T (2.76)
y2 Y2 I S
This can also be formulated as a symmetric eigenvalue proble

= p (2.77)

whereV; = f)lélUl andV, = 22%2U2. Another property of CCA is that the projec-
tions onto canonical directions corresponding to a diffek@nonical correlation are
uncorrelated such thaf| 3,,U; = I,,, andUj] £,,U, = I,,,. Canonical correla-
tion analysis is also related to mutual information.y{fandy, are jointly Gaussian
distributed, then the mutual information betwegnandy is given by the sum of the

mutual information between the canonical variategandx,:

2

2.5.4 Probabilistic Canonical Correlation Analysis

Canonical correlation analysis (CCA) was formulated as asSian latent variable
model in (Bach & Jordan, 2005). It is found that the postedstributions of the
latent variables lie in the same linear subspaces as thdseddy standard CCA.
Using the definition for the Gaussian latent variable modainf Section 2.2.1y is
defined as the concatenation of two sets of data variableyie [y;,y,]", where

y1 € R™ .y, € R™ with m; andms, being the dimensions of the two data variable
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sets andu = [p],ps]", Wherep; € R™ py € R™. W = [W{, W, ]" with
W, € Rm>1 W, € ®™2*4 andx, € R?is the shared latent variable for thé pair
of data variableg,,. The noise covariance matrix is constrained to be of bloagainal

form:

3, = (2.79)

whereW; € RmM>™ ¥, ¢ RM2*™m2 The maximum likelihood solutions for the pa-

rameters are given by:

= (2.80)
fro = fio (2.81)
W, = »,U,,P,R (2.82)
W, = 3,U,PR (2.83)
U, = ¥, -W,W/ (2.84)
U, = 35— W,W, (2.85)

whereg; andfi, are the sample means of the two sets of data variablgse ™ *¢
andU,, € R™2*? are matrices whose columns consist of the firsinonical directions
for y; andy, respectivelyP, is the diagonal matrix of the largest canonical correla-
, , , , , ™ vi\ (yi\ T\ _
tions,R € R7*? is a rotation matrix, and we have defingdyy ") = E(())(}!) ) =
5]11 5]12
i321 i322
2.5.5 Kernel CCA

A kernel variant of canonical correlation analysis has geposed in (Bach & Jordan,
2002; Lai & Fyfe, 2000), where kernel functions implicitlgfithe a nonlinear transfor-
mation of the two data sources into a feature space wherarl@€A is performed.

This allows us to find nonlinear relationships between the $ets of data variables.
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Canonical correlation analysis is conventionally defimeterms of the covariance ma-
trices of the two data variablgs andy,, as we reviewed in Section 2.5.3: we can find
W, and W,, the canonical vectors, as the eigenvectors of the gesedaéiigenvalue

problem:

0 z~312 \VA _ z~311 0 W, p (2.86)

221 0 W2 0 222 W2

wherep is the diagonal matrix of canonical correlations, and

oo ()0))- (2 5 ) -3 (0 1) e
Y2/ \Y2 Y91 Mg Y, Y Y)Y,
whereY, = [y, 1,...,yin]" andYs, = [ya1,...,y2.v] . To obtain the dual of (2.86),

it is noted that the canonical vectov€, andW, can be written as:

W, =Y o (2.88)

W, =Y, o (2.89)

Substituting into the primal equations for CCA given in @.8ve get:

0 Sng; (05} illY;— 0 aq
~ = B P
Eleir 0 (65) 0 ZQQY; (65)
0 Y1212Y; (03] YlinY;— 0 (03]
~ = 5 P
YQEQ:[YI 0 (6) 0 YQEQQY; (6)
(2.90)

The dual problem for CCA is given in (2.90) which is given inns of the inner
productsY; Y, andY,Y, (which can be easily seen through the substitutions for the
different blocks forX). The canonical vectorV; and W, can be recovered from

the dual variables by applying (2.88) and (2.89). The casanariatesk; . andxs .
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for a pair of test pointy; . andy, . can also be found in terms of the dual variables:
X1 = YI*YlTOél andx, , = YQT,*YQTaz-

Suppose that both sets of data variabygs, andy., are mapped to (possi-
bly different ) feature spaces by a set of functiops : y;, — ¢1(y1,) and
¢a : Yon — ¢2(y2.), Where the inner products between the vectors in feature
space are defined by the kernel functiongy:,yi;) = ¢1(y1:) ¢1(y1,;) and
ko (y2,i,¥25) = ¢2(y2:) d2(y2;). Defining®y = [¢1(y1,1), ..., ¢1(yin)] T and®, =
[2(y2.1), -, d2(y2.n)] " @SY,; andY, mapped into their respective feature spaces, and
exploiting the dual formulation of CCA given in (2.90), ketrCanonical Correlation

Analysis can be formulated as:

0 KK Q K2 0 «Q
1Ko 1 _ 1 1 p (2.91)

K2K1 0 (05 0 K% (0]

whereK; = ®;®] € RV*N andK, = ®,®; € RV*Y are the kernel matrices where
Ky ) = k1(y16,y1,;) andKy ;) = ka(y2,,y2,;). To calculate the canonical variates
x1 . andxy . i.e. the projections of a pair of test points, andy, . onto their respective

canonical vector®, , andW, , (which are generally not known), we use
X1 = k‘lT*Oll, Xg 4 = k{*az (2.92)

wherek; .. = [k1(y1.,¥1.1), - k1(y1, y1,5)] " and

kz,* = [/f2(Y2,*7 Y2,1), ey /f2(}’2,*, Y2,N)]T-

2.6 Summary

In this chapter, we have outlined the problem of learningnfitwo data sources, and
reviewed the probabilistic approach that we will be usingfifleding common features.
We discussed the relative merits of using both generatigelegatriminative probabilis-
tic models. Though discriminative techniques may be mdieient for finding a joint

representation for two data sources since this involvesctlyr optimising a measure
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of similarity between the extracted features, a probabd#nsity is not defined over
the variables of the problem. We consider generative mdddi® more appropriate
for describing the joint structure between two related dataces, since this represents
the data generation process, and we can resynthesisesdifiewnfigurations from it
such as the predictive distribution over one source giverother.

We also reviewed a humber of parametric and nonparametgedtan methods
for finding the underlying structure of both one and two datarses. Existing lin-
ear models for modelling two sources are canonical coroglatnalysis (CCA), and
probabilistic CCA, and an existing nonlinear model is Ké@EA. Since the problem
of finding nonlinearly related features between two data seill posed, because it is
possible to find spurious correlations, in the rest of thaeitheve propose that using a
probabilistic generative approach is the preferred smtutiVe also use nonparametric
Bayesian methods due to their flexibility and their abilibdyautomatically determine
model complexity from the data. The work in this chapter jmtes the background to

the rest of the thesis which contains our own research iratieia.



Chapter 3

Generative models for finding shared

structure

3.1 Introduction

In this chapter, we describe some generative models fonigndiépendencies between
two data sets. In general, most methods that seek deperddrativeen two data sets
are discriminative methods, which aim to extract a set diies for each data set such
that some dependency measure between the features is medimilthough this can
be effective since the modelling power is explicitly focdsm finding dependent fea-
tures between the two data sets, discriminative methodsexamad hoc In particular,
for two data sets that have a complex (possibly nonlinedajiomship, it is problem-
atic to choose how the data is mapped into the shared fegtace sAnother drawback
of the discriminative approach is that a probability dgn&tnot defined and it is not
clear how to predict densities of one data set given the otb&ng generative models
for seeking structure between data sets is appealing sipeebability density is de-
fined for the data sets, allowing us to calculate predictesesities and to determine the
parameters (or hyperparameters) of the mappings in a plattivay within a proba-
bilistic framework. It is also possible to insert prior knlegge about the underlying

shared process into the model.

Probabilistic generative models of two related sets of datables describe the
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shared features as a shared latent variable underlyingbt#hBY defining the two data
variables as conditionally independent given the latenatiée, the latent variable is the
only shared component of the data, and therefore shouldsept the common infor-
mation. An example of a generative model for finding sharagtctire is probabilistic
canonical correlation analysis (PCCA) (Bach & Jordan, 200&ich we reviewed in
Section 2.5.4. PCCA models each data set as being linedakgdeto the underlying
shared latent space i.e. each data dimension is a lineaidaraf the latent variable.
Because PCCA only defines linear projections of the datathetscope of its applica-
tion is limited since it cannot accurately model data seds tlave nonlinearly related
shared features. An approach to create a nonlinear ver§iBxGA is to consider
nonlinear functions of the latent variable, in the spirittbé generative topographic
mapping (Bishopet al., 1996), to create global nonlinear mappings between teatat
and data spaces. However, the problem with this approasimligpecifying the func-
tion so that it is appropriate for the data, a common problenp&rametric modelling
approaches. We turn to nonparametric Bayesian method$wifier a way to define
flexible priors over data sets; we use Gaussian processelafan, 1978; Rasmussen
& Williams, 2006) as prior distributions over the functiofiem latent to data space,
inspired by the Gaussian process latent variable model V&R LLawrence, 2004,

2005).

The work described here follows from (Leen & Fyfe, 2006) whaescribes a
derivation of a dependency seeking generative model ugiegr mixtures of under-
lying Gaussian processes. The model defines a probabiittitonship between two
sets of data variables by assuming that the shared strucamrée represented by a
shared underlying latent variable, which acts as input éoGlaussian process priors
over the shared (nonlinear) functions underlying the dathe resulting model is a
probabilistic interpretation of nonlinear canonical edation analysis, which we call
GPLVM-CCA. In Section 3.2 we analyse the dependencies letvweo correlated
data variables from an information theoretic perspectwel use these results to de-

termine the structure of a dependency seeking generatigelmd/e model each data
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source as a sum of two independent components, one whichlsnibeeshared in-
formationbetween the two data sets, and one which modelgptivate information
contained within each source. In Section 3.3 we study ligesrerative models for
finding dependencies, and derive an alternative interfioetaf probabilistic canoni-
cal correlation analysis (PCCA). In Section 3.5 we use therm@ative interpretation
of PCCA to derive a probabilistic model of nonlinear PCCA, ibtegrating over the
linear mappings between latent and data space to creatsi@apsocess ‘mappings’
over the data space. This places nonparametric priors bgamtderlying functions of
the two data sets. In Section 3.6 we apply the GPLVM-CCA torgyeaof data sets,
including a large scale image data set, and present theége¥vd demonstrate the way
in which the GPLVM-CCA model can be used to learn a sharediateucture for both
data sets, and for finding a predictive distribution over daia set given the other, even

in the presence of missing values.

3.2 Analysing the dependencies between two data vari-

ables

In this section we study the dependencies between two eteckbata variables from
an information theoretic perspective (Shannon, 1948)\e gs some insight into the
construction of generative models for dependency anal@igen two correlated data
variablesy; andy,, we can visualise the way in which their joint entrop\(y, y2)

can be broken down in Figure 3.1, following similar diagram@MacKay, 2003). The
quantities of interest are the joint entropi(y:,y»), the marginal entropie& (y,),

H (y32), the conditional entropie& (y; | y2), H(y2 | y1), and the mutual information

I(y1;y2), which are defined as follows. The joint entropyyafandy- is given by:

H(yi,y2) = —/p(}’17}’2) log p(y1,y2)dy1dys (3.1)
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H(y,.y,)

H(y,)

H(yly,) Ity,;y,) H(y,ly,)

Figure 3.1: The relationship between joint entrdpyy, y-), marginal entropy? (y)
and H (y2), conditional entropy{ (y; | y2) and H(y> | y1), and mutual information
I(y1;y2) for two correlated variableg, andy,, where the relationships between the
guantities is indicated by the relative area of the blocks.

The conditional entropy of, giveny,, and the conditional entropy g%, giveny, are

given by:

H(yi|y2) =— /P(Y1,Y2) log p(y1 | y2)dyi1dys (3.2)

H(Yz \ Y1) = — /p(Y1>Y2) 10%27(}’2 ‘ Y1)d}’1d}’2 (3.3)

The marginal entropies gf; andy, are given by:

H(y1) = —/p(yl)logp(yl)dyl (3.4)

H(ys) = —/p(yz)Ing(y2)dyz (3.5)

and the mutual information betwegn andy is given by:

I(y1;y2) = H(y1) = H(y1]y2) (3.6)

= H(y2) — H(y2 | y1) (3.7)

Some useful identities, which can be derived through maaimun of the previous

equations, are as follows:

H(y:1) = H(y1 | y2) + 1(y1;y2) (3.8)

H(yz) = H(yz2 | y1) + 1(y1;y2) (3.9)
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3.2.1 A generative process

From (3.8) and (3.9) of the previous section, it can be seatthie information content
of each data variable (the marginal entropy) can be viewetth@sum of two inde-
pendent components: shared informatiorwith the other data variable (the mutual
information betweery; andy,) and aprivate information(the conditional entropy).
We also note that the two sets of private information are pedeent of each other
since all the joint information is contained in the sharethponent.

In order to create a generative model of two correlated datiabiesy,; andys,

we suppose that they are generated according to:

yi=h+mn (3.10)

y2 = +n (3.11)

such that each data variable consists of two independemaoentsf, which models
the shared information between the two data sourcesnamah f-independent noise

process which models the private information. See Figlze 3.

3.2.1.1 Modelling the shared information

To model the shared information, a latent variakleinderlyingf; andf, is intro-
duced. By specifying that the shared data streams are comallyy independent on
the underlying process i.e. p(f;,f; | x) = p(f; | x)p(f2 | x) and consequently
p(y1,¥2 | x) = p(y1 | x)p(y2 | x), it is expected that will model some shared infor-
mation betweely; andy,, sincex is the only thing the two data sets have in common.

The corresponding graphical model is shown in Figure 3.2a.

3.2.1.2 Modelling the private information

However, we wank to only model the shared information, and not any of the private
information contained within each source, so it is necgsaadd a further constraint
on the model. It is stated in (Klami & Kaski, 2006) that a nesagg condition for

a generative model to accurately find dependencies betweeidta sets is for the
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model to contain enough flexibility to model the marginalg,) andp(y,) with the
noise processes. However, we suggest that the model sheuddblb to accurately
modelp(y; | y2) andp(ys | y1) with p(n;) andp(n,) respectively, following (3.8)
and (3.9), such that each noise process is flexible enouglotielnall of the private
information (H(y; | y2) andH (y» | y1)) contained within each data set. Given that
the data density estimated by the model is a good approxdmatithe true data density

we can write:

H(y,) = H(fy) + H(ny), H(y2) = H(f2) + H(ny) (3.12)

If we maximise the amount of private information frggn andy, that is captured by
n; andn, respectively, such that; andn, captureH(y; | y2) andH (y» | y1), the

leftover uncertainty in the data will therefore be the sbdandormation betweew; and

Yo i.e. H(fl) = H(fg) = ](yl,y'g)

H(y1) = I(y1;y2) + H(y1 | y2), H(y2) = I(y1;¥2) + H(y2 | y1) (3.13)

This concept is illustrated in Figures 3.2(b), (c), and @) different constraints
on the noise processas andn, for the generative model, whose structure is shown
in (@). (b), (c) and (d) show the relationship between theogmts of two correlated
variablesy; andy, (white blocks) and the model componefitsf,, n; andn; (grey
blocks). In (b) and (c)n; andn, are constrained to be independent of each other,
such that they cannot model any of the shared informatign; y-). In (b) the noise
processes are not flexible enough to capture all of the privdbrmation contained
within each data set, such that the shared comporferasd f, are forced to model
some of the private information as well as the shared inftional (y;;y2). In the
ideal case, shown in (c), the noise processes are sufficigtible such than; and
n, exactly capture the private information an@;; f,) = I(yi;y2). In (d) the noise
processes are too flexible; such tlhatandn, are free to model some of the shared

information/(y;y2) andI(f;; fs) < I(y1;y2).
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H(y,.y,)

H(y,)

H(y,)

H(y.ly,) y.;y,) H(y,ly,)
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H(y,)

H(y,ly,)

I(y;;y,)
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Figure 3.2: The relationship between joint entropy, maabentropy, conditional en-
tropy, and mutual information for two correlated variabjgsand y,, shown with
the entropies for the underlying functiofis and f,, and noisen; and n, for dif-
ferent configurations of the model shown in (a). In (d), and n, need not be
independent. In (b) and (a); and n, are independent; i.e. it is assumed that
p(y1,y2 | xX) = p(y1 | x)p(y2 | x). In (c), the model contains enough flexibility
for the noise to maximally model the marginals, such thautigerlying functions are
forced to model the shared componenty pandy,.
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3.3 Linear generative models

In this section, we look at generative dependency seekingetador modelling two
Gaussian distributed data variabjgsandy, which have a linear relationship. Finding
linearly correlated features between two data sets canlisedsby the discriminative
method of canonical correlation analysis (CCA) (Hotellib§36), which we reviewed
in Section 2.5.3. However, CCA does not define a probabikysity for the data, a
problem which has been addressed by its probabilistic fatian in (Bach & Jordan,
2005). Whereas CCA maximises the correlation between tinaa®d features (termed
the canonical variates) from each data set, a generativeagpa priori models the
data sets as having maximally correlated features (i.entichd features) through a
shared underlying latent variable. In the generative maziath data variable is mod-
elled as a sum of a shared component, which is linearly iktatan underlying shared

latent variablex, and a noise component The generative process for the data is given

by:

y1=Wix+m (3.14)

Y2 = W2X + Ny (315)

wherey; € Ry, € R such that each data stream is linearly related to a shared
underlying process € 17, by the matricedV,; € R *9 W, € R™2*1, If we suppose
thatx ~ N(0,I),n; ~ N(0,¥;) andn, ~ N(0, ¥,) then we obtain a Gaussian latent

variable model as discussed in Section 2.2.1.

Following the discussion in the previous section, we créekgble noise processes
by specifying thatl; € ™ > andW¥, € R™2*™2 are full covariance matrices, so that
p(n;) andp(ny) can approximate(y; | y2) andp(y. | y1) respectively. The resultant
generative model is the probabilistic canonical correlaanalysis model of Bach and
Jordan (Bach & Jordan, 2005). If we had constraig@dndW,, for instance if we had
assumed isotropic nois&; = ¥, = ¢2I, x would capture correlations within, as well

as between, the two data streams i.e. the resultant moddd Wweiprobabilistic PCA
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as reviewed in Section 2.4.1. This scenario is illustratefigure 3.2b.

3.3.1 Introducing correlations through linear mixtures

We note that the covariance matrix of the data under the medglen by:

.
>, = E (@1) @1) ) =3+ 3, (3.16)

W1W1T W1W2T v, 0
whereX; = IS
WQWI WQW;— 0 \112
whereX; models variation shared betwegnandy., the between-set variation, and

3., models variation that is contained withyn andy., the within-set variation. Con-

sider the linear transformation of the data

_1 _1 _1
(Zl) \Ill 2 0 (yl) \Ill 2W1X + \Ill 2111

; = ; . (3.17)
22 0 W, Y2 U, *W,x + ¥, n,

wherez; € R, andz, € R"2. Since the sample covariance of the transformed noise
components of; andz, are\Ill_%E(nlan)\Ill_% =1, and\Il;%E(mn;)\Il;% =TI,
respectively, i.e. isotropic noise with unit variance, atléws that the elements of

z, are uncorrelated giver, and similarly forz,. In fact,z = [z{z)]" is generated
according to a probabilistic PCA model with weight mafyix= [V V] ]" with V; =
\Ifl_%Wl, V, = \Il;%WQ, and a fixed noise variance of 1. Each data variable may then
be written as a linear mixture of independent functions Wigiee all linearly related to

a shared latent variable

1 1
yllelle :\IIfV1X+Il1

1 1
yo = Wizy = U3 Vox + ny (3.18)

wheren; andn, are distributed as before. With this interpretation of thebabilistic

CCA model, the within-set variation is modelled by a lineansformation of indepen-
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) ¢ () ¢
>3

Figure 3.3: Graphical model for a new interpretation of @daibstic canonical cor-
relation analysis. An intermediate set of latent variahles [z]z,|' is introduced,
wherez; € R™ z, € ™2 (m; = my = 2), which are conditionally independent of
a shared latent variable € R7(¢ = 1), such thatk models the correlations between
the elements of. Each data source is m?delled by a Ilinear mixture 01f the iaddent
underlying functionsy; = W7z, y, = W2z, where®W? ¢ Rmixm P2 ¢ Rm2xmz,
such that the within- set variation is modelled through adinmixture of independent
noise processes. This differs from the original probalili€CA model in (Bach &
Jordan, 2005) in which the within-set variation is modeldan additive noise com-
ponent correlated across the data dimensions.

dent noise processes. We can think of probabilistic cambweiarrelation analysis as
probabilistic principal component analysis on two lingdransformed data variables
7, andz,, where the transformationhl_l/2 and ¥, /2 remove the within-set varia-
tion such that the weight vectokhg; andV, span the between-set variation. This idea
is shown graphically in Figure 3.3 for the case of a one dinoerad latent variablex

(¢ = 1) and where each data variable is two dimensional € m, = 2).

