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Abstract. Multiple kernel learning algorithms are proposed to com-
bine kernels in order to obtain a better similarity measure or to in-
tegrate feature representations coming from different data sources.
Most of the previous research on such methods is focused on classi-
fication formulations and there are few attempts for regression. We
propose a fully conjugate Bayesian formulation and derive a deter-
ministic variational approximation for single output regression. We
then show that the proposed formulation can be extended to multi-
ple output regression. We illustrate the effectiveness of our approach
on a single output benchmark data set. Our framework outperforms
previously reported results with better generalization performance on
two image recognition data sets using both single and multiple output
formulations.

1 INTRODUCTION

The main idea of kernel-based algorithms is to learn a linear decision
function in the feature space where data points are implicitly mapped
to using a kernel function [12]. Given a sample ofN independent and
identically distributed training instances {xi ∈ X}Ni=1, the decision
function that is used to predict the target output of an unseen test
instance x� can be written as

f(x�) = a
�
k� + b (1)

where the vector of weights assigned to each training data point
and the bias are denoted by a and b, respectively, and k� =[
k(x1,x�) . . . k(xN ,x�)

]� where k : X × X → R is the ker-
nel function that calculates a similarity measure between two data
points. Using the theory of structural risk minimization, the model
parameters can be found by solving a quadratic programming prob-
lem, known as support vector machine (SVM) [12]. The model pa-
rameters can also be interpreted as random variables to obtain a
Bayesian interpretation of the model, known as relevance vector ma-
chine (RVM) [10].
Kernel selection (i.e., choosing a functional form and its param-

eters) is the most important issue that affects the empirical perfor-
mance of kernel-based algorithms and usually done using a cross-
validation procedure.Multiple kernel learning (MKL) methods have
been proposed to make use of multiple kernels simultaneously in-
stead of selecting a single kernel (see a recent survey [7]). Such
methods also provide a principled way of