3.3.2 An alternative version of Probabilistic Canonical Caorelation

Analysis

The latent variable model for the different interpretatafrcanonical correlation anal-

ysis introduced in Section 3.3.1 is given by:

p(x) =N(x|0,1,), min(my,mg) >q>1  (3.19)
p(Zl | X, Vl) = N(Zl | Vix, Im1)7 V, € g (320)
p(Zg | X, V2) = N(ZQ | Vox, Im2)7 V, € RM2x4 (321)

p(y1 | 21, %1) = 6(y1 — (7721 + pr)), ¥y € R™™ g € R™(3.22)

p(y2 | 22, ¥2) = 0(y2 — (‘I’é/zzz +p2)), Wy e Ry € R (3.23)
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where we have used, and, to allow for a bias term o; andy, respectively, and

p(31 | %) = / Py | 20)p( | X)dzs = Nyy | UY2Vix 4, ) (3.24)

p(ys | %) = / Py | 22)p(zs | X)dzy = N(ys | UY*Vax + o, ®,)  (3.25)

Again, this model (like the original probabilistic CCA mdyes limited since it models
the relationship between the latent and data spaces as kvidah may be insufficient
for data which lie close to nonlinear manifolds embeddedatadpace. However, this
above formulation of probabilistic CCA can then be extenttethodelling nonlinear
relationships, as seen in the following section. The stahdpproach for fitting this
latent variable model is to marginalise the latent variakleand to optimise the param-
etersV = [V}, V]|T, ¥1/? and¥}/* via maximum likelihood. We follow the dual ap-
proach, used in the derivation of Gaussian Process Lateiaia Models (Lawrence,
2004, 2005), which is to marginalise the parameters andtimcge the likelihood with

respect to the latent variables.

3.4 A GPLVM version of CCA

Gaussian process latent variable models (GPLVM) described.awrence, 2004,
2005) are a new class of probabilistic models that define Saniprocess ‘mappings’
from a latent space to the data space. A theoretical grogndiprovided for the
GPLVM, deriving the model from a dual formulation of problaitic principal com-
ponent analysis (PPCA) (Tipping & Bishop, 1999). Rathenth@egrating out the
latent variables and optmising the linear mapping of the Rt©del as in (Tipping &
Bishop, 1999), the GPLVM approach is to integrate out thepirapand optimise the
latent variable positions. The resulting model is a proadidd independent Gaussian
processes (wher is the dimension of the data), where the process inputs atatidnt
variables. PPCA is a special case of the GPLVM when the m®deVariance function
is linear, but any valid covariance function can be usedh shat there is an implicit

nonlinear mapping from the latent space to the data spach,teat the GPLVM is a
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probabilistic model of nonlinear principal component gsé.

In the GPLVM, the data (output) dimensions areriori assumed to be indepen-
dent and identically distributed, such that the latent do@tes, which are common to
all dimensions, capture the variation between the dimassi®his model is therefore
not appropriate for capturing variations between two eslatata sets, as we noted in
Section 3.3, since the model’s set of latent coordinatelscapture the private infor-
mation (or within-set variation) as well as the shared infation. One approach in
the literature to finding structure between two data sete Ftimise two GPLVM’s
that have a joint latent space (Shenal, 2006). This relaxes the ‘identically dis-
tributed’ constraint on the data dimensions of the GPLVMchedata set is modelled
by a GPLVM which has its own covariance function. However,amgue that this is
not strictly a dependency seeking model, since the privéibemation within each data

set is not explicitly modelled.

Our approach to creating a dependency seeking generatigtelmisao model the
within-set variation by using a linear combination of urlgiely Gaussian processes
with a common input, generalising from the new interpretatf probabilistic canon-
ical correlation analysis introduced in Section 3.3.2.sTikiequivalent to relaxing the
‘independently distributed’ assumption on the data dinmrswithin each data set; a
GPLVM underlies each data set, and the output dimensiorisaaly mixed to model

dependencies within each data set. We describe the modwd meixt section.

3.4.1 Derivation of the model

Starting from the new interpretation of probabilistic caimal correlation analysis in
Section 3.3.2, the set af data pairsY = [Y,Y.] (WhereY; = [y11,...,yin]"
andY; = [y21, - yng]T) is modelled as a linear combination of a set of underlying

function valuesZ = [Z;, Z,), whereZ, = [z, 1, ...,z y]" andZy = (221, ..., Zo.n]

mi1+ma

p(Y | Z,%) = H S(Y (:,1) — (ZW(:,0)2)) (3.26)
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where we have assumed zero mean d¥ta, i) is theith column ofY, and® :, )z is

1 w: o0
the ith column of &2 = ! . In our PCCA model the prior on the latent

1

0 w2
function valuesZ = [Z,, Z,] is given by:

m1+m2

p(Z | X, V) H N(Z(:,i) | Xv,; , Iy) (3.27)

whereX = [x;,...,xy]" is the set ofV latent variables underlying, Z(:, i) is theith
column ofZ, andv; is theith row of V. We can think of each latent function value
z, = [z{,2,,|" as being a function ok, such that the columns & are the latent
common functions evaluated At. In (3.27), the latent functions are linear functions
of their inputs, but we see in Section 3.5 that we can alsoidensonlinear functions

with the model.

3.4.1.1 Integrating out the linear mapping

Following the derivation of the GPLVM in (Lawrence, 2004 réor conjugate to (3.27)
is placed orV (which parameterises the mapping frafrto Z), and then we integrate

overV. An isotropic Gaussian prior with unit variance is used:
mi+ma
T Nvil 0,1, 0m,) (3.28)

i=1

wherev; is theith row of V. The resulting marginal likelihood is given by:

WZ1X) = o X V)p(vIav (3.29)
mi+m2

= H N(Z(:,i) | 0,XXT +1Iy) (3.30)

— KT M1V|K|Dexp<—%tr(K‘1ZZT)) (3.31)

whereK = XX + Iy andD = m,; 4+ m». Thisis a GPLVM, consisting of a product
of m; + my independent Gaussian processes. #tevalue for each data source is

a linear combination of theth latent function values evaluatedsat as in (3.22) and
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(3.23). The likelihood function fo¥ = [Y;, Y] is given by integrating ouZ, where
we have used (3.26) and the prior Bnn (3.31):

p(Y | X, ¥) = / p(Y | Z,9)p(Z | X)dZ

1 1
= exp( —-tr(K'Y® 'Y’ ) 3.32
2 ) 53

The log likelihood function for the model is given by:

N DN D 1
Lyx = —In|¥| — Z=In(2r) — ZINK| — (K 'YE'YT) (3.33)

The gradients of (3.33) with respectXois given by:

8EYIX D | —IvTre—1
=——K ' X+-K'Y¥Y 'Y KX .34
X 2 T3 (3-34)

and a fixed point where the gradients are zero is given by:

%Y\If‘lYTK‘lX =X (3.35)

which is satisfied by:

X=U/LR" (3.36)

whereU, are theq dominant eigenvectors 6f ¥ 'Y ", L, is the diagonal matrix
(A, — Iq)% with A, being the corresponding diagonal matrix of eigenvalued Rare

R7*7 is a rotation matrix. The gradients of (3.33) with respecPtcs given by:

aEY\X N 1 Tt -1
—— =% Y K'YV 3.37
B 2" T3 (3.37)

and a fixed point where the gradients are zero is given by:

1 -1
U= N(YTK Y) (3.38)
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v, 0
which we then constrain to be of block diagonal form to giwe= !

0o v,
where¥;, = Y/K'Y;/N € R™>*m and®, = Y, K~ 'Y,/N € R™2*™2, ¥ has

the interpretation of being the noise covariance matrihefgrobabilistic CCA model.
¥, models the within-set variation i, and ¥, models the within-set variation in

Y.

3.4.2 Finding latent coordinates for each data set

After training the model by findingX and¥ according to the update equations, we may
want to find the latent space representation of just one ofl#t@ sets. Denoting the
data and optimised latent coordinatesTas= {Y, Y2, X}, the resulting probability

distribution over a data poimt; ,, from the first data set given a latent poigtis given

by:
P(Y1n | %0, D) = N (Y1 | 112 (x0), 07 (%) 1) (3.39)
where
i(x,) = [k(x,) K1Y (3.40)
02(%,) =k — k(x,) Kk (x,) (3.41)

andK = C(X,X) + 871 k(x,,) = [C(Xn,X1), .., C(Xp, xn)] ", k& = C(Xp,X,), SO
that, for the linear covariance functiofi(x,,,x,) = x, x,. Similarly, the resulting
probability distribution over a data poigt, ,, from the second data set given a latent

pointx,, is given by:

p(yQ,n | Xn, D) = N(yQ,n | MZ(Xn)a U%(Xn)\Ilg) (342)
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where

p2(x0) = [k(x,) "K' (3.43)

02(x,) = k — k(x,) 'K 'k(x,) (3.44)

The latent coordinates for a pair of data points is foundugho

x; = argmax In p(y; | x,D) (3.45)
xy = argmax In p(ys | x,D) (3.46)
where
m Lo 5 1 -3 2
Inp(y1 | x,D) = ——-In(2m) - S lnoy(x) - W(X)H‘Iﬁ (y1 — i (x))[|” (3.47)
1

o~ 27 M (7(x))

(W2 (y) — (%)) O ()
(7)) o 349)

oInpy: [xD) _ 1, d0t(x) (1 N - u1<x>>||2>

_|_

9o (x

where o

) and a“alf‘) depend on the form of the covariance funct@nand similarly

for Inp(ys | x,D).

The probability distributions over the data s&tsandY, given the trained model
are given byy(Y; | X, D) = [[,_, p(y1n | . D) @andp(Ys | X, D) = [[,_, p(yan |
x,, D) using (3.39) and (3.42) respectively. Now we can considesifuation in which
we have a trained mapping and we wish to predict one datamattfre other. We can
denote the latent coordinate sets underly\fhgandY, asX; andX, respectively, and

we find X, andX, as:

X, = arg max Inp(Y, | X,D) (3.49)

X, = arg max Inp(Y2 | X, D) (3.50)
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Intuitively X, andX, represent the most highly correlated portion¥gfandY,. That
is, the best prediction oY, andY is given by the underlying latent coordinaf&s

andX, which are themselves highly correlated. We can use thidéagrediction.

3.4.3 Prediction of one data set given the other

We want to predicly’; given new values of the first datasét. Our method consists
in finding corresponding latent coordina®s for Y7 using (3.45) and (3.50) and the
relationship betweelX; andX, i.e. equatingk; andX, , and then using the coordi-
nates to predict the other data 3&f. The predictive distribution over the second data

variabley’ given its corresponding latent coordinateis given by:

p(ys|x* D) = N(yslpa(x*),05(x")¥2) (3.51)
where

pa(x) = [k(x") ' KY,)T (3.52)

oi(x*) = k—k(x*)"TK'k(x*) = o?(x%) (3.53)

andK = C(X,X) + 87, k(x*) = [C(x*,x1), ..., O(x*,xn)] T, k = O(x*,x*). We
independently optimise the likelihood of eagh,, by finding the corresponding;,,
which we use to calculate the predictive distribution¥gr,. We can similarly find a

predictive distribution forY} given'Ys.

3.5 Extension to nonlinear processes

The previous sections show how probabilistic CCA can bevddriin terms of a
GPLVM with a linear covariance function (i.e. dual Probait PCA) on two lin-
early transformed data sets. We can consider nonlinearieo¢a functions to al-
low for nonlinear processes such that the resultant modalnsnlinear version of
probabilistic CCA. Due to the nonlinear relationship betwehe latent space and

data space, the resultant model will not be optimisable byigenvalue problem.
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In the following sections we show how to train the model, duoling the approach
used in the training of Lawrence’s GPLVM (Lawrence, 2005).ur @mplementa-
tion of the model is based on Neil Lawrence’s GPLVM code aé online at
http://www.dcs.shef.ac.uk/ ~neil/gplvm . Covariance functions that we

will use in this thesis are:

3.5.0.1 Squared exponential covariance function

The squared exponential (SE) or RBF is probably the mostiwigsed kernel in the
kernel machines field. It favours smooth functions (sinds itfinitely differentiable)
whose values fall away to almost zero in regions where ther®idata, and has the

form:
_ B T -1
k(x;,x;) = ccexp <—§(xi — %) (%1 — Xj)) + 53770 (3.54)

with hyperparamete® ., = {«a, 3,7}, wherea is a parameter that controls the scale
of the output functionsj is the inverse noise variance, apndontrols the characteristic

length scale of the functions.

3.5.0.2 Linear covariance function

The linear covariance function (which we have used earikes)matrix of inner prod-

ucts ofX such that the output functions are linearly relateXtaand is given by:
]’C(Xi, Xj) = OzX;—I—Xj + ﬁ_lém (355)

with hyperparametei®,. = {a, 3}, wherea is a scale parameter apyds the inverse
noise variance.
3.5.0.3 Polynomial covariance function

The polynomial covariance function is given by:

k(x;,x;) = « (wxiij + 7)d + 8716 (3.56)
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with hyperparamete® , = {a, 3,v,d, w}, wherea is a scale parametes, is the
inverse noise variancd,defines the degree of the polynomial controls the scale of

the dot product component, ands a bias parameter.

3.5.1 Using different processes for the data sets

To extend the model, we can use different covariance funsf$, and K, for the

processe, andZ, respectively, underlying the data sets. We write the logliliiood

function as:
ﬁy|x = »CY1|X+£Y2|X (3.57)
where
£Y1|X = In p(Yl | X)
N N 1
= —Sinjwy| - T 02 — %In|K1| — SU(KT Y 8 Y])
£Y2|X = In p(Yg | X)
N N 1
= — S| - "2 |n(2n) — %In|K2| - SRS Yo, Y)

(3.58)

The model consists of two GPLVM'’s which share the same seateht coordinates,

and each models a linear transformation of its respectitee St.

3.5.2 Training the model

To train the model, we have to find the latent coordina&Xeshe parameters of the
covariance function® ., 7 = 1, 2, and the linear transformatiods, and¥, such that
the log likelihood function’ is maximised. Sincé& is a highly nonlinear function of
X and®g,,i = 1,2, we have to use gradient based optimisation proceduresurin o

experiments we use scaled conjugate gradients (SCG).
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3.5.2.1 Optimisation of the latent poinks
The gradients ofyx with respect tdK; is given by:

8‘CYilx _ D -1
oK, 2t

1

2K;1Yi\Il;1YiT K (3.59)

The gradients offyx with respect taX can be obtained by combining (3.59) with

0K
oX

i = 1,2 using the chain rule, wher%‘% depends on the form of the covari-
ance functionK;. Using nonlinear covariance functions introduces moreillety
into the model and rather than seeking a maximum likelihagdt®n for X it may
be preferable to seek a MAP solution. In our experiments veeau§&aussian prior
overX: p(X) = [I_,N(x, | 0,1) and find a MAP solution foX by maximis-
ing Ly x = Lyx + Inp(X) with respect taX, whereLy x is given in 3.57. This is

equivalent to penalisingy|x with the sum of squared elementsXf

3.5.2.2 Optimisation 0®,,: = 1,2

The gradients ofy|x with respect to the covariance function parame&ys are given
by combining (3.59) Witha%% using the chain rule. The paramet®sg, that we work
with should be positive so in our experiments we optintse in a transformed space
by using the transformatiof = In(1 + exp(¢’')) As before forX, we can seek MAP

solutions for®, by first specifying priors ove® ;.

3.5.2.3 Optimisation o

The parametew is found through an exact update as before.

1

U, = N(YIKIIYQ (3.60)
1

v, = N(Y;Kz_lYﬁ (3.61)

In our experiments we update every 5 iterations.
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3.5.3 Relation to other models

Our model is closely related to the Gaussian Process Latergble Model (Lawrence,
2004, 2005) of Lawrence as we reviewed in 2.4.3. Lawrencedehis derived from
a dual approach to probabilistic PCA, assumangriori that the data dimensions are
independent and identically distributed given the latertables. The marginal likeli-
hood of the resultant model is a product@findependent Gaussian processes (where
D is the dimensionality of the data), and each dimension istidally distributed i.e.
they share the same covariance function. The latent cateiX are the inputs to the
Gaussian processes and are 'mapped’ to a distribution ewdr @ata dimension. Our
model is designed to find relationships between two data¥sendY, and is derived
from a dual approach to probabilistic CCA. The data in thevikdial dimensions of
each data set are assumed to be dependent on each otherdpgniddnt of the data
from the dimensions of the other set, given the shared latedble sefX. The data
setsY; andY, are modelled as linear mixtures of independent Gaussiaepse.;
andZ, respectively, which share the same covariance functiortttedame input set
X. An interpretation of the model is th@ = [Z,, Z,], linear transformations of the

data sets, are generated according to a GPLVM.

The Scaled Gaussian Process Latent Variable Model (SGPIofK8jochow et al.
(Grochowet al,, 2004) is an extension of the GPLVM and associates a scadenadher

with each dimension of the data. The likelihood functiontfus model is given by:

p(Y | X, W) = ﬂexp (—ltr(K‘lYWYT)) (3.62)
’ (2m) % K2 2

for a D-dimensional data sét, latent variable seX, and the diagonal matriXv e
RP*P of scale parametergw,, ..., wp}. The model is similar to Factor Analysis, in
that the data dimensions are assumed to be independentidwedto have different
noise variances i.e. the dimensions are not identicallyibiged. From (3.62) it can
be seen that the distribution over tlih data dimension is a Gaussian process with a

covariance functiom; 'K. Since the different noise variances of the data dimensions
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are already accounted for by the modelcaptures the correlations between the data

dimensions. For our model, the likelihood function is gi\®n

1 1
Y | X, ¥) = exp| —=tr(K-'Y® -y’ ) 3.63
PYIX®) = e ) @63)

for two data setY = [Y;, Y5, and the block diagonal matrix of parametdrs=

v,
whereW¥, ¢ R™>*™ andW¥, ¢ R"™*™2 wherem, andm, are the

0 v,
dimensions ofY; andY, respectively. From (3.63) it can be seen that the covari-
ance function between thgh and;jth dimensions ofY is (\If;jl)_l K where®; ! is
the (i, j)th element of the matrixt—!. Due to the block diagonal structure &,
there are cross covariance functions between the variabths each data set. By
accounting for the correlations within each data set withrttodel, X should capture

the between-set variation.

Our model, like the SGPLVM, can be interpreted as a warpeds$§an processes
(Snelsoret al, 2004) with a linear warping functiar, = U2y,. Inthe warped Gaus-
sian process framework, a transformation is made from tteesgaace to a latent space,
such that the data is best modelled by a Gaussian process latémt space. Rather
than being an ad-hoc step, this preprocessing transfamatifound automatically
since it is incorporated into the probabilistic framewofklee GP. A warped Gaussian
process is defined as follows. The latent function valties [z, ..., zx| " is modelled
by a Gaussian process with zero mean and covariance fud€tiparameterised b,
and the transformation from the data space to the latentitmspace is given by a

mapping of theV data pointsy = [y, ..., yny|" through the same functiof

o0 = (Yo, ©) (3.64)

where f is required to be monotonic and maps to the whole of the real Buch that

probability measure is conserved in the transform, @nplarameterises the transform.
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The log likelihood function Ip(Y | X, ¥, O) is given by:

I W) N ! Lk
L=—3 ; In oy | " —In(2r) — SIn[K| - Str(K FOY)F(Y)T) (3.65)

where the first term is the Jacobian term that takes the temstion into account.
The warped GP is a generalisation of the standard GP, finditrg structure in the
(possibly non Gaussian) data by learning a transformatfaimen data. In (Snelson
et al,, 2004), the analysis is limited to one dimensional regagsproblems, but in our
case, the learned transformation from the data to the l&tection space models the
within-set variation between two data sets such that thtan between the data sets
is best modelled by a GPLVM.

In our model, using a linear mixture of Gaussian processesoiel correlations
within a data set is similar in spirit to the Semiparametratdnt Factor Model (Teh
et al, 2005). This is a semiparametric model for regression problinvolving mul-
tiple response variables. The model uses a linear mixtut@anfssian processes to

capture the dependencies that may exist between the respariables.

3.6 Experiments

In this section, we demonstrate the GPLVM-CCA model on a eanfgdata sets. In
Section 3.6.1, we present results on a pair of data sets wlaid an underlying linear
relationship. In Section 3.6.2, we illustrate the algaritbn a nonlinear CCA problem.
In Section 3.6.4 we demonstrate the GPLVM-CCA on a set of anzajrs. Each pair
consists of the left and right half of a face with varying ppaed expressions. We find
a joint latent space for the data, and show how to predict ace falf given the other.
Additionally, in Section 3.6.5, we show how the we can stiltgict a face half given

the other face half that has pixel values missing at random.

3.6.1 Linear example

We demonstrate the GPLVM-CCA model on a simple toy probleshimv the ability

of the model to find correlated features between two data ¥ésreate 200 data pairs



82 Chapter 3. Generative models for finding shared structure

according to

V1 = v (le -+ Ill)

1
2
1
1
2
2

T3 (Vox + ny) (3.66)

Yo

with a 1 dimensional latent variable, wherex ~ N (x | 0,1;), and independent
noise variables; ~ N'(n; | 0,1,), ny ~ N (ny | 0,15), V; = [2,0]7,V, = [2,0],

0.1 0.3 0.2 0.1 . _ .
- , U2 = such that the first dimensions of the data

03 1 0.1 1
sets are correlated with each other. After training the rhesiag two linear covariance

ol
N o=

v

1 1
functions, the maximum likelihood estimates fBF andW; are given by:

0.3102 0.1213
W2 = (3.67)

0.3273 1.0783 0.1213 0.9784

0.1142 0.3273

DN o=

’—‘Pi‘h—‘
|

This demonstrates that the model is able to capture caoetatvithin the data sets. The
latent coordinateX, and X, are calculated and plotted against each other in Figure
3.4. For comparison, we also find the latent coordinatesootiginal GPLVM (which

we term GPLVM-PCA) which does not capture the correlatiossveen the data sets
(Where® = I): we see that the estimat&s and X, are highly correlated from our
model whereas those from GPLVM-PCA appear to have littiecstire. Thus we can
use one latent coordinate estimate as the best estimate ofhibr’s position and use

this to estimate the corresponding data coordinate.
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Figure 3.4. (a) The estimates of the positions of the lateintp, X, and X, from
each data stream using GPLVM-CCA. (b) the equivalent estéisfaom GPLVM-PCA.

3.6.2 Nonlinear example

To illustrate our algorithm on a nonlinear CCA problem, weate two data sets of

=100 samples each where thi pair of data samples is given by:

0.7 0.5 cos(0.8x,,) + nq 1
Yin=
0.5 0.7 sin(0.8x,,) + 11 2
0.5 —0.2 c0s(0.8x,,) + na
Yom = (3.68)
—-0.2 0.5 sin(0.8x,,) + na2

where the noise components = [n1,n12,n21,n22]" ~ N(n | 0,02I), where
the noise variance? = 0.1, andx € [—,7|. Both data set¥; = [yi,,..., y1.v]
andYs = [ya., ..., 2] lie near to 1-dimensional elliptical manifolds indexed by t
shared latent coordinatas Each data set is a linearly transformed portion of a noisy

circle; there are correlations within each data set.

3.6.2.1 Training the model

We train the model (GPLVM-CCA) on the data sets using SE Kserfsee (3.54)) for
both GPLVM’s. For comparison, we also ran the experimentter model with the

parameten fixed atl (GPLVM-PCA). This model assumes that the data in each di-
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mension are independent of each other, and is essentialGR.\VM’s (with different
covariance functions) which model a data set each, and sharsame set of latent
coordinates. This allows us to see the effecoh the GPLVM-CCA model, which is
learned during the optimisation. For all the experimentsjnitialise the hyperparam-
eters©; = {a1, 51,1} andOy = {as, o, 72} of the kerneld; andK, respectively
asa = 1,8 = 1,7 = 1, and use a 1 dimensional latent space. For the GPLVM-CCA
model, we fix the scale of the kernels, as to 1, since the scale is already captured in

¥, andW¥,. After training the models on the data, the learned hyparpaters are:

GPLVM-CCA

1.0400 0.9686
ar =1, (i =144.93, v =19.95 W, =

0.9686 0.9658

(3.69)
0.2836 —0.2723
Oz2:1, 62:12987, ’}/2:2587, \IIQZ
—0.2723  0.3786
GPLVM-PCA
a; =1.02, B =177x10%, v =13.80, ¥, =1
1 B T 1 (3.70)

as =0.26, [y =131.59, % =13.59, W¥,=1

3.6.2.2 Visualising the mapping

To visualise the mapping between latent space and data,spaqaot contour maps
of the estimated (1-D) latent coordinate correspondingaithedata space. The lines
correspond to regions of data space which project to the $atevet coordinate. De-
noting the latent variables underlying the two data vagapl andy, asx; andx,
respectivelyx; is evaluated over the region ; € [—1,1],y12 € [—1, 1] using (3.49)
andx, over the regiory.; € [—1,1],y22 € [—1, 1] using (3.50), each on a grid of
50 x 50 points. The contour maps far, andx, are plotted in Figures 3.5 and 3.6 for
GPLVM-CCA and GPLVM-PCA respectively, along with the dattss whereY; is
denoted by ‘+" andY, by ‘¢’. For the trained GPLVM-CCA model, the projection
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(a) (b)

Figure 3.5: Contour plots of the latent coordinates foun@iRLVM-CCA evaluated
over the data space region, whéfeis shown ast andY, as<{>. The lines correspond
to regions of data space that project to the same latent iczted (a) shows;, (b)
showsx,

from data to latent space takes both data sets into accoignireR3.5 illustrates how
the learned manifold for each data set twists around sudliitbadatent representation
for the other set is coordinated with the first set. This iseet@d since we wisk; and
x5 to reflect the shared information betwegnandy., such thatk; captures informa-
tion abouty, and vice versa. This is shown particularly well in (a). In tast, the
contour maps in Figure 3.6 show that the GPLVM-PCA model dm¢€apture shared

structure with the latent coordinates.

We create a test data s€t = [Y7, Y] by drawing a further 20 data pairs using
(3.68). We evaluate the predictive power of the GPLVM-CCA &PLVM-PCA mod-
els by predictingY'] givenY; and vice versa for each model. To predict given new
values of the first datasaf], we first findX7, the set of latent coordinates underlying
Y by solving the nonlinear optimisation problem in (3.49)gue 3.7 shows the pre-
dictive distribution over each data set for GPLVM-PCA, (ajl4c), and GPLVM-CCA,
(b) and (d), with the mean squared error per data point abacte igure. The predic-
tive distributions are found by using (3.51). As can be sé&®nyicher noise model of

GPLVM-CCA allows the model to accurately approximate thedictive densities.
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(a) (b)

Figure 3.6: Contour plots of the latent coordinates found3BLVM-PCA evaluated
over the data space region, whéfeis shown ast andY, as<>. The lines correspond
to regions of data space that project to the same latent iczted (a) shows;, (b)
showsxs,

3.6.3 Students’ exams data

We demonstrate GPLVM-CCA's ability to find a visual represgion of the shared
structure between two related data sets. We test our modalreal data set from
(Mardia et al,, 1979), which is commonly used to test the performance of CCA
type algorithms. The data set consists of 88 students’ mawksf 100 on 5 ex-
ams in the subjects of Mechanics (C), Vectors (C), Algebrg @nalysis (O), and
Statistics (O), where C and O denote closed and open-boakexale are inter-
ested in finding how highly a student’'s performance on cldssak exams is cor-
related with his performance on open-book exams. FiguresBdvs the set of 1-
dimensional latent coordinates (each representing astuideind for both the closed-
book (X;) and open-book exam datX{). The SE kernel parameters for the trained
model area = 1.2561,3 = 0.7773,~ = 1.1140 for the closed book kernel, and
a = 1.9162,5 = 0.6940,v = 1.4154 for the open book kernel. Each student is
represented by their rank number in the class, where ‘1l'esapts the student who
gained the highest average score across all exams, dow&'{¢H8 lowest ranked stu-
dent. There is a clear correlation between a student’s pedioce on closed book and
open book exams, which suggests that the model is able to fiegtasentation for the

students based on their ability.



0.066821

3.6. Experiments

0
Y11

(@)

0.015365

0.5

0
Y21

(©

0.5

y2,2

0.019701

0.81

0.6

041

0.2

-0.5 0 05
yl,l

(b)

0.010531

-0.5 0 05
y2,1

(d)

87

Figure 3.7: Predictive densities 8f; given'Y (first row) andY; givenY; (second
row). The first column corresponds the GPLVM-PCA model, dr@lgecond column
corresponds to the GPLVM-CCA model. The means of the predictensities are
shown ast, the data is shown asand 2 st.dev of the noise covariance is plotted for

each data point.
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Figure 3.8: Correlated latent coordinates for closed b@lkaad open book (O) exams
() for the group of students ranked from ‘1’ to ‘88’. Eachdat coordinate represents
a student.

Another feature of this method is that we can visually idgratudents who per-
form very well on one type of exam but less well on the otherr &mample we see
that student 81 does very much better on the closed book ettemshe does on the
open book exams while the opposite is true of students 66 @nbhZhis case, we can
easily corroborate this fact from the original data setstbi#t is a useful feature for

exploratory data investigation of much higher dimensiatzdh sets.

3.6.4 Image data

We demonstrate the performance of the GPLVM-CCA model ont afsenage pairs
which share the same underlying degrees of freedom. We esErdy face dataset
(which can be found atttp://www.cs.toronto.edu/ ~roweis ) which con-
sists of consecutive frames from a digital movie. The dat@@etains 1965 grayscale
images of a single person’s face at a resolutiod(ok 28. We split each image verti-
cally in half to gain two sets of images, wheéyg is the set of left half images, ard,

is the set of right half images. The sets of images share aleamglationship due to
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Figure 3.9: The joint structure of the pairs of face imagesualised in a 2D latent
space. The latent coordinate $€tis shown with some of the corresponding image
pairs.

the interaction between the left and right halves of the facgeate different poses and
expressions. We train the GPLVM-CCA model on a training $eé8af) image pairs,
using polynomial covariance functions and a 2 dimensioai@nt space. Due to the
large size of the data set, we use a sparse approximatioe tonddel by using the in-
formative vector machine (IVM) (Lawrencst al,, 2003), which represents the model
by a smaller subset of input points that contain the mostiné&iion about the relation-
ship between the two data sets. For more information abanguke IVM with the
GPLVM see (Lawrence, 2004, 2005). Figure 3.9 shows the dHatent coordinate set
X underlying both data sets, shown with some correspondiagénpairs, after train-
ing the model. As can be seen from the plot, the positionsefdtent coordinates are
determined by the pose and facial expressions. After miodete shared underlying

structure to the two sets of image pairs, we can use the tranoelel to make predic-
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Figure 3.10: Predicted image halves given the other hall@gsrow: The mean of the
predictive distribution over the left half of the image gmhe right half. Middle row:

The mean of the predictive distribution over the right hdltlee image given the left
half. Bottom row: the true set of test images

tions about one set of images given the other. We show predscof unknown image
halves for 10 test image pairs in Figure 3.10. The first twosretvow the mean of the
predictive distribution over the unknown half of the 10 tesages after presenting only
the other image half to the model (top row: left given righiddie row: right given
left). The bottom row shows the true images. As can be seemthe figure, the model

is able to infer the missing image halves.

3.6.5 Image data with missing values

Since the model defines a probability density over the twe sttata variables, it is
possible to handle missing values in a principled way. I8 Haction, we show how
the trained model of the previous section can be used togiredknown image halves
when presented with the other image halves that have datas/alissing at random. If
we define an incomplete data point (for the first data segyas {y?,y}, wherey?
denotes the observed data dimensions gHddenotes the missing data dimensions,
then the likelihood for the observed data dimensigfisgiven the training data and

corresponding latent coordinatBs= {Y, Y., X}:

p(y? | D.x) = /p(ylo,yi” | D,x)dy;" (3.71)
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wherex is the corresponding latent coordinate §¢t. We make the approximation that

piy?, vy | D,x) = py?,| D,x)plyl | D,x) (3.72)

= NTIn? (), o (x) BTN (y1' 11" (x), oF (x) ©17)(3.73)

where

pf(x) = [k(x) K'Y (3.74)
pmx) = k() KY) (3.75)
oi(x) = k—k(x)"K'k(x) (3.76)

andK = C(X,X) + 71, k(x) = [C(x,x1), ..., C(x,xn)] T, k = C(x,x). ¥{ and
W are the blocks off; corresponding to the observed and missing data dimensions.
This ignores the correlations between the missing and datarsions such that we

can ignore the missing dimensions and finth maximise

p(y? | D x) = N(y?|u (x), o1 (x)©7) (8.77)

We can then use to find the distribution ovey.

For this experiment, we use a test set of 100 image pairs. kvewe pixel values
at random from the set of left image halves, and then find tlieesponding latent
coordinate set, and then use this to calculate the disiibover the rightimage halves.
We use the mean of the distribution as the predicted riglitdidhe image; in Table
3.1 we show the root mean squared reconstruction erroraealwver the training set,
for different percentages of missing data, averaged oveu@$ of each experiment.
Figure 3.11 shows the predicted rightimage halves nexgoadhresponding left image
halves which were presented to the algorithm (Figures 3d.1§) for 10 test image
pairs, when different percentages of the left image pixedsewremoved at random.

The true images are shown in (g). As can be seen from the fitheeglgorithm can
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% missing pixels  Average r.m.s error
in leftimage | per pixel in right image
0 0.1299
10 0.1325
20 0.1336
30 0.1354
40 0.1372
50 0.1404
60 0.1423

Table 3.1: Pixel prediction error in the right image givee tbft image which has
pixels missing at random. Each pixel ranges from 0 to 1.

find the corresponding right image when presented with amnnpdete left image when
the proportion of missing pixels is small (Figure 3.11a).tAs percentage of missing
pixels is increased, the model’s predictive ability becemwerse (as seen in Table 3.1)
which is expected. However, the test images show that thehmostill able to roughly
predict the underlying pose in the right image, even whero§®6 of the left image’s
pixels are missing at random. This is due to the learned dhamgbedding of the
training set, as shown in Figure 3.9, in which the underlyffargal pose of the image

sets determines the latent coordinates’ positions.

3.7 Conclusion

In this chapter, we presented a generative probabilisiimé&work for representing the
shared structure between two related sets of data varidbded data setis modelled as
being conditionally independent of a shared set of latenalées such that the latent
variable represents the features that are common to batlosdata. We also derived
that the noise model for each data set has to be of sufficiedqbifiey to capture the
within-set variation i.e. we require the noise model for tingt data sey; to capture
the conditional entropy (y; | y2) and the noise model for the second dataysetio
captureH (y, | y1). This constrains the model such that the functions undeglitie
data are forced to model the mutual information between #te sets.

We then showed that the within-set variation could be medelily using linear

transformation®, andW¥, of each data set, and showed that the generative dependency
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seeking model, probabilistic canonical correlation asialy(Bach & Jordan, 2005),
could be interpreted within this framework. This linear rebdias then extended, in
the spirit of the Gaussian process latent variable modelLY&B (Lawrence, 2004),
to create a model where the shared feature space was nohfirelated to the data
spaces. Rather than having a parameterised mapping frent tatdata space, Gaus-
sian process priors were placed over the latent functiceitsrétate the latent and data

spaces. We denoted this model as GPLVM-CCA.

This model relaxes the assumption that the data dimensighgwveach set are
independently distributed; by learning a linear transfation of underlying Gaussian
processes to model each data set, the model captures the-gathvariation through
¥, andW¥,. This formulation can be interpreted as inducing cross Gamee functions
between the data dimensions within each data set (via tkarlimansformation®,
and ¥,) to model the private variation, such that the latent vdeia®t is forced to

model the shared relationship between the two data sets.

We then demonstrated the performance of the GPLVM-CCA modesiome data
sets. When using a pair of data sets that have a linear nesiip, the model found
sets of maximally correlated latent features for each dattal$is similarity to canon-
ical correlation analysis is due to the model’s derivatimmf probabilistic CCA. We
demonstrated the model on an example where the two datareeterainearly related
to a shared 1 dimensional latent space, showing that that Ispi@ce can be recovered
and used to predict values of one data set given the otheallfiwe tested GPLVM-
CCA’s performance on a more challenging data set. We usee@todisnage pairs that
share the same underlying degrees of freedom. We used thdder dataset which
consists of consecutive frames from a digital movie andt galch image vertically
in half to gain two sets of images. The sets of images sharemplea relationship
due to the interaction between the left and right halves efftite to create different
poses and expressions. The GPLVM-CCA found a shared |latdrg@ding for the two
data sets that reflected the varying pose of the face thraughe data set. We then

demonstrated the quality of the embedding by showing thagu$e trained model,
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one image half could be predicted when the algorithm wasepted with the other
image half. We also presented a mechanism for inferringatent coordinate for an
image half that contains pixels missing at random. We shdhaitthis approximation
was good enough to predict the corresponding image halfre@ékonable accuracy for

up to 60% of missing pixels.
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Chapter 4

Generative models for finding shared

and private structure

4.1 Introduction

In this thesis, we are interested in representing the oglakiip between two related
data sources probabilistically. Our approach is to reprtesgch data source as the sum
of two independent components, a shared component withttiez data source that
captures the common information, and a private componeithndaptures the infor-
mation private to the data source. The interaction betweeditferent components are
then modelled probabilistically in terms of a generativedelf the two data sources.
The structure of the model reflect our assumptions abouthwdspects of the data are
useful; in the previous chapter, we placed importance oneftind the shared features
of the two data sets. After modelling the common processlyidg the two data sets,
the joint relationship can be compactly represented ingexha joint latent space. This
approach places less importance on modelling the compstieattarerivateto each

data set and represents them as a noise term using a simpé mod

However, there may be situations in which the shared inftionas not the only
useful information, and interesting aspects of the dataareommon to both data sets.
Some useful features within one data set may not be prestr other and vice versa;

this complementary property motivates the use of multiptladources over single data
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sources which capture only one type of useful informatioor iRstance, having two
eyes (and two streams of visual data) allows us to gain a 3fpassion of the world.
This ability of stereo vision combines both shared feataresfeatures private to each
data stream to form a coherent representation of the woadlanoon shifted features
can be used in disparity estimation to infer depths of objexchile some features which
may be seen in one view but not in the other, due to occlusaamsprovide additional

information about the scene.

If we wish to represent the private processes underlying data set, this neces-
sitates the use of more complex models to capture theirtateicThe GPLVM-CCA
model that we described in Chapter 3 represents the prindemation for each data
set with multivariate Gaussians. However, these modelsmoaie sufficient for find-
ing interesting features that are only present in one datargkenot the other, and vice
versa. In this chapter, we extend the GPLVM-CCA model andvzdenore complex
models for the private processes. A Gaussian process lagable model (GPLVM)
prior is placed over each set of private processes, creatilexible prior over the (op-
tionally nonlinear) private processes. Each set of prigateesses is indexed by a latent
space which is private to the data set, such that each ‘ptigat of latent coordinates

captures the private information within its correspondiaga stream.

In Section 4.2 we derive a new noise model for the GPLVM-CCAdei®f the
previous section that is able to capture complex structurde within-set variation.
In Section 4.3 we describe how to train the model and how teritife dimensionali-
ties of the latent spaces, using an automatic relevancentietgion (ARD) procedure.
In Section 4.4 we use the algorithm to perform a part-basedrdposition of a syn-
thetic image data set. The algorithm is able to represenintage data set in terms
of a smaller basis of prototype images, where the basis stsnsi shared and private

features.
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4.2 Modelling a complex noise process

The GPLVM-CCA model discussed in the previous sections esuon modelling
shared information between two data sets through a shatext Ispace. The varia-
tion within each data set is accounted for by the mixing maEnIII% and\Ilé, such that

the private processes andn, are modelled as multivariate Gaussian:

n; ~ N(l’ll | O,‘I’l) (41)

ny ~ N(ny | 0, ¥,) (4.2)

One of the problems with these noise models is that when tmerBionsmn,; and

mo Of the data sets become large, it is computationally expertsi estimatel; €
Rmixm gnd W, € RMm2*™2, A possible solution to this is to consider a reduced rank
representation o¥; andW,, but this may fail to capture all of the within-set variation
A more important problem with the noise model is that it may be sufficient for
capturing complex within-set variation, since it models fitivate processes as noise

and neglects any underlying structure.

We now review the noise model of the GPLVM-CCA model of thevpras chap-
ter, and show how it can be extended to model private prosd¢bae have underlying
structure. Inthe GPLVM-CCA model, each dimension of thesag@rocessas;, andn,
can be viewed as a linear function of underlying latent \deisx; € R andx, € R?

respectively such that the data is generated according to:

Y1 = f1 (X) + n;, = fl(X) + ‘1’le (43)

1
Y1 = fQ(X) + ny = fQ(X) + ‘1’22 X9 (44)

where bothx; € R andx, € R? are uncorrelated witlk € R?, ¢; = mq, go = mo,
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Figure 4.1: The corresponding graphical model for the uestiped learning of two
related data variables, andy,. Each data variable consists of two independent com-
ponents, the shared functiénand the private function.

and:

X X | 0
o Vs "o | (4.5)

X9 X9 0 Iq2

Rather than restricting the noise model to linear mappirigs @ndx,, we can con-

sider any nonlinear function, by considering noise proegess the form:

p(Ny | Xy) HJ\/N1 )] 0,K,,) (4.6)

p(Ny | X,) = HJ\/N2 )] 0,K,,) (4.7)

wherem, andm, are the dimensionalities gf andy, respectively, and we have placed
Gaussian process priors on tith columns of the nois&; = [n;1,...,n; y]' and

Ny = [ng1,...,no )" evaluated alX; = [x11,...,x; 5] @andXy = [x21, ..., Xa n]
respectivelyK,,, andK,,, are the covariance functions with respective inpxitsand
X,. This noise model captures the within-set variation wig¢blumns oiX; andXs,

rather than with¥r, as in the original GPLVM-CCA model.

We also place Gaussian process priors on the shared fusgtioa [f; 1, ..., f; v "
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andF, = [f5,,...,f, 5] ", as before:
p(F | X) = H/\/ Fi(:1) ] 0,Ky,) (4.8)

p(F | X) = H/\f Fo(i) [ 0,K},) (4.9)

whereK;, andK/, are covariance functions whose input is the shared laterzhta

setX. The resulting model is as follows, after integrating over’s andN’s:

1 1
PYHIXX) = g —ep( YY) (440)
(2m) "5 Ky | %
1 1
(Yo | X, X)) = — - eXp <—§tr(K2‘1YQY2T)) (4.11)
(2m) 72 |Ka| 2

whereK; = K;, + K,,,, andK, = Ky, + K,,,. Each data stream is modelled as
a GPLVM, whose covariance function consists of a shared oot (dependent on
X) and a private component (dependent on eiferor X,). This is similar to the
GPLVM-CCA model introduced in Chapter 3, except that thegig information to
each data set is now captured as a function of a private ledeiatble. The dimensions
within each data set are modelled as independently andicdéntdistributed, and
X; and X, capture the correlations withiv/; and Y, respectively. X captures the
correlations betweely; andY,. The graphical representation of the model is shown

in Figure 4.1.

4.2.1 Relationship to other models

The model is related to probabilistic canonical correlatamalysis (PCCA) (Bach &
Jordan, 2005), which can be shown by deriving the model fr&aPaVM approach to
PCCA. Under the PCCA model, each pair of data pojnts [y, ,y,]" is generated

according to:

W n
i x| (4.12)

Yo W, np
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where we have assumed zero mean data. Each set of dataesigmbhearly related
to a shared underlying latent variabtec R?, by the matricesw,; € R %9 W, €
R™2>4 The noise variablea; € ™ andn, € R™2 can be interpreted as linearly
related to a set of underlying latent variablgse R andx, € R respectively by

L 1
matrices®? € R™>m andW? e Rm2xmz,

— ol
(@]

n; )\ X1
- . , (4.13)
o 0 \I’22 X9
where
X1 X1 Im1 0
~N 0, (4.14)
X9 X9 0 Im2

We can then write that the complete set/¢fdata pointsY; = [yi1,...,y1.~]" and

Y, = [y21,.,y2n] are generated according to:

Y, = XW] + X, 07 (4.15)

Y, = XWJ + X, (4.16)

To derive the model from the PCCA model, we place conjugatgs&ian priors on the

1 1
rows of Wy, Wy, W7, andW¥;:

p(W1) = [[N(wii ] 0,1,) (4.17)
p(Wa) = [[ V(w2 [ 0,1,) (4.18)
p(¥7) = [[N (2, 10,1, (4.19)

1=1

DN pof—=

p(¥
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1 1 1 1
wherew ;, wo;, U7, and¥;; are theith rows of W;, Wy, &7, and¥; respectively.

1 1 .
Integrating oveW;, W,, ¥, andW¥;, we obtain the model:

1 1 1
p(Y1 | X, X)) = / / (Y | X, X0, W, W F)p(W)p(B )W, 4}

1
= mlN -Eexp <——tr(K1‘1Y1Y1T)) (4.21)
|K1 E 2

2

p(Ya | X, Xy) = / / (Ya | X, X, W, U2 )p(Wa)p(B3)dW,d 03

= ——tr(K;'Y,Y 4.22
2 ) |K2\2 eXp( 2”( 2 2)) ( )

whereK,; = XX + X;X/, andK, = XX + X,X, . The covariance functions are
linear functions ofX, X, andX,, but we can consider any valid (nonlinear) kernel of
the inputs, which imply nonlinear mappingsX¥f X, andX, to their respective data
spaces. Using a nonparametric Bayesian prior over thetprfuactions underlying
each data space is an elegant and flexible prior over undgrlgtivate structure of
the data sets. Since the resulting model can be derived frobapilistic CCA, it can
be viewed as a probabilistic interpretation of nonlinearazacal correlation analysis,
where the underlying structure to the within-set variat®modelled explicitly.
Another model which explicitly models the within-set vaite is the dependent
Gaussian process model (Boyle & Frean, 2005a) which moddtire dependent out-
puts using Gaussian process regression. This model assiuenesistence of multiple
shared and private latent processes which are combinedrotfe outputs. The pa-
rameterisation of the covariance functions differs from madel; convolution kernels

rather than covariance functions are used for the GP’s.

4.3 A GPLVM-CCA model with complex noise process

4.3.1 Training the model

Learning the model, given two sets of related ddtaandY,, consists of finding the
latent coordinateX, X, andX and the hyperparamete®s,, , Ok, ,i =1,2, of the

two covariance functionkK; andK, to maximise the log likelihood function. The log
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likelihood is given by:

Lyxx,x: = Lyixx, +Ly,xx, (4.23)

sinceY; andY, are conditionally independent givéqy where the likelihood functions

for Y, andY, are given by:

Ly xx, = In p(Yq | X, Xy)
N 1
= e - MnjKy | - (KUY YY)
2 2 2
Ly, xx, = Inp(Y, | X, Xs)
_mgN

1
= ——In(2m) - %In\Kﬂ — Str(K; 'YL Y))

(4.24)

whereK; = K¢, + K,,,, andK, = K¢, + K,,,, the sum of a shared and private
kernel. The optimisation is similar to before; we use scatagugate gradients and the
GPLVM toolbox. The optimisation takes place in two stepstfwe jointly optimise
X and the parameters of the shared kergls , i = 1,2, then we jointly optimiseX,

X, and the private kernel paramet®sg, ,i = 1, 2.

4.3.1.1 Optimisation of the latent poin¥s, X, and X

The gradients oy x x, x, With respect tdK; is given by:

0Ly, X X,

4 1
SR —%K;l + 5K Y YK (4.25)

The gradients oy |x x, x, With respect toX can be obtained by combining (4.25)

0K,

with —<+,

i = 1,2 using the chain rule, Wherae;% depends on the form of the co-
variance functiorK ;. Similarly, the gradients of vy x x, x, With respect taX; can be
obtained by combining (4.25) wit I;” As before, we seek MAP estimates for the

latent coordinates by first specifying priors overX,, andX,.
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4.3.1.2 Optimisation 08, , Ok, ,i=1,2

The gradients of v |x x, x, With respect t®g, can be obtained by combining (4.25)

ai)K;; .4 = 1,2 using the chain rule. Similarly, the gradients©fx x, x, with

respect td®y, can be obtained by combining (4.25) Wig%l%,i = 1,2. As before,
7 f’L

we constrain the parameters to be positive, and seek MARGodU

4.3.2 Initialisation of the latent spaces

One important problem in the implementation of the origiG&LVM-CCA model is
the initialisation of the latent space, since the algorithm may become trapped in a
local minimum and fail to recover the true embedded spaceenéxtending GPLVM-
CCA to explicitly model the structure of the private proassthrough latent spac&s
andX,, as we describe in this chapter, the initialisation probbemomes more difficult
since the degrees of freedom of the optimisation problemaseased, due to the con-
sideration of an additional two latent spaces. Since thatvan in each data set dimen-
sion is effectively shared between the shared latenKsand the private latent s&;

or Xs, due toK; = K¢, (X, X)+ Ky, (X1, X4), andK, = Kg, (X, X) + Ky, (X3, X,),
the model is very sensitive to its initialisation. In our exinents we use CCA to ini-
tialise the positions oK, sinceX represents the shared features betwéemandY .
To initialise the private latent spaces, we calculate tlieswlbspace variances faf;
andY,, ¥; and¥, respectively, which are the noise covariance matriceseoptbba-
bilistic CCA method which we reviewed in Section 2.5.4. Wertind X; andX, by
projecting the corresponding data set onto the firgindg, dominant eigenvectors of

W, andW¥, respectively.

4.3.3 Inferring the dimensionality of the latent spaces

A problem of dimensionality reduction methods is choosimg dimensionality of the
latent space. A too low value ofg can result in the model discarding some of the
important information in the data as noise, and a too hig/alue allows the model
to fit to spurious correlations in the data. In our model, weehifiree different latent

spaceX, X; andX5, which capture different parts of the data - the privaterimfation
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in each data set and the shared information between theetatal$ie dimensionalities
of the latent spaceg < min(mq, ms), g1 < my, andg, < ms, enable the model to find
a compact representation of the relationship betwéermndY,, and the underlying
structure to their within-set variation. Determining thiendnsionality of the latent
spaces is therefore important since this will affect howittiermation in the data sets

is shared betweeK, X; andX,.

A solution to this problem is to use automatic relevance rdateation (ARD)
methods, as suggested in (MacKay, 1995; Neal, 1998) fronméleal networks lit-
erature, which advocates the use of continuous hyperpéeesrie avoid the problem
of a discrete model search to find the best setting of latenedsionality. To imple-
ment ARD in the model, the dimensionality of the latent sgaseset to a maximum
value¢..... Hyperparameters are added to the covariance functionsvisight each
input dimension, and a hyperprior is placed on the weightigoourage large values.
Irrelevant input dimensions can then be effectively rengosrering the training of the
model i.e. the weight of the irrelevant input goes to zerlmvwehg the data to be best
explained with as few latent dimensions as necessary. Iexpgriments we use an

ARD polynomial covariance function for each latent prooskgch is given by:
k(x;,x;) = « (XZTAX]' + 7)d + 8715 (4.26)

with hyperparameter®y , = {«a,3,7,d,A}, and A = diaga)?, wherea =
a1, ...a,,..]" is avector of positive values. Each elemerit the inverse of the squared
correlation length scale of the process in ittedimension. Sinca controls the scale
of each input dimension, a small scale will cause the comagdunction to become
almost independent of that input, deeming it ‘irrelevaattiie model. We also place a

zero mean Gaussian hyperprior@such that small scales are favoured.
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Figure 4.2: Examples of the training images. The top thresare from the first data
set (the first 24 columns &), and the bottom three rows are from the second data set
(the first 24 columns oY,). Each image consists of a horizontal bar chosen at random
from the 8 possibilities, which corresponds to the prochasexs] by both sets. The first
data set contains a vertical bar chosen at random from thedéfof the image, and
the second data set contains a vertical bar chosen fromghiehalf of the image.

4.4 Experiments

In this section we demonstrate the model’'s performance endata sets of images.
We separate the images into a set of latent images. The latages form a basis
of prototype images, consisting of three sets of imagest afsmages that represent
the features common to both sets of data, and two sets of sBrthgé represent the
features that are only present in their corresponding dstals our experiments, we

use a variation of the bars problem, which is a test probleineitin (Foldiak, 1990).

4.4.1 Barsdata

The bars problem e.g. (Foldiak, 1990; Dayan & Zemel, 1998yet al., 1997; Charles

& Fyfe, 1998), is a benchmark task for learning independenimonents from an im-
age. While the original problem consists of decomposingtaoténages into a set
of underlying features (vertical and horizontal bars), hirs texperiment we consider

a modified version of the problem that illustrates our aldpon's ability to find both
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shared and private features for two image sets. We creatsdtgoof 8x 8 images;

24 examples from each set are shown in Figure 4.2. Each insaggnerated by first
instantiating one of the 8 possible horizontal bars, chag#m equal probability. For
the first set of images (top three rows of Figure 4.2), one @#tipossible vertical bars
in the left half of the image is instantiated with equal proitity, and similarly, for the

second set of images, (bottom three rows of Figure 4.2) otleeodt possible vertical
bars in the right half of the image is instantiated with equrabability. Producing the
two image sets involves a shared process in the generatithe dforizontal bars, and

private processes in generating the vertical bars.

Our aim is to recover the set of eight shared features - thiedmdal bars - and the
two sets of four private features - the vertical bars. Ondefdifficulties with the bars
data is that each image is nonlinearly related to the unihgyfeatures (the bars), since
the superposition of the features to form the image resunlteclusion, or overlap, of
the features. Each image can be thought of as a linear cotidrira horizontal and
vertical bars which is then passed through a nonlinearitgfvimodels the overlap i.e.

for theith image of both data sets:

Yl(:7 Z) = Gfl (wal) + Gm (Xlwm) (427)

Y2(:7 Z) = Gf2 (XWf2) + Gm (X2Wn2) (428)

whereGy,, Gy,, G,, andG,, are nonlinear output function¥, € R7™, Wy, €
Rxm2 W, € R™M andW,,, € R2*™2 gare mixing matrices. For our experiment,
we use polynomial covariance functions of degree 2 for eackgss to reflect our
knowledge about the data generation process; the polyha@owariance function is

given by:
k(x;,x;) = « (wxiij + 7)2 + 8715 (4.29)

with hyperparameter®y , = {«a, 3,7, w}, wherea is a scale parametes, is the
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inverse noise variancey controls the scale of the dot product component, ansla
bias parameter. Polynomial kernels have proved effectivéigh dimensional classi-
fication problems when the input data set are binary or gedgsmages i.e.(Scholkopf

& Smola, 2002).

We use an 8-dimensional shared latent s@acand a 4-dimensional private latent
spacesX; andX, (where the columns are the underlying images). We use argain
data set of 200 pairs of images (some examples are given ime=2) such that the
200 columns ofY; € R64*200 gandY, € RN64*20 are8 x 8 images that contain a vertical
bar in the left and right half of the image respectively, antbazontal bar. We also
constrain the latent points’ values to lie between 0 and dh $hat they correspond to
underlying image pixels. Each latent poits reparameterised &3, using a sigmoid
transformx = log(x’/(1 —x’)), such that the optimisation takes place in a transformed
space. Figure 4.3 shows the discovered latent images ( thenns of X, X, and
X5,), after training the model on the 200 pairs of training in@gas can be seen, the
model manages to decompose the training images into thesatgerlying shared

and private features.

4.4.1.1 Reconstruction of the images

In this section, we show how the shared and private lateng@mavhich we found

in the previous section can be used to reconstruct the atigimages. This involves

finding the posterior distributions of the underlying ptezand shared functions given
the dataY; andY,, and the latent features, X; andX,. This investigates how well

the algorithm is able to model the overlap between featurke.posterior distribution

over theith column of the first set’s shared underlying function (uhdeg the ith

image of the first data seH(:,)*, evaluated aX* givenD = {Y;(:,7),X,X;} is
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Figure 4.3: The recovered latent images. The first two rowsespond to the 8
columns ofX, and are the shared features i.e. the horizontal bars. Tt rdw
corresponds to the 4 columns Xf, the vertical bars in the left half of the image, and
the fourth row corresponds to the 4 columnsXgf, the vertical bars in the right half of

the image.

given by:
p(Fi(3)" | XD) = N(F(0) | (X7),05(X7)  (4.30)
where
pr(XY) = (R (X)KTYA( ) (4.31)
o (X)) = k= (kXK (R (X)) (432)

andky, (X*) = Cf, (X*, X), whereC/, denotes the first set’s ‘shared’ kernel without

the white noise variancds; is as before, anfl;, = diagC', (X*, X*)).

The posterior distribution over thigh column of the first set’s private underlying



4.4. Experiments 111

Figure 4.4: 24 reconstructed images from the first dat&’s€top three rows) and the
second data sé&f; (bottom three rows)

functionIN, (:, 7)*, evaluated aX7 givenD = {Y,(:,7), X, X, } is given by:

p(N1(59)" [ X5, D) = NNi()" | (X7), 03, (X])  (4.33)
where

pi(X3) = (ke (XD))K Y () (4.34)

00 (X)) = ke — (ke (XK (ke (X)) (4.35)

andk,, (X7) = C,,, (X3, X1), whereC,,, denotes the first set’s ‘private’ kernel without
the white noise variance, arg,, = diagC,, (X7, X7)). We can similarly find the
posterior distributions over the shared and private fumstifor the second data set. We
evaluate the posterior means 8} andF; evaluated aX, andN; and N} evaluated
at X; and X, respectively. Figure 4.4 shows the first 24 reconstructeabes for

each data set, given by the posterior means¥ior= F; + N7 andY; = Fj + NJ
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(b)

Figure 4.5: The posterior mean of the underlying sharedtfons is shown in (a)
for the first 24 images oY, (top three rows) an&’, (bottom three rows). (b) shows
the posterior mean of the underlying private functionsYar(top three rows) and’,

(bottom three rows)



4.4. Experiments 113

Figure 4.6: The latent images and associated scales afteinty the model using an
ARD polynomial kernel. From top to bottom, the first three sashow the sets of latent
images found for the shared space, the private space uimde¥y, and underlyingy,.
The next three rows show the scales of each latent imagedasttared space, and the
first and second private spaces.

The top three rows are reconstructions for the first set, hadottom three rows are
reconstructions for the second set. The reconstructedasnaig a good approximation
to the original images shown in Figure 4.2. The reconstonstifor the second set
model the overlap between bars more accurately than forrgiesét. Figure 4.5 shows
the shared and private components of each image. (a) shewsosterior mean of
the shared functionB; (top three rows) an#l’; (bottom three rows), and (b) shows the
posterior mean of the private functiohg (top three rows) antN; (bottom three rows).
An interesting observation is that in some of the imagesxal ji8 missing from one of
the bars. This is due to the latent images being put througihdinlinear map implied
by the polynomial covariance function. This aids in the ssstul reconstructions of
the original image; the overlap between bars is taken into@at by removing a pixel

at the point in the image where the bars intersect.
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4.4.2 Automatically finding the latent dimensionality of the shared

space

In the previous set of experiments, we set the dimensioesldf the latent spaces -
for the shared spacge = 8, and the private spaces = ¢» = 4, to reflect our prior
knowledge about the problem. We show how the dimensionafithe latent spaces
can be automatically determined by using ARD polynomiahkés for the shared and
private processes. This automatically finds the seatef each input latent dimension
to the kernel, such that irrelevant dimensions can be disch¢; = 0). We found
that this procedure was very sensitive to the initialisaiodd the model because this
increases the degrees of freedom of the model to the extainthity model always got
stuck in a local optimum of the log likelihood function. Hoves, we found that if we
set the private spaces to the correct dimensiongity: ¢ = 4, the model was able
to correctly infer the dimensionality of the shared latgpaie. Figure 4.6 shows the
latent images and their associated scales after settind2, ¢; = ¢ = 4. As can be
seen, the model correctly detects that the shared space hatsiasic dimensionality

of ¢ = 8, by pruning out 4 unnecessary inputs.

4.5 Conclusion

In this chapter, we have presented a probabilistic geweratamework for analysing
two sets of data, where the structure of each data set isseel in terms of a
shared component and a private component. In the previcaistet we presented
the GPLVM-CCA model which modelled the private (or noisedgesses underlying
each data set as a multivariate Gaussian. We extended this| neoallow for a com-
plex noise process that reflects the underlying structutlegavithin-set variation. We
explicitly modelled this structure as private latent sygaioe each data set, and placed
Gaussian process priors over the private functions in gaees The resulting model
can be interpreted as two GPLVM's, where the covariancetionof each GPLVM

is dependent on a shared latent space, which captures tre@omformation, and a

private latent space, which captures the private inforomati
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We then demonstrated that the model was able to extractdshackindependent
components from two sets of images, which would not be pteseging the GPLVM-
CCA model of the previous chapter. While including a compieise model is ben-
eficial since it avoids an oversimplified representationhef within-set variation, the
difficulty of the optimisation problem is increased becawsehave to optimise three
latent spaces. We found that the model often became trappedal minima during
the optimisation and it was necessary to find a good iniatibs of the model. We also
showed that the model was able to infer the dimensionalithefshared latent space

when using automatic relevance determination (ARD) kerfarlthe GP’s.
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Chapter 5

Mixture models for finding shared

structure

5.1 Introduction

In this chapter, we present a model for finding a joint prolisti representation of two
data sources, which builds on work in (Fyfe & Leen, 2006). éneral, existing meth-
ods for finding shared structure are discriminative methatisch find a set of features
for each set that optimise a similarity measure betweendhtifes e.g. (Hotelling,
1936; Borga, 1998; Lai & Fyfe, 2000). Using these methods lmamproblematic; a
probability density is not defined over the two sets of datéatdes, and therefore we
cannot evaluate quantities such as the predictive dengéy ane data set given the
other. Additionally, these methods do not model the undeglylata generating pro-
cess. Though this may be efficient in that the modelling pasviercused on optimising
the quantity of interest - the similarity of the extractedtt@es - it is difficult to incor-
porate prior knowledge about the feature space. With tlis dd knowledge about the
problem, care has to be taken in designing appropriate mearlimappings for find-
ing nonlinearly related pairs of features using discririveatechniques. An inflexible
mapping may not recover the true underlying shared stredietween the data sets,

and an overly flexible mapping may find spurious correlatiogisveen the data sets.

This problem of inferring the appropriate complexity of thmodel can be ad-
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dressed using nonparametric Bayesian methods. The coitypbéxhe model is al-
lowed to grow with the number of data points such that the ssay complexity is
inferred from the data. This involves placing a prior oveamily of probability dis-
tributions over the data generating process to allow a flexpbior on the underlying
data distribution. One such prior from the nonparametatigics field is the Dirich-
let process (DP) (Ferguson, 1973), which is a distributiear alistributions. In this
chapter, we assume that each data set lies close to a nonia@éold in data space,
each indexed by a shared set of latent coordinates, whiattefihe shared structure
underlying the data sets. We extend the probabilistic féautian of canonical corre-
lation analysis (PCCA) (Bach & Jordan, 2005), which we rexdd in Section 2.5.4
to a mixture of PCCA in the spirit of the mixture of probahiitsprincipal component
analyzers (Tipping & Bishop, 1997) to find a low dimensiorgpnesentation of two
related data sources. The resulting model approximatgsatihef nonlinear manifolds
by pairs of local linear submodels. We use the DP as a nongdrignprior for the
parameters of the mixture model, allowing the number of oxexcomponents to grow
with the number of data points, such that the flexibility oé tmanifolds is inferred
from the data automatically. We call this model a Dirichledqess mixture model of

probabilistic canonical correlation analysers.

In Section 5.2 we review mixture models, and derive a mixtufrerobabilistic
canonical correlation analysers (PCCA). We show that ibtspossible to infer an ap-
propriate number of mixture components when using maximuelihood methods.
In Section 5.3 we review a Bayesian approach to the problechshow how a finite
mixture model can be generalised to an infinite mixture maggblacing a nonpara-
metric Dirichlet process on the model parameters. In Se&id we present a Dirichlet
process mixture model of PCCA, and evaluate the model'opadnce on a toy data

set.
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5.2 Mixtures of latent variable models

Since canonical correlation analysis (CCA) defines linadrspaces for each data
space, this is insufficient for modelling the relationshgivieen two data sets where
the underlying shared structure is nonlinear. Howeveray ine reasonable to assume
that local regions of the data spaces can be modelled by lapgaoximations, where
the accuracy of the approximation depends on factors sutttedscations of the local
regions that are chosen, their size, and the strength otihlevearity in the data. There
are a number of techniques proposed in the literature foreftind a single data set by
approximating a global nonlinear structure with a comhoraof local principal com-
ponent analysis (PCA) models. These methods are genetallystage procedure; the
data is first partitioned into local regions, and then thegpal subspace is estimated
within each partition. The arbitrariness in this procedigreéeflected in the variety
of algorithms that have been proposed i.e. (Hingébral, 1995; Bregler & Omohun-
dro, 1995; Kambhatla & Leen, 1997), and none define a prababdensity. However,
the probabilistic formulation of principal component aysa$ proposed in (Tipping &
Bishop, 1999) can be naturally extended to a mixture of guiséic principal compo-
nent analyzers (Tipping & Bishop, 1997) in the probabitistamework, overcoming
thead hocnature of the previously mentioned algorithms by estingatire partitions
and principal component vectors through maximisation afgls likelihood function,

and defining a probability density for the model.

Following this idea, in this chapter we extend the probabdiformulation of CCA
to a mixture of PCCA in the spirit of the mixture of probatiigsprincipal component
analyzers (Tipping & Bishop, 1997) to find a low dimensiongbnesentation of two
related data sources. This models each data set as lyirgtd@snonlinear manifold
in data space, each indexed by a shared set of latent comslif@orresponding local
regions of each manifold are modelled by a linear approxonawith a probabilistic
canonical correlation analyser. Within the probabilistaanework, it is easy to extend
a latent variable model to a mixture of latent variable medAlmixture model models

the density for a data point, as a weighted average &f latent variable model den-
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sities, wherek( is the number of mixture components. The probabilityyforis given
by:

K
Py 10) = p(yn | Ok, co = k)plca =k | ) (5.1)

k=1

wherec € {1,..., K} is a discrete variable which indicates which latent vagabl
model has been chosem,= [, ..., mx] " is a vector of mixing proportions (such that
S 7 = 1). p(c | ) is a multinomial distribution ovet, wherec = {c;, ..., cx} is
the set of indicators for alNV data points, such that{c,, = k | w) = m,. To simplify
notation, we will writec,, = k ask from now on.p(y,, | 0%, k) is the probability ofy,,
under thekth latent variable model, with the corresponding set of paxt&rsd,, and

0 = {6y, ...,0x} is the complete set of parameters.

To create a mixture of probabilistic Canonical Correlattoralysers, théth latent

variable model density has the form:

Dy | k) = / P | %o, 00 K)p(s | K)d, (5.2)
= N(yn | p, WeW, +0,) (5.3)
where
p<yn ‘ Xp, Ok, k) = N(yn | Wix, + pr, \I]k) (5'4)
p(Xn | k) = N(Xn | Oan) (5.5)

with y,, defined as the concatenation of two sets of data variables,i.e [y ,y,,.]",
wherey,,, € R™,y2,, € R with m; andm, being the dimensions of the two data
variable setsW, = [W| W, |7 with Wy, € R™* Wy, € R™9, 1 is the
bias parameter andd, € R? is the corresponding shared latent variable, whdsethe

dimension of the latent space. The noise covariance matcanstrained to be of block
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Figure 5.1: The generative model for the mixture of PCCA. Armaodel & (indi-
cated byc,) is chosen by drawing from(c, | =), andx,, the shared latent vari-
able is drawn fromp(x). Given ¢,, x, and the corresponding set of parameters
O = { Witk Pri} andby, = {Wy, pox, Y21 }, thenth pair of data variables
y1.n andysz , are drawn fronp(y1 ., | Xn, 61.x) @ndp(ya.. | Xn, 62x) respectively.

diagonal form:

v 0
o, — b (5.6)
0 Wy

whereW, ;, € R ™ W, € {22 We have assumed that the prior on the latent
variable is the same for all” mixture components and that each Gaussian cluster has
the same intrinsic dimensionality so from now on we will omit the indicator variable
when denoting the latent priors, and rewrite,, | k) asp(x,). The generative model

for the mixtures of probabilistic canonical correlationabyzers is shown in Figure

5.1. A pair of data points is generated by first choosing a su&i: according to
p(c, = k | ), and then drawing from theth PCCA modep(y,, | Ok, ¢, = k).
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5.2.1 EM algorithm for mixture of PCCA

The log likelihood function is given by:

N
L = Zln p(yn | 0) (5.7)
= Zln Zp (k| / Vo | Xn, Ok, k)p(x,)dx,, (5.8)

For thekth latent variable model, the corresponding set of laterabes{x ,, } is con-
sidered to be ‘missing’ data. As well as the latent variakbls,she indicator variables
¢n, Which show which submodel generateg, are also ‘missing’. The Expectation-
Maximisation (EM) algorithm (Dempstest al, 1977) can be used to handle such
incomplete data problems. It finds maximum likelihood esties of the model pa-
rameters, where the Expectation (E) step involves comguatimound on the log likeli-
hood function by applying Jensen’s inequality, followedbg Maximization (M) step,

which is the standard ML calculation that would be used foomglete data model.

The expected complete data log likelihood is given by regugt applying
Jensen’s inequality to (5.8). For thigh latent variable model, ifx; ,} were
known, then it would be straightforward to find ML estimatefstioe parameters
0, = {01,021 }. However, the joint distribution of the observed and lateariables
p(y, x) is known, and the expectation of the corresponding compegelog likelihood

can be calculated:

N K
S5 bk [ ya)in plk | T)p(yn | X005 k() (5.9)

n=1 k=1

where€&(a) denotes the expected value of The quantitiep(x,, k | y.) = p(x, |
vn, k)p(k | y.) are calculated in the E step of the EM algorithm. We note that
p(x, | ¥, k) is the posterior distribution over the latent variable foe t:th mix-

ture component, given theth data pointy,,, andp(k | y,.) = Ry, is the posterior
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responsibilityof mixture component for generating data point,, calculated as

Yo |k O)p(k | 7) _ {[p(yn | X, k, Ok)p(x)dx}p(k | ) (5.10)
p(yn) S S Py | %, K, 0)p(x)dx}p(k | )

The updates for the parameters (which aim to optimise thea®d log likelihood

function given in (5.9)) are as follows:

N

N 1

o= > B (5.11)
n=1
N

~ — R nJ n

e = %—ky (5.12)
Zn:l Rkn

which are the standard updates for a Gaussian mixture médelthe rest of the pa-
rameter updates, we follow the approach in (Tipping & Bishb@97) and combine
the E and M steps, gaining the intuitive result that the wsigN,, and noise covari-

anceW¥, can be found in terms of the local responsibility-weightedaziance matrix

Sk = =% SN Rin(yn — i) (Y — fir) T

Wi = S0 "W, Mi(M, + MW, 'S, & "W, M,) ! (5.13)
& (Sk — Sk "W, MW/ )1, 0 ~ 5.14)
0 (Sk — Sk "W, MW/ oy

whereM,, = (I — W] ¥, "W,)~1, and the subscriptsl and 22 denote the upper

m, X mq block and the lowem, x my block on the diagonal respectively.

Figure 5.2 shows some trained mixture models of PCCA, whasapeters have
been estimated by ML, using the Expectation Maximisatigoathm, where the fixed
number of components are 1, 3 and 10 (see figure caption fthretudetails). These
simulations show the drawback of using maximum likelihamdvaluate the best struc-
ture for the model, since the likelihood increases with thenber of components.
When 10 components are used, the model can be seen to overtiata, which is

not penalised by the ML approach.
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Figure 5.2: Three mixture models trained on a pair of dats wéiere the first data
set (column 1) follows an arc, and the second data set foléogise curve (column 2).
The graphs show the plotted data (black dots) with the MLnestié of the component
means (red cross) and 2 st.dev of the component noise cogar{green line). Each
experiment uses a different fixed number of components)iik’(a 1, which underfits

the data, (b = 3, and (c)K = 10, which overfits the data.
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5.3 Bayesian approach

The previous section uses a maximum likelihood (ML) appndadinding the parame-
ters of the mixture of PCCA, in which the model parametersaasggned specific values
which correspond to a (local) maximum of the likelihood ftion. One problem with
the ML framework is that there are singularities in the likebd function, in which
one or more component densities may collapse onto a singgepdant - the compo-
nent mean becomes equal to the data point, and the corresgaaVariance goes to
zero - such that the model has assigned infinite density tddteepoint’s location. This
phenomenon is known as overfitting. Another problem withrtteximum likelihood
method is that the method does not take model complexityantount, and the data
is more likely under more complex model structures, whichimdeads to overfitting.
For instance, in the previous section it was found that tkelihood increased with
the number of components in the model, such that the liketihe maximised for the
extreme case where each data point is attributed to a separetuire component.

One approach to overcome the model selection problem uesskell with max-
imum likelihood techniques is cross validation, in which wamber of models, each
with a separate number of components up to some maximum,\@akieptimised to a
training set, and the predictive performance compared dnagependent training set.
However, this approach can be computationally expensidedaes not allow for the
possibility that a new data point comes from an as yet unsesmponent.

An elegant solution to the model selection problem is a Bayespproach which
avoids the problem of overfitting because no parameter isaligtfit to the data; in-
stead their posterior distributions are inferred, and usemhake predictions for new
data points. By integrating out those parameters whosengditgt scales with model
complexity, more complex models are penalised since they gaiori model a greater
range of data sets. Unfortunately when using a fully Bayeajgproach, it is, in gen-
eral, computationally and analytically intractable tofpan the required integrals.
There are several Bayesian approaches to mixture modaétlitige literature which

approximate the integrals required for Bayesian inferensang sampling techniques
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(Neal, 1991; Rasmussen, 2000), and variational approioma{Ghahramani & Beal,
2000; Corduneanu & Bishop, 2001). In these models, the nuwibeomponents is
found automatically. One approach is to set a maximum nurabgotential com-
ponents, and then when the model is trained to some data,niedvaomponents are
suppressed, such as in (Corduneanu & Bishop, 2001), wherpatameters of each
Gaussian component and the latent variables are integratedsing variational tech-
niques, to calculate an approximation to the marginalilicgd, and the mixing coef-
ficients are optimised using type Il maximum likelihood. 8arly, in (Ghahramani &
Beal, 2000), variational approximations to a full Bayesiategration over the model
parameters are derived for a Bayesian mixture of factoryaeed. However, rather
than starting with a maximum number of potential componghesmodel is initialized
with a single component, and the number of components th#iditraining data is
found by adding new components through a stochastic proeednd removing zero

responsibility components when necessary.

Another way to address the model selection problem is to usgarametric
Bayesian techniques, in which Bayesian models with an tefinumber of parame-
ters are considered, such as the infinite mixture of Gaussm(Rasmussen, 2000).
This allows the model to be of the necessary complexity thinazonsidering a contin-
uum of models and averaging with respect to all of these sanabusly, rather than
controlling the complexity through limiting the number airameters. Modelling data
as coming from an infinite mixture has been seen to work weheninfinite mixture of
Gaussians when there are only a small finite number of conmisinethe actual mix-
ture. The infinite mixture of Gaussians is similar to exigtmodels in nonparametric
statistics known as Dirichlet process mixture models (&sog, 1973; Antoniak, 1974;
Escobar, 1994) but derives the model as a limiting case ofta fimxture model rather

than from the Dirichlet process itself such as in (Wetsal,, 1994).
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Figure 5.3: Two perspectives on the finite mixture model

5.3.1 Dirichlet process mixture models

The Dirichlet process (DP) is a nonparametric distribubardistributions, or equiva-
lently, a measure on measures (Ferguson, 1973). A DP is pteesed by a scaling
parametery, > 0, and a base measufg. In Section 2.3.2 we reviewed the Dirichlet
process and its different perspectives and showed how tldmiused to place a dis-
tribution over the distribution for a parameter setWe now show how to incorporate
an observation model for whes is not observed directly, and use the DP as a non-
parametric prior on the components of a mixture of probsiiilicanonical correlation
analyzers. This follows the approach described in (RasemysZ000) and the resul-
tant model is an infinite mixture of canonical correlatioralgzers. This overcomes
the model selection problems with the maximum likelihoodhmoé detailed in Section

5.2.

5.3.1.1 The finite mixture model

We interpret the parameter setting for each data point asdoma variable which is
drawn from a measure over the parameter space. Going batle thnite mixture
model that we introduced earlier, the probability of ik pair of data pointy,, under

the kth latent variable model can be written as:

Py | 61) = / Dy | O)D(On | cn = k. 6)dO, (5.15)
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where ©,, are the parameters associated with, p(y, | ©.) = [p(y.
Xn, ©,)p(x,)dx, andp(©,, | ¢, = k,0) = §(0, — 0%) = dgx. ¢, is a discrete
variable that indexes the latent variable submodelsfaadthe set of parameter values.

For all K latent variable models, the distribution oy is:

K
pOn|0,7) = D p(On | co =k Op(cy =k | =)
k=1
K
= Y mlp (5.16)
k=1

wherer = {m, ..., 7k} are the mixing coefficients as before, an@ | =) is a multi-
nomial distribution. The corresponding graphical modeltfos mixture model rep-
resentation is shown in Figure 5.3a. Since the mixture misdighite, ©,, is equal to
one of the underlying*, such that the subset ¢©,,} that maps t@* is exactly the
kth cluster. We can interpret this as placing a measure oegpahameter space if we
definep(©,, | 0, 7) asG, a measure. The parameter €gtfor each data point is in-
dependently drawn fror, as seen in Figure 5.3b. The probabilityyof under all K

latent variable models is given by:

pyn | .7) = / (¥ | ©1) (

"
= / (Yn | ©,) (Zwk59k> (5.18)
k=1

Mw

O, | cn =k plc, =k | 77)) dOf5.17)

5.3.1.2 Incorporating a Dirichlet process prior

We extend the finite mixture model of the previous sectionltmean infinite number
of components, which allows the numberrepresenteccomponentss” to be deter-
mined automatically. A Dirichlet process prior is placed @nthe random measure

over the parameter space,
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Figure 5.4: Two perspectives on the infinite mixture model

with Gy and o, defined as before. The parameters for each data gqiare drawn
from GG, as shown in Figure 5.4b (compare with Figure 5.3b). Thisehwsch Dirichlet
process mixture model. To clarify this further, we can iptet this as generalising the

G of the finite case in (5.16) to the infinite case:

G=> mdgr (5.20)
k=1

which is just the stick breaking representation of the diatron drawn from a Dirichlet
process (Sethuraman, 1994), reviewed in Section 2.3.2& parameter®,, for each
data point take on valug with probability,. This is equivalent to placing a prior on

the mixing proportionsr (an infinite sequence) and the parameter sgace

T~ StiCk(Oéo) OF ~ Gy (521)

This perspective on the infinite mixture model is visualissda graphical model in

Figure 5.4a (compare with the finite case in Figure 5.3a).

5.3.1.3 Generalising from the finite to the infinite mixturedel|

The Dirichlet process mixture model can be derived as théifigicase of the finite
mixture model detailed in Section 5.3.1.1. Suppose thatlaeem symmetric Dirichlet

prior on the mixing proportions of the K component mixturedabr = {7, ..., 7 },
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which is conjugate to the multinomialc | =), the distribution over the indicator

variablesc = {cy, ...,cn }:

K
. Qo Qg ag/K—1
p(m | ag) = Dir (m | 22, ... 22) = Clan) kUkaO/ (5.22)
wherea, > 0 is a positive scaling parametef(a,) = % is a normalisation

constant, and (w;) = 1/K. Integrating out the mixing proportions we get:

person | ag) = / plc | m)p(m | ag)dm
P(ag) TNy + ag/K)
11

T(N + ag T(a0/K) (5-23)

k=1

It is difficult to samplec from this distribution; instead, the indicators are Gibams
pled to capture their dependencies. The conditional pkier the indicator variable for

thenth data point given all the other indicator variables is gibg:

N—n,k"'aO/K
N—1+OZQ

plen =k | oy ag) = (5.24)

wherec_,, denotes the set of indicators not including and N_,, ;. is the number of
data points in théth cluster, not including theth data point. If we allowxX’ — oo,
i.e. we allow an infinite number of mixture components, thadittonal prior onc,

becomes:

N—n k
n — k —ns — 5.25
p(c | C—n, ) N_1+ag (5.25)
plen # e/ #n e p,a0) = ﬁ:ao (5.26)

where the last equation is the probability that the datatpsimssigned to a new cluster.

The parameter§O., ..., Oy} for the data points are generated according to:

N
p(O1, ..., On [ 0,00) = ) ( p(0, | cn,9)> p(c| ag) (5.27)
c n=1
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Figure 5.5: Graphical models for (a) the Dirichlet processtune model and (b) the
Dirichlet process mixture model of PCCA

This involves a summation overi.e. over all possible assignments of data points to
the components, but it is easier to evaluate in terms of thb$£sampling scheme as in
(5.23), and ifc,, takes on an existing value, then the data paiitherits the parameter
setf: ©, = 0. If ¢, takes on a new value (starts a new cluster) then the parameter
set is generated from the prip(d | k), whereh is the set of hyperparameters. This

is equivalent to the Polya urn sampling scheme which weeresd in Section 2.3.2.3.
This model is a Dirichlet process mixture model, but deriired different manner to

the previous sections.

5.4 An infinite mixture of probabilistic CCA

In this section, we describe the Dirichlet process mixtuoelet of probabilistic CCA,
which uses a Dirichlet process prior on the parameters fcn data point, as detailed

in the previous sections.

5.4.1 Overview of the model

A DP prioris placed on the indicatoes= {c, ..., ¢y } (Wwhich show the latent submodel
with which the N pairs of data points are associated), and we integrate logenixing

proportionsr. Priors are placed on the component paramétershe graphical model
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is shown in Figure 5.5. The probability of the data¥et= [y, ..., y~]' is given by:

¥ L) = ST / (¥ | e O)}ple] a0)p(0] 7)d8  (5.28)

c n=1

wherep(d | ~) is the distribution over the parameter spadgquivalent toG,), with
hyperparameters. This is chosen to be a conjugate prior to the probabilisGAC
likelihood. p(c | «y) is the distribution over the indicator variables, where tbe-
ditional priors are given in (5.25) and (5.26), the Polya scheme.p(y,, | ¢,,0) is
the likelihood for a data point under tlgth latent submodel in the probabilistic CCA
model. Wherr,, = k, this is written asp(y,, | ¢, = k,0%) = [ p(yn | X0, 0%, ¢, =
k)p(x,)dx,. We can write the probability of the data set in terms oniheepresented

clusters:

p(Y | 7)) = ZH( 1T / (ya | 0%)p (9’“|7)d9"”> plc | ap) (5.29)

c k=1 \n:icn=~k

= ZH (/ (Y" [ 6%, c)p(6" | W)dek) plc|ag)  (5.30)

c k=1

wherep(Y* | 6%, c) is the probability of all the data pairs assigned to Atie cluster,
given the assignmentsof all the data, parameterised BY. Additionally, we define
separate parameters and hyperparameters for the two t&d¥,sendY, such that we

can write:

p(Y | ao,v) =p(Y1 | o, m)p(Ya | ao,72) (5.31)

where fori = 1,2

p(Y, | a0, 7) = ZH( [0t 10 e 08 ) st an) (532

c k=1

whereY? is thekth cluster of theith data set§’* is the set of parameters for tth¢h

latent submodel for théth data set, governed by the set of hyperparameter3he
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graphical model for this configuration of the parameterngrie given in Figure 5.5b,
clearly showing the shared structure of a data pair,, y»,]. With this formulation,
it is easy to see how to compute the posterior distributiores the indicators:, the

parameters = {0, ..., 0%}, and the hyperparameteysainday.

5.4.1.1 Posterior over the parameters

The posterior distributions over tfe¢h set of parameters are given by:

p(0™* [ Y eom) oc p(YHE[0YF e)p(0™* | ) (533)

p0** | Y* . e,70) o p(Y** [ 628, c)p(6*" | 72) (5.34)

5.4.1.2 Posterior over the hyperparameters

The posterior distributions over the hyperparametersmgthe K sets of parameters

are:

K

py |67, 0% o TP | )p(m | &) (5.35)
i=1
K

p(y2 |6, 0%%) o< T]p(0* | 12)p(12 | &2) (5.36)

i=1

wherep(y; | &) andp(y, | &) are vague priors over the hyperparameters, parame-

terised byg; andés.

5.4.1.3 Posterior over the indicators

The conditional posterior distribution over the indicata given by:

p(cn =k | c—naYnaek) (8 p(yn | ekacn = k)p(cn =k | C_n,OéQ) (537)

5.4.2 Graphical model
The complete graphical model for the Dirichlet process orxtmodel of probabilistic
CCA is shown in Figure 5.6, illustrating the layered struetaf the hierarchical priors.

Each pair of data observatiogs = {y1.,,y2.} iS generated from one of th& rep-
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Figure 5.6: The complete graphical model for the Dirichletgess mixture model of
probabilistic CCA.

resented pairs of mixture components, which is indicated,byEach pair of mixture
components is governed by a set of parameters, whergttheomponent pair’s pa-
rameters aré@™* = {1y, Ay, Wi} and0®* = {us s, Ag i, Wa . }. The parameter
sets are governed by a set of hyperparameteasd~,, which in turn are governed by
vague priorg; and&,. The model and a Gibbs sampling scheme is derived in the next

section in detail.

5.4.3 Priors and posteriors over the component parametersral

their hyperparameters

5.4.3.1 Mean vecton,

The mean vector for theth latent variable model is drawn from a Gaussian distrdsuti

with hyperparameters andR which are common to all components.

pig ~ N | AR (5.38)

o ~ N(pap | Ao, R5") (5.39)
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The posterior distribution over the mean vegtqy, is given by combining the likeli-

hood function foru, , with the prior:

p(,ul,k | Y17 X7 C, )\17 Rl) 0.8 p(Yl | X7 C, 917k)p([ﬁ1,k | )\17 Rl) (540)

We can write the likelihoog(Y; | X, ¢, 8%%) in terms ofu, ;. as:

p(Yi X, c,0") =[] Nyl Wi+ pag, @) (5.41)
n:cn==k

o H N (g | yin — WigXy,, ¥ y) (5.42)
n:cn==k

o< N (e | ¥ — WXy, Ny W) (5.43)

wherey, , = NLk > sk Yin X = Nik > nie.—i Xn, @nd where\,, is the number of
data points in théth cluster. By combining this with the prior from (5.38) ansing

(5.40), the posterior distribution ovef  is given by:

g | O, Y1~ N (g | b B ) (5.44)
whereX,, , = (Ny¥, +Ry)™! (5.45)
Fpn e = Eﬂl,k(l:[ll_,lleNk<y1,k — Wy ,;:x:) + RiAy) (5.46)
and similarly,
M2k ‘ ekuYQ ~ N (/*’LQ,k ‘ /’L,Uz27k7 Eug,k) (547)
whereX,,, = (Nk\Il;}C +Ry) ™! (5.48)

Hpgp = Eﬂ2,k<\112_,llcNk(y2,k — Wy,xXi) + RoAg) (5.49)
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wherey, , = N%ﬁ Zi:cizk y2.. The hyperparameters, A, andR;, R, are given vague

Normal and Wishart conjugate priors respectively,

)\1 ~ N()\l | Hyy s 23/1)7 Rl ~ W(Rl | may, Ey_ll) (550)

Xy~ N(Ag | iy, i), Re ~ W(Ry | mg, B, 1) (5.51)

wherey,, andX,, are the sample mean and covariance of the first dafé setndy.,,

andX,, are the sample mean and covariance of the second da¥a set

The posterior distribution ovex; given the mean vectors for al' components

for the first data set is given by:

K
PAL | g1y i, Re) o HP(Ml,i | A, Ra)p(A1) (5.52)
1=1
K
(8 HN(:ULZ | )‘17R1_1)N()‘1 | My 23/1)
i—1
1 & 1
(8 N()‘l | ? ;Ml,ia ERl_l)N()‘l | My Eyl)
R, Zfil M1+ Ey_lll’l/yl 1
X N )\1 | 1 s 1
KR, +3, KR, +3,
(5.53)

Similarly, the posterior distribution ovey; is given by:

Ry >0 pioi + 3, 1
Ao | pio1, o poyics Ro o~ N<)\2\ 2 i1 2 vz ~ V2 .54)

KR; +3%,] KR, +3%,]

The posterior distribution ovdR; given the mean vectoys, 1, ..., i1 x iS given by:

K
PRy | pag g, M) o< [ ] p(pai | A, Ra)p(Ra) (5.55)

1=1

o« [IN (e [ A RIYWR, | my, B,) (5.56)
k

Y1
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We can write the likelihood foR; in terms of a Wishart distribution:

D+ 2
(ke — A1) (pae — A1) 7

K+D+1
x WIR, | K+D+1, {(5.58
( a donlr — A) (e — Al)ﬂé )

[TV (e | ARTY o HW(Rl\DJrQ, ) (5.57)
k k

The posterior distribution ovdR, is thus given by:

K+D+1
PRy | pajgs s g, A1) o< W (Rl | K+ D +1, )

Doelprg — ) (e — A1) T
X W(Rl | mq, Ey_ll)
mi + K

W(R + K, — 5.59
X (Ry | my Sy + m12y1> ( )
whereS,, = S8 (14 — M) (s — M) 7. Similarly,
mo + K
R Ay~ R K — 5.60
2 | 2,15 s P25 A2 w ( 2 | Mo+ K, Si, +m22y2) ( )

whereS,,, = S (tax — o) (poe — o) T

5.4.3.2 Covariance matri; , ¥,

We work with the inverse o, , and W, A, ), = \Ill‘v,lﬁ andA,, = \112‘7,1. The priors

overA, ; andA, ; are Wishart distributions:

A ~ WAL Bi, CTY) (5.61)

Ay ~ W(Agy | Bo, Cyh (5.62)

The posterior distribution over the precision matAx ; is given by combining the

likelihood function forA, ; with its prior:

p(Al,k | Yla X7 C, 617 Cl) X p(Yl | X7 C, 917k)p(A1,k | 617 Cl) (563)
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We can write the likelihood function in terms of a Wisharttdisution overA, :

p(Y | X,c,0"%) = H N(yin | Wipx, + IJJ1,k,A1_,;19) (5.64)
n:cn==k
N, 1
x W (Al,k | Nj, +my + 1, Hs&) (5.65)
Y1,k

Syie = Ponenei¥in — (WiXn 4+ p1s)) (Y10 — (WieXn + p1s)) . Substituting

this expression into (5.63), along with the prior given it6(®, the posterior oveA, ;

becomes:
Ny +my+1
p(Al,k | Y17X707617CI> x W <A1,k | Ni+mq + 1, ks—l)
Y1,k
x W(A| B, CTY)
N + 5

NiSy, , + 6:C
Similarly, the posterior oveA, ;. is given by:

Ni + B2
NiS,, . T 5Cs

P(Agk | Y2,X,c, 35,Cy) x W <A2,k | Ni, + B, ) (5.67)

whereS,,, = > . (yon — (WaiXy + t2.k)) (Yo — (Warxy, + pa)) "

The hyperparameters, (5», C; andC, are common to allk' components(3; —
my + 1) and(fBy — ms + 1) are given vague Gamma priors, afid andC, are given

vague Wishart priors:

(Bi—mi+1)~" ~ G((B—m+1)7",1,1) (5.68)
(Br—ma+1)"" ~ G((fa—ma+1)"",1,1) (5.69)
Cl ~ W(Cl | my, Eyl) (570)

C2 ~ W(CQ | mQ,EyQ) (571)
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The posterior distribution over; given all K precision matrices is given by:

p(C1 \ A1,1, --,A1,K,51 p A1,z \ 51, Cl)p(c1) (5-72)

(
W(Al,i | ﬁl,Cl)W(Cl | mq, 23/1) (573)

) o I
<1

We can write[ [, W(A,, | 1, C,) as a function olC;:

K

K
ﬁ1+m1+1
EW(Al,i|ﬁl,cl) o gW(Cl|ﬁl+m1+1,Tu) (5.74)
61K+m1+1>
wi(cC K+m+1,220——"1"") (575
. < l‘ﬁl m 6lziA1,z' ( )

Putting this expression back into (5.73), the posteriotrithstion overC; is derived

as:

K+mi+1
p(Cl | A1,17 -->A1,K,51) < W <C1 | 51K +my +1, 61 : )

B A
X W(Cy [ my, 5y,

ﬂlK —+ mq )
wi(cC K +mq, 5.76
X ( 1 | 61 my mlz);ll +ﬁl ZZ Al’i )

Similarly, the posterior distribution ovér, given the precision matrices 1, ..., As x

is given by:

BQK + Mo
Co|lAyq,... A C K 577
P(Co | Az Az, B2) o W ( 2| ok 4 me meXl + B2 Agy )

The posterior distribution ovet, given all K precision matrices is given by:

p(ﬁl \ A1,1, --7A1,K, C p A1,z | B, Cl)p(ﬁl) (5-78)

(
W(A1; | 81, C1G((Br —my+1)71 [ 1,1)

) o ]I
~ 1l

(5.79)
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and similarly,

K
]9(52 | A2,17 -->A2,K7 02) X HW(A2,2‘ \ B2, Cz)g((ﬁQ —mgy + 1)_1 | 1, 1)

i=1

(5.80)

Since the latter densities are not of standard form, indég@nsamples are generated
fromlog By | Ai1,..., A1 xkCyandlog B | Az, ..., Az k, Co (Which can be shown to
be log concave distributions) using the Adaptive RejecBampling (ARS) technique
(Gilks & Wild, 1992).

5.4.3.3 Weight vector8V, ;;, Wy,

The weight matrices for theth latent variable model aré/, , andW, ;. The rows of

these matrices are drawn from a Gaussian prior such that:

Wik ~ N(Wzlk | ’)’1,1',111_11(1) (5.81)

Wi ~ N(Wh | v2i,05'T,) (5.82)

Wherevvi,,‘C andWQ,f are theith rows of W, , andW, ;, respectively;y; ; and~, ; are
the means of the corresponding distributions, andnd v, are the inverse variance.
The posterior distribution oveW? ; given the dataY,, the latent variableX, the

indicatorsc, and parameter®"*, is given by

p(WZm | Y1, X, ¢, v1i,v1) o< p(Y | Xacyel’k)p(wzi,k | Y145 01) (5.83)
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Rewritingp(Y; | X, ¢, 0"") in terms of Wi , gives:

p(Y: | X, c,0") = H N(yin | Wiexn + p1,e, P1x) (5.84)
n:cn==~k
= HN<Yik ‘ kaik + Ni,ka Uy 1 (i,1) Iy, ) (5.85)
=1

m1
= JINWi | (X{X0) "X (Y5, — ph ), Raeli, )X, Xy)
i=1

(5.86)

where we have approximateld, ; by its diagonal in (5.85)Y7 , = {y{ . }n:c.—« is the

ith dimension of the subset &f; assigned to théth cluster. X, = {x, }n.c,=« IS the

latent variable set associated with #ttl cluster,. , is theith dimension of the mean

vector y, x, and ¥, (i, 4) is theith diagonal element o¥, ;.. Using this expression

with (5.83), the posterior distribution ovéiir/'i,ﬁC becomes

p(Wzl,k | Y17 Xa C Y, 'Ul) X HN(WZI,IC | (X;—Xk)_lxg(Yi,k - Mi,k)? ‘Ill,k(i7 'L)X;—Xk)

i=1
X N(Wig |y, 010 ')

o« N(Wi, | Hwi EWi,k)
where
o .
Swi, = (x(i,0)"' Xy X +uily)
Pwi, = Zwi, ((q’lk(lﬂ))_lX;(Yik — fig) + 01712)

Similarly, the posterior distribution ovéV;, , is given by:

P(Wi | Yo, X, ¢, 002) o N(Way |ty Swy ) (5.89)
where
N — —1
EW;,I@ - (lII?,k@vl) 1X;—XR+U2Iq)
Pwi, = Ewé,k ((‘Il2k(l>z))_1X;(Y§k - Mzzk) + 0272,1')

(5.90)

(5.87)

(5.88)
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The hyperparameters are given the following vague priors:

v~ G |1,1) (5.91)
vy~ G(va|1,1) (5.92)
Yii ~ N(v:]0,77'L) (5.93)
Yo ~ N(72:10,77'L) (5.94)

The posterior distribution over the inverse scale hypenpater, is given by

K
plor | Wit o, Wi, 714) o Hp(wl,k | v1,71)p(v1)
k=1
mp; K
o« [TTINWiLk [ 701 ' )G (0 | 1,1)
i=1 k=1
le + ]_
K+1, —— 5.95
O<Q<v1|m1 +’1+SW1> (5.95)

whereSy, = > 37 (Wi, —v1.:) T (Wi, —~1.). Similarly, the posterior distribu-

tion overu, is given by:

mo KK + 1
p(’Ug ‘ Wg’l, ---7W2,K772,i) 0 ¢ g (%) | mgK + 1, 27 (596)
1+ Sw,
whereSy, = > 37, (Wi, — ¥24) (W}, — ¥2,:). The posterior distribution over

the hyperparametey, ; is given by:

=

pva [ {W) Hoy,v1) o [T (Wi | w1, 7))
k=1

N WZZL k | 71 w'Ul IQ)N(’YIJ | 077__1Iq)

Wi 1
(m v 2 Wi ) (5.97)

I
||EN

Kun+71t Kui+71
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Similarly, the posterior ovet; is given by:

4 vy Yo, Wiy 1
i [ {WS ey i L 5.98
(2 | { Z,k}k_l vy) x N (’7’2, | Kug + 7 K’U2—|—T> ( )

5.4.3.4 Latent variable

The latent variable,, for thenth pair of data pointy,, = [y/,,,y,,,]" is drawn from a

Gaussian prior with zero mean and unit variance:
x, ~ N(x,]0,1,) (5.99)
The posterior distribution ovex, is given by:

P(Xn | 97 Yin, y2,n) X p(y1,n7 Yon | Xn H)p(xn)

x  N(x, | px,, 2x,) (5.100)

where
o = WL(We, W[ +®,)7 (Y0 — pre,) (5.101)
¥, = L -W (W, W  +¥. )"'W, (5102

wherec, € {1,..., K} denotes the component index which generatedW. , 1.,

and ¥, are the parameters of the corresponding component, WMp) =

v .. 0
[WICnW;’Cn]T,MCn = [MICULL;—’Q]T, and‘Ilcn =

0 Wy,
5.4.3.5 Indicatorsg,,

The conditional priors on the indicators is given by:

N_pk
Cn = k | C_p,0p = m (5103)
/ o Qo
Cn Z o' #£n|c o = O (5.104)
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where—n indicates all the indices except such thaic_,, denotes all the indicators
except thenth, andV_,, ;; is the number of data points associated withAtlecompo-
nent, excluding thexith data point. The first equation shows that the conditionakp
probability of thenth data point being assigned to thhh component, given the assign-
ments of the other data points, is proportional to the nunobeliata points in theth
cluster. The second equation shows that the combined pridiné»th data point being
assigned to one of the infinite unrepresented classes islepgndent on, andN. ay

is the concentration parameter, and controls the amoutefobver’ probability mass
corresponding to data being assigned to the currently vesepted classes. A vague

Gamma prior is placed ovex;:

ao ~ Glag | 1,1) (5.105)

The posterior distributions over the indicators is givently following: for compo-

nents for whichV_,, ,, > 0

n=k|c_pn, 0 ayx

Nonk Af(y, | Wixn + e, Or) (5.106)

N—14aqg

for all other components:

Cn F e £ | ey, v, 0p X

N—O{iao [ p(yn | X, 0F)p(x,)p(0F | v)dx, dO* (5.107)

The likelihood for currently unrepresented classes (whialie no parameters asso-
ciated with them) is found by integrating over the parametéors. The posterior
distribution overy is given by:

o ()

KN oc —021%0)
0 | KN o mr N

Glap | 1,1) (5.108)
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This only depends on the number of observatidhand the number of represented
componentgs, and not on how the observations are distributed among th@coents.

Samples are generated frorfiog(«) | K, N), which is log concave, using ARS.

5.4.4 Inference in the model

As noted before, exact analytical inference is not possibliis model, and Gibbs
sampling is used to update the parameters, hyperparanagtérimdicator variables.
Each variable in turn is updated by sampling from its postatistribution conditional

on all the other variables as follows:
e The parameters are updated by sampling fpdth| v, c,Y)
e The hyperparameters are updated by sampling f5oym 0,c,Y)
e The indicator variables are updated by sampling frgm| 6,~,Y)
e The concentration parameter is updated by sampling fraog(«) | K, N)

This process (a Gibbs sweep) generates a sample from thesterior distribution
p(0,v,c|Y). Many Gibbs sweeps are performed to repeatedly updatecalbfiables.
Since consecutive samples are likely to be correlated,dardo generate independent
samples from the joint posterior, the mixing time of the Markhain is calculated and

a sample is taken in every period of this length.

5.5 Experiments

To illustrate the model, we use a pair of toy data sets (eadm2rsional) where the
first data set follows an arc, and the second data set follasirseecurve.

To perform inference for the model, we initialise the modéhvone component
and then perform a large number of Gibbs sweeps to updateygergarameters, pa-
rameters, and indicator variables, storing the valuesct garation. Initially, we do
not know how the Markov chain will mix and converge for thistpaular data set so we
perform 10000 iterations to assess the mixing and conveegigmes. Figure 5.7 shows

the number of represented componehtplotted for each Monte Carlo iteratior
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Figure 5.7: The number of represented compong&nggowing with each Monte Carlo
iteration. The burn-in time is estimated to be 3000 iteraio

grows with time and the convergence time (or the burn-in Yiilm@pproximately 3000
iterations. Discarding the 3000 iterations produced dytire burn-in phase, the mix-
ing time for the Markov chain is estimated by plotting theamatvariance for different
parameters against time (based on 10000 iterations) andditite maximum correla-
tion length. The autocovariance against lag plot is showrigire 5.8, and it can be
seen that there are no significant correlations for any optttameters. We choose the
effective correlation length to be 10 iterations.

We then perform 10000 iterations for modelling purposesO3for the burn-in
period, and a further 7000 which generates 700 independsnyles from the posterior
distribution (spaced evenly 10 apart). Figure 5.9 shows $ets of samples from the
posterior distribution for the mixture models at iteragd 500, 4000, and 6000 (from
the 10000 iterations). During the burn-in period, as shawiterations 1 and 500, the
model underfits the data. As more samples are drawn and tHeWlehain converges,
the model finds that 4 mixture components are the best fit tod#ta. There is a small
amount of probability mass (controlled lay) which allows the model to consider an
additional component (at iteration 4000). As there is naiugih evidence for this
component provided by the data, it is removed in the next &#weep. Figure 5.10

shows the histograms for some parameters of the mixture Imbdsed on the 700
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Figure 5.8: The autocovariance plotted against lag, basetil0O@00 iterations, for
various parameters of the mixture model. The effectiveatation length is chosen to
be 10 iterations.

independent samples from the posterior distribution.

5.5.1 Examining the distribution over the latent space

In the mixture model, there is a set of latent varia¥ethat underlies both data spaces
Y, andY5. In this section, we find the distribution ov&r given just one of the data
sets. This distribution can then be used to predict one @atgi\gen the other, and vice
versa. The posterior distribution over thih latent variablex,, given the corresponding

data point from the first data set, is given by:

b [y10) = [ 0| ¥ Op(0)a8 (5.100)
1 J
= 5 Z (X0 | Y1000 (5.110)
1 J
- ? Z Xn | ’LLX”L ) (Exn)l) (5111)
=1
where
i il i il iy— i
(:an\yL,n) = (WLC”) ((Wl,cn) (Wl,cn) + (‘I’l,cn) ) 1(3’1,71 - (:uLcn) )

i al i il iy 1 i
(Exn\yLn) = Iq - (WLC”) ((Wl,cn) (Wl,cn) + (‘I’l,cn) ) (Wl,cn)
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Figure 5.9: Four sets of samples from the posterior diginbuor the mixture model,
at iterations 1, 500, 4000, and 6000. Each row shows a sarupletite first data set
Y, (first column) and the second data &t (second column), and a graph for the
probability mass in each component and the unrepresentegarzents (third column).
The ellipses indicate 2 standard deviations of the noisartavwce matrices of each
component, and the labels for each component 1,...,K atigqresd at the means.
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Figure 5.10: Some histograms for the posterior over diffeparameters in the model,
given the data, based on 700 independent samples from ttexipos

where is the number of independent samples, and the supersailgnotes theth

independent sample, such ti#atescribes théth sample of the posterior ovér

5.5.2 Predictive distribution

After finding the posterior distribution over the latent sp@iven one data set, we can

evaluate the predictive distribution over the other datcspaccording to:

(Yo | Yin) = / (o | %o, O)p(n | Y1 )p(O)dxndd  (5.112)

I
1
= 7 > / (Y2 | Xn, 01)p(xn | y1,0)dXn (5.113)
=1

Figure 5.11 shows the predictive distribution over eacla dat given the other. As can
be seen from the figure, the model is able to infer the didiobwver the nonlinear
manifold underlying each data set given the other, usingporopriate number of

mixture components.
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Figure 5.11: The predictive distribution over each datagsegn the other. The predic-
tive mean is shown in black, 2 standard deviations of theiptigd variance in grey,
and the data is shown in red

5.6 Conclusion

In this chapter, we presented a model for finding a joint podtstic representation of
two data sources, where each data source lies close to aeanthanifold embedded
in the data space, each indexed by a shared set of latenticaimsl One of the prob-
lems of defining nonlinear mappings between the latent atadsjeces is that a unique
solution does not exist, and the mappings have to be consttappropriately so that
they do not underfit or overfit the data. When approximatingrdinear manifold with
a mixture of local linear latent variable models, inferrihg correct model complexity
from the data is an important issue; we have to use an appteprumber of mixture
components since this governs the flexibility of the maxifohdditionally, since we
want to model two nonlinear manifolds, the difficulty of theplem is increased. Un-
fortunately, when using maximum likelihood methods, asiésstandard procedure for
mixture models, we cannot infer the number of mixture congmis for the model.

We considered a mixture model of probabilistic canonicatedation analysers
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such that the pair of nonlinear manifolds was approximatelbtal linear submodels;
at corresponding local regions of the two data spaces, théamship between the
data was modelled by a local PCCA model. To address the metiiton problem,

we used nonparametric Bayesian techniques which alloneddka to determine the
necessary complexity of the model.

A nonparametric Dirichlet process prior was placed overghmmeters of the
mixture model of PCCA. This allowed the number of represgntéxture components,
and hence the flexibility of the nonlinear manifolds, to béedmined automatically.
We call this model a Dirichlet process mixture of PCCA. Theada modelled as being
generating from an infinite mixture of PCCA, in the same s$pisithe infinite mixture
of Gaussians (Rasmussen, 2000).

We demonstrated the model on a toy problem, and found thahtue| was able
to correctly infer the necessary number of mixture comptnemrepresent the rela-

tionship between the data spaces.
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Chapter 6

Conclusion

6.1 Discussion

6.1.1 Probabilistic generative approach to context assistl learning

In this thesis, we have presented a probabilistic generdtamework for analysing
two sets of data, where the underlying structure to eachsddta learned by taking its
context (the other data set) into account. We representithetsre of each data set as
the sum of a shared function and a private, or noise funciibe.two shared functions
are related through a common latent variable which formsvadionensional represen-
tation, or embedding, of the relationship between the twa dats. The relationship
between the two sets of data variabjgsandy, is described probabilistically in terms
of the shared structure in the latent variak|eand the noise processes. After learning
the shared structure of the model, we can then manipulajeititgorobability density
over the variables to calculate such quantities as the gireeldensitie®(y; | y») and
p(ys2 | y1), orp(x | y1) andp(x | y2), the posterior distributions over the latent space
(the representation of the data in the feature space). TWentae of the dependency-
seeking models that we describe in this thesis is that theyully probabilistic, and
that they could also be generalised to multiple data sets.nfddels can be interpreted

as probabilistic nonlinear canonical correlation analysodels.
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6.1.2 Nonparametric Bayesian methods and probabilistic mdin-

ear CCA

We are interested in modelling two data sets that have a @mplationship. We
model each data set as lying close to a nonlinear manifoleixied by a shared set of
latent coordinates i.e. we assume that we can representdedalset as a set of low
dimensional features that are nonlinearly related to the si@ace. One of the problems
of modelling nonlinear structure is that there is an indeteacy in the solution, and
it is necessary to appropriately constrain the mappingh suat the model does not
overfit or underfit the data. Additionally, since we requik®tonlinear mappings, the
complexity of the problem is increased. If the mappings aodlexible, then the model
may find spurious correlations between the data sets. If dppmgs are too inflexible,
then the model may not find the underlying shared structuredsn the data sets.

One approach to specifying nonlinear functions istpriori define the form of
the function whose complexity is controlled by a finite sefpafameters. Learning
the function then consists of finding the best setting of taeameters from the data
by maximum likelihood or maximum a posteriori methods. Heerethe problem of
inferring model complexity still remains since the struetwf the model is sed pri-
ori and is not learned during the optimisation. In this thesis,used nonparametric
Bayesian methods to overcome the problem of modelling neali structure. Non-
parametric Bayesian methods can be used to place flexilespver models, such
that the model complexity is automatically inferred frone thata set and can adapt to
new data points.

In Chapters 3 and 4, we used Gaussian processes as a prighevnctions
from latent to data spaces. This does not restrict the clagsssible functions, as in
parametric modelling. By placing a prior over the space otfions, and giving higher
probability to functions that have the desired charadiesge.g. smoothness), this al-
lows a rich class of possible functions to be considerediwdtprincipled framework.
In Chapter 5, we approximated the nonlinear manifolds uUyithey the data by a mix-

ture of probabilistic canonical correlation analyserse Pioblem of constraining the
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mapping arises in setting the number of mixture componenthieé model. We resolve
this problem by using a nonparametric Dirichlet process)(p#r on the parameters
for each pair of data points. When drawing the parameterset the DP prior, there
is a clustering effect i.e. the draws from the priors are maessarily distinct, and may
take on values of previous draws. Pairs of data points tretestine same setting of
the parameters can be viewed as belonging to the same mexmgonent (or cluster).
This does not require the number of mixture components tebim sidvance. Instead
the model considers an infinite number of mixture componemitere the number of
representeccomponents are determined by the data. This allows the s&gesom-

plexity of the mappings between latent and data spaces tetbaxined automatically.

6.2 Review of the thesis

Chapter 2 provided a background to the work in this thesid, @nmapters 3, 4 and 5
provided the new work in the thesis. In Chapter 3 we introdic&aussian process la-
tent variable model of canonical correlation analysis (@MECCA). We then showed
that the within-set variation in two related data sets cdnddnodelled by using linear
transformations; '/* and ¥, /? of each data set, and showed that the generative de-
pendency seeking model, probabilistic canonical cotimanalysis (Bach & Jordan,
2005), could be interpreted within this framework. We theteaded this model in
the spirit of the Gaussian process latent variable modelY&B (Lawrence, 2004) to
model two related data sets. Gaussian process (GP) preoaed over each dimen-
sions of each data set. The covariance functions for eachsgatdefine an implicit
nonlinear mapping from the latent space to the data space sfii@red information is
captured in a shared set of latent coordinates (which arenthé to the GP’s), and
the private information is captured in the linear transfations¥,; and ¥,, which is
automatically learned in the training of the model. The maedkes applied to various
problems where we show that the model can learn an apprestiared structure be-
tween two related data sets when the features are bothliiregat nonlinearly related

to the data sets. We also demonstrated the algorithm on afdainge data sets, where
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each pair of data points consists of a left and right half cdi@funder various poses
and expressions. The model was able to learn a shared |g@ce $hat reflects the
different poses in the data set. Since the model defines agmbability density for

the data sets, we also demonstrate the model on predictibmessing value problems.

Chapter 4 extended the GPLVM-CCA model with a more complagenprocess.
We created additional latent spaces which underlie theenmiscesses in each data
sets to model structure in the within-set variation. We @hGP priors on the noise
functions and optimised the GP’s inputs, such that the nofsemation was modelled
by a covariance function with an input private to each data $¥e illustrated this
model on a standard artificial data set to demonstrate pagsed decompositions of
images. Each image contains a shared feature (a horizamnadihd a private feature (a
vertical bar from either the left or right half of the imag&iven a large training set of
images, the model was able to find a smaller basis of prototgpges containing both
the shared and private features.

Finally, in Chapter 5, we presented a Dirichlet process uneximodel of proba-
bilistic CCA (PCCA). The pair of underlying nonlinear maolds for each data set is
approximated by local linear submodels; at correspondiogllregions of the two data
spaces, the relationship between the data is modelled gahP&CCA model. A non-
parametric Dirichlet process prior is placed over the patans of the mixture model
of PCCA. This allows the number of represented mixture camepts, and hence the
flexibility of the nonlinear manifolds, to be determined@uttically. The data is mod-
elled as being generated from an infinite mixture of PCCAhm $ame spirit as the

infinite mixture of Gaussians (Rasmussen, 2000).

6.3 Future work

There are a number of avenues for future research:

e Sparse approximations. One of the problems with using nanpeiric Bayesian
methods is that they can be inefficient in terms of the contjmutdime, since the

computing memory required scales prohibitively with theier of data points.
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For instance, using Gaussian processes involves marigutztan N x N co-

variance function matrix which is impractical for large aaets. In Chapter 3, we
used the informative vector machine (Lawreetal, 2003; Lawrence, 2004) to
create a sparse approximation of GPLVM-CCA. An interestingn of research
would be to investigate different sparse approximationstfe model since there
are many sparsification algorithms in the literature i.esaiG, 2002) . Creat-
ing a sparse version of the GPLVM-CCA model with complex agisocesses
(Chapter 4) would also be an interesting area of researctvelder, there exists
a number of problems in this approach due to the richnessahtbdel, such as
what criterion would be used to create a sparse version afveariance function

matrix - the accuracy of the noise process or the shared gg8ce

Similarly, the Monte Carlo methods associated with Dirathgrocess inference
can be computationally costly. A future direction of resbawould be to use a

variational approximation to the inference, as in (Blei &dkmn, 2006).

Non-Gaussian Processes. A future direction of researchHdaouinvestigate

non-Gaussian noise models for all of our three models.

Extension of our models to find shared structure for more thanrelated data

sets, following ideas from (Kettenring, 1971).

Complex structure between two data sets. Since all of ouets@de probabilis-
tic, it may be interesting to include more prior knowledgewaithe underlying
latent processes into the model. For instance, we couldressat the shared
latent variable follows a Markov process (perhaps incapong dynamics as in
(Wang, 2005; Wanet al., 2006)) to model stereo audio data. It would also be in-
teresting to model stereo image data which is a complex enojhnd use priors

over the latent variables that reflect the data generatiocess.
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Appendix A

Probability distributions

A.1 Normal distribution

x is aD-dimensional vector distributed according to:

x ~ Nx|pX)

1 1 1/, x — )"
~ mexp (—Qtr(z (x —p)(x—p) ))

wherep € R is the mean, an € RP*? is the covariance matrix.
A.1.1 Product of normal distributions

N(x | pr, BN (x| po, Bo) oc N(x | p3, 23)
where

s = B3(Z  py + 2o o)

23 == (21_1+22_1)_1

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)
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A.2 Gamma distribution
x is a scalar distributed according to:

x ~ Gx[a,p)

—a/2

WXO‘/2_1 exp(—ax/203)

whereq is the shape parameter, afids the mean.

A.3 Wishart distribution

X isaD x D matrix distributed according to:

X ~ W(X|0,8)
1
ZvS

~Y

1
X |(=D=D/2 oxp (—itr(US_IX))

(A.6)

(A.7)

(A.8)

(A.9)

where the normalisation constadts = 2”D/27rD(D‘1)/4% [12, T (==, with

degree of freedom and mears.

A.3.1 Product of Wishart distributions

W(X ‘ Vs, Sg) X W(X | V1, Sl)W(X | Vo, Sg)
where

i Vs

S, =
s 1)181_1 +’UQSZ_1

(A.10)
(A.11)

(A.12)

(A.13)



Bibliography

AGAKov, F. V. 2005. Variational Information Maximization in Stochastic Eror-
ments Ph.D. thesis, Institute of Adaptive and Neural Computgt®chool of Infor-

matics, University of Edinburgh.

AGAKoV, F. V., & BARBER, D. 2004. Variational Information Maximization for
Neural CodingPages 543-548 ofPAL, N. R., Kasasov, N., MuDI, R. K., RL,
S., & PaRuUI, S. K. (eds)JCONIP. Lecture Notes in Computer Science, vol. 3316.

Springer.

AKAHO, S., KIUCHI, Y., & UMEYAMA, S. 1999. MICA: Multimodal Independent
Component Analysisinternational Joint Conference on Neural Networks (IJCNN)

2,927-932.

ALDOUS, D. 1985. Exchangeability and Related TopiPages 1-198 of: Ecole D’Ete
de Probabilities de Saint Flour XIII 1983pringer, Berlin.

ANTONIAK, C. E. 1974. Mixtures of Dirichlet processes with appliocas to Bayesian

nonparametric problem#&nnals of Statistic2(6), 1152-1174.

ARCHAMBEAU, C., DELANNAY, N., & VERLEYSEN, M. 2006. Robust Probabilistic
Projections.Pages 33—-40 ofCOHEN, W.W., & MOORE, A. (eds),Proceedings of

the 23rd International Conference on Machine Learning

BACH, F.R., & JORDAN, M.I. 2002. Kernel Independent Component Analysisur-
nal of Machine Learning3, 1-48.



162 BIBLIOGRAPHY

BACH, F.R., & JORDAN, M.l. 2005. A Probabilistic Interpretation of Canonical

Correlation Analysis Tech. rept. 688. Dept of Statistics, University of Califiar.

BARTHOLOMEW, D. J. 1987.Latent Variable Models and Factor Analysisondon:

Charles Griffin and Co. Ltd.

BECKER, S. 1992. An Information-theoretic Unsupervised Learning Algomithor

Neural NetworksPh.D. thesis, University of Toronto.

BECKER, S. 1996. Mutual Information Maximization: models of codi self-

organisationNetwork: Computation in Neural Systenis7—-31.

BECKER, S., & HINTON, G. E. 1992. A self-organising neural network that discever

surfaces in random-dot stereograisiture 365353), 161-163.

BisHOR C.M. 1999. Latent Variable Model®Pages 371-403 oflorDAN, M. I. (ed),

Learning in Graphical ModelsMIT Press.

BisHOR C.M., SVENSEN, M., & WILLIAMS, C.K.I. 1996. GTM: A principled al-
ternative to the Self Organising Mapages 354—-360 ofM OzER, M.C., JORDAN,
M.I., & T.PETCHE (eds),Advances in Neural Information Processing Systark

9.

BisHoR C.M., SVENSEN, M., & WILLIAMS, C.K.l. 1998. Developments of the

Generative Topographic Mappinieurocomputing?1, 203-224.

BLACKWELL, D., & MACQUEEN, J. B. 1973. Ferguson Distributions via Polya Urn

SchemesAnnals of Statistigsl(2), 353—-355.

BLEI, D. M., & JORDAN, M. I. 2006. Variational Inference for Dirichet Process

Mixtures. Bayesian Analysjd, 121-144.

BORGA, M. 1998. Learning multidimensional signal processingPh.D. thesis,
Linkdping University, Sweden, SE-583 83 Linkdping, SwadDissertation No. 531,
ISBN 91-7219-202-X.



BIBLIOGRAPHY 163

BoYLE, P., & FREAN, M. 2005a. Dependent Gaussian Processtges 217 —224
of: SAauL, L. K., WEISS Y., & BoTTOU, L. (eds),Advances in Neural Information

Processing Systemgol. 17. MIT Press.

BoyLE, P., & FREAN, M. 2005b. Multiple-Output Gaussian Process Regression
Tech. rept. CS-TR-05/2. School of Mathematical and ConmguBcience, Victoria

University of Wellington.

BREGLER C., & OMOHUNDRO, S. M. 1995. Nonlinear image interpolation using
manifold learningPages 973-980 ofTESAURO, G., TOURETZKY, D. S., & LEEN,

T. K. (eds),Advances in Neural Information Processing Systemk 7. MIT Press.

Butz, T., & THIRAN, J.P. 2005. From error probability to information theareti

(multi-modal) signal processingignal Processing85(5), 875—902.

CHARLES, D., & FYFE, C. 1998. Modelling multiple cause structure using re@#ic

tion constraintsNetwork: Computation in Neural Systerfg?), 167-82.

CHECHIK, G., & GLOBERSON A. 2003. Information Bottleneck and linear projec-

tions of Gaussian processeRech. rept. 4. Hebrew University.

CHECHIK, G., GLOBERSON A., TISHBY, N., & WEISS, Y. 2003. Information Bot-
tleneck for Gaussian variablePages 1213-1220 offHRUN, S., S\uL, L.K., &

SCHOLKOPF, B. (eds)Advances in Neural Information Processing Systeiok 16.

CORDUNEANU, A., & BisHor C. M. 2001. Variational Bayesian Model Selection
for Mixture Distributions. Pages 27—34 ofJAAKKOLA , T., & RICHARDSON, T.

(eds),Artificial Intelligence and StatisticaVlorgan Kaufmann.

CsATO, L. 2002.Gaussian Processes - Iterative Sparse ApproximatibhsD. thesis,

Aston University.

DAYAN, P., & ZEMEL, R. S. 1995. Competition and multiple cause mod#lsural

Computation7, 565-579.



164 BIBLIOGRAPHY

DE BIE, T., & DE MOOR, B. 2002. On Two Classes of Alternatives to Canonical Cor-
relation Analysis, using Mutual Information and Obliquejections. Proceedings

of the 23rd Symposium on Information Theory in the Benelt&'02.

DEMPSTER A. P., LAIRD, N. M., & RuBIN, D. B. 1977. Maximum likelihood from
incomplete data via the EM algorithmlournal of the Royal Statistical Society B

39(1), 1-38.

EscoBAR, M. D. 1994. Estimating normal means with a Dirichlet pracpsor. Jour-

nal of the American Statistical Associati@®(425), 268—-277.

FERGUSON T. S. 1973. A Bayesian analysis of some nonparametric enobAnnals

of Statistics2, 209-230.

FOLDIAK, P. 1990. Forming sparse representations by local antbidadearning.

Pages 165—170 of: Biological Cybernetie®l. 64.

FREY, B. 1998.Graphical Models for Machine Learning and Digital Commuation.
MIT Press.

FREY, B. J., P.DA\YAN, & HINTON, G. E. 1997. A simple algorithm that discovers
efficient perceptual code#n: JENKIN, M., & HARRIS, |. R. (eds),Computational

and Psychophysical mechanisms of Visual Cod®@®gmbridge University Press.

FRIEDMAN, N., MOSENZON O., SONIM, N., & TISHBY, N. 2001. Multivariate
Information Bottleneck.Pages 152-161 ofHAYKIN, S. (ed),Uncertainty in Ar-
tificial Intelligence: Proceedings of the Seventeenth €mrfce, UAI '01 Morgan

Kaufmann Publishers.

FYFE, C., & LEEN, G. 2006. Stochastic Processes for Canonical CorrelatiabyAis.
Pages 245-50 of: Proceedings of the 14th European Sympadidntificial Neural
Networks (ESANN)



BIBLIOGRAPHY 165

GHAHRAMANI, Z., & BEAL, M. J. 2000. Variational inference for Bayesian mixtures
of factor analyzersPages 449-455 ofSOLLER, S. A., LEEN, T.K., & MULLER,

K. (eds),Advances in Neural Information Processing Systarok 12. MIT Press.

GILKs, W. R., & WILD, P. 1992. Adaptive rejection sampling for Gibbs sampling.
Pages 337—-348 of: Applied Statistiesl. 41.

GRoCHOW, K., HERTZMANN, S.L. MARTIN A., & PopPovic, Z. 2004. Style-based

inverse kinematicsACM Trans. Graphic23(3), 522-531.

HAYKIN, S. 1994. Neural Networks: A Comprehensive FoundatioMew York:

Macmillan.

HINTON, G. E., REvow, M., & DAYAN, P. 1995. Recognizing handwritten digits
using mixtures of linear modelRages 1015 —1022 oT.ESAURO, G., TOURETZKY,
D. S., & LEEN, T. K. (eds),Advances in Neural Information Processing Systems

vol. 7. MIT Press.

HOTELLING, H. 1936. Relations between two sets of variatBmmetrika 28, 312—

377.

JEBARA, T. 2001. Discriminative, generative and imitative learning®h.D. thesis,

Media Lab, Massachusetts Institute of Technology.
JOLIFFE, I. T. 1986.Principal Component AnalysisNew York: Springer-Verlag.
JORDAN, M. I. (ed). 1999.Learning in Graphical ModelsMIT Press.

KAMBHATLA, N., & LEEN, T. K. 1997. Dimension reduction by local principal

component analysis\leural Computatioy9(7), 1493-1516.

KAy, J. 1992. Feature discovery under contextual supervisorgunutual informa-

tion. International Joint Conference on Neural Netwqrks79—84.

KETTENRING, J. R. 1971. Canonical analysis of several sets of variaBliesnetrikg

58(3), 433-451.



166 BIBLIOGRAPHY

KLAami, A., & KAskI, S. 2006. Generative models that discover dependencies be-
tween two data setsdPages 123-128 ofMCLOONE, S., ADALI, T., LARSEN, J.,
HULLE, M. VAN, ROGERS A., & DoUGLAS, S.C. (eds)Machine Learning for

Signal Processing XVIEEE.

LAl, P. L., & FYFg, C. 1999. A neural implementation of canonical correlatoal-

ysis. Neural Networks12, 1391-1397.

Lal, P. L., & Frrg, C. 2000. Kernel and Nonlinear Canonical Correlation Asaly

International Journal of Neural Systepni€X5), 365-377.

LAWRENCE, N. D. 2004. Gaussian Process Latent Variable Models foualiza-
tion of High Dimensional Data.Pages 329-336 of THRUN, S., SwL, L., &
SCHOLKOPF, B. (eds),Advances in Neural Information Processing Systevos

16. MIT Press.

LAWRENCE, N. D. 2005. Probabilistic Non-linear Principal ComponAnalysis with
Gaussian Process Latent Variable Modelsurnal of Machine Learning Research

6, 1783-1816.

LAWRENCE, N. D., SEEGER M., & HERBICH, R. 2003. Fast sparse Gaussian process
methods: The informative vector machifages 625-632 oBECKER, S., THRUN,
S., & OBERMAYER, K. (eds),Advances in Neural Information Processing Systems

vol. 15. MIT Press.

LEEN, G., & FYFg, C. 2004a. Agent Wars with Artificial Immune SystenfRages
420 — 428 of: RAUTERBERG, MATTHIAS (ed), 3rd International Conference on
Entertainment Computing, ICEC2004Lecture Notes in Computer Science, vol.

3166. Springer-Berlin.

LEEN, G., & FYFE, C. 2004b. An investigation of alternative planning altjums: Ge-
netic algorithms, artificial immune systems and ant colgoiyroisation.Pages 278—

281 of: Conference on Computer Games: Design, Al and Eduta@GAIDE2004



BIBLIOGRAPHY 167

LEEN, G., & FYFE, C. 2005. Training an Al player to play pong using the GTM.
Pages 270 — 276 of: IEEE Symposium on Computational Inezitig and Games

LEEN, G., & FrFg, C. 2006. A Gaussian Process Latent Variable Model Formula-
tion of Canonical Correlation Analysifages 413-418 of: Proceedings of the 14th

European Symposium of Artificial Neural Networks (ESANN)

LINSKER, R. 1988. An Application of the Principle of Maximum Inforthan Preser-
vation to Linear SystemsPages 186—194 ofTOURETzKY, D. (ed),Advances in

Neural Information Processing Systemsl. 1. Morgan Kaufmann.

MACKAY, D. J. C. 1995. Probable networks and plausiable predgti@review of
practical Bayesian methods for supervised neural netwdtksnvork: Computation

in Neural System$(3), 469-505.

MACKAY, D. J. C. 1998. Introduction to Gaussian Processeages 133-166 of:
BisHor, C. M. (ed), Neural Networks and Machine LearningSpringer-Verlag,

Berlin.

MAcKAY, D. J. C. 2003. Information theory, Inference, and Learning Algorithms

Cambridge University Press.

MARDIA, K. V., KENT, J. D., & BiBBY, J. M. 1979 Multivariate AnalysisAcademic

Press.

NEAL, R. M. 1991. Bayesian mixture modeling by Monte Carlo simulatiofech.

rept. CRG-TR-91-2. Department of Computer Science, Usityeof Toronto.

NEAL, R. M. 1998. Assessing relevance determination methodg BELVE. Pages
97-129 of:.BisHOR C. M. (ed),Neural Networks and Machine Learning§pringer-
Verlag.

O’HAGAN, A. 1978. Curve fitting and optimal design for predictiodournal of the
Royal Statistical Society, Series8X1), 1-42.



168 BIBLIOGRAPHY

PRINCIPE, J. C., XU, D., & IlI, J. W. FISHER. 2000. Information Theoretic Learning.
Chap. 7 of:HAYKIN, S. (ed),Unsupervised Adaptive Filteringol. 1. John Wiley

and Sons, New York.

RAsSMUSSEN C. E., & WiLLIAMS, C. K. I. 2006. Gaussian Processes for Machine

Learning MIT Press.

RAsMUSSEN C.E. 2000. The Infinite Gaussian Mixture Modé&ages 554-560 of:
SOLLA, S. A., LEEN, T. K., & MULLER, K-R. (eds),Advances in Neural Infor-

mation Processing Systepwel. 12. MIT Press.

Rowels, S. T., SwL, L. K., & HINTON, G. E. 2002. Global Coordination of Local
Linear Models.Pages 889-896 oDIETTERICH, T. G., BECKER, S., & GHAHRA-
MANI, Z. (eds),Advances in Neural Information Processing Systerok 14. MIT

Press.
SCHOLKOPF, B., & SMOLA, A. J. 2002.Learning with KernelsMIT Press.

SCHOLKOPF, B., SMOLA, A., & MULLER, K.-R. 1998. Nonlinear Component Anal-

ysis as a Kernel Eigenvalue ProbleMeural Computationl0, 1299-1319.

SCHOLKOPF, B., MIKA, S., BURGES C., KNIRSCH, P., MULLER, K.-R., RATSCH,
G., & SMOLA, A. J. 1999. Input space vs feature space in kernel-basedaoohet
IEEE Transactions on Neural Networki<), 1000-1017.

SETHURAMAN, J. 1994. A Constructive Definition of Dirichlet PrioBages 639-650

of: Statistica Sinicavol. 4.

SHANNON, C. 1948. A mathematical theory of communicatidPages 379-423 of:

Bell Systems Technical Journabl. 27.

SHON, A. P., GRocHOW, K., HERTZMANN, A., & RAO, R. P. N. 2006. Learning
shared latent structure for image synthesis and robottaton. Pages 1233 — 1240
of: WEISS, Y., SCHOLKOPF, B., & PLATT, J. (eds)Advances in Neural Informa-

tion Processing Systemsol. 18. MIT Press.



BIBLIOGRAPHY 169

SMOLA, A. J., MANGASARIAN, O. L., & SCHOLKOPF, B. 1999. Sparse Kernel

Feature AnalysisTech. rept. 99-04. University of Wisconsin, Madison.

SMOLA, A. J., MIKA, S., SHOLKOPF, B., & WILLIAMSON, R. C. 2001. Regular-

ized Principal ManifoldsJournal of Machine Learning Research 179-209.

SNELSON, E., RasmMUssSeEN C. E., & GHAHRAMANI, Z. 2004. Warped Gaussian
ProcessesPages 337—344 ofTHRUN, S., S\UL, L. K., & SCHOLKOPF, B. (eds),

Advances in Neural Information Processing Systamk 16. MIT Press.

STUDHOLME, C., HAWKES, D.J., & HiLL, D.L.G. 1999. An overlap invariant en-

tropy measure of 3D medical image alignmepaittern Recognitioy32, 71-86.

SVENSEN, M. 1998.GTM: The Generative Topographic Mappirfeh.D. thesis, Aston

University.

TEH, Y. W., SEEGER M., & JORDAN, M. |. 2005. Semiparametric latent factor
models. Pages 333-340 of COWELL, ROBERT G., & GHAHRAMANI, ZOUBIN
(eds),Proceedings of the Tenth International Workshop on Aréfikitelligence and

Statistics Society for Artificial Intelligence and Statistics.

TIPPING, M., & BisHOR C. 1997. Mixtures of Probabilistic Principal Component
Analysers Tech. rept. NCRG/97/003. Neural Computing Research Grésfon

University.

TIPPING, M., & BISHOR, C. 1999. Probabilistic principal component analy3airnal

of the Royal Statistical Society, Serie?R(3), 611-622.

TisHBY, N., F.C, EEREIRA, & BIALEK, W. 1999. The Information Bottleneck
method. Pages 368-377 ofHAJEK, B., & SREENIVAS, R. S. (eds)Proc. of the

37th Annual Allerton Conference on Communication, Corgral Computing

TORKKOLA, K. 2003. Feature Extraction by Non-parametric Mutual infation

Maximization. Journal of Machine Learning Resear®) 1415-1438.



170 BIBLIOGRAPHY

VAPNIK, V. 1995. The Nature of Statistical Learning Theor$pringer-Verlag.

VERBEEK, J., ROWEIS, S., & VLASSIS, N. 2004. Nonlinear CCA and PCA by align-
ment of local modelsPages 297-304 off HRUN, S., SAUL, L. K., & SCHOLKOPF,

B. (eds),Advances in Neural Information Processing Systerak 16.

VINOKOUROV, A., SHAWE-TAYLOR, J., & CRISTIANINI, N. 2003. Inferring a se-
mantic representation of text via cross-language coroglanalysis.Pages 1473—
1480 of: BECKER, S., THRUN, S., & OBERMAYER, K. (eds),Advances in Neural

Information Processing Systenwsl. 15. MIT Press.

VIoLA, P. A. 1995.Alignment by Maximization of Mutual Informatio®h.D. thesis,

Al Lab, Massachusetts Institute of Technology.

WANG, C. 2007. Variational Bayesian Approach to Canonical CGati@n Analysis.

IEEE Transactions on Neural Networks3(3), 905-910.

WANG, J., HEET, D., & HERTZMANN, A. 2006. Gaussian Process Dynamical Mod-
els. Pages 1441 — 1448 ofWEISS, Y., SCHOLKOPF, B., & PLATT, J. (eds)Ad-

vances in Neural Information Processing Systevos 18. MIT Press.

WANG, J. M-C. 2005. Gaussian Process Dynamical Models for Human Mation

M.Phil. thesis, Graduate Department of Computer Scienoe/dusity of Toronto.

WEST, M., MULLER, P., & ESCOBAR, M. D. 1994. Hierarchical priors and mixture
models with applications in regression and density estonatPages 363—386 of:

FREEMAN, P. R., & SMITH, A. F. M (eds),Aspects of Uncertainty

WiLLIAMS, C. K. I., & RASMUSSEN C. E. 1996. Gaussian processes for regression
Pages 514-520 of TOURETZzKY, D., MOZER, M., & HASSELMO, M. (eds),

Advances in Neural Information Processing Systemk 8. MIT Press.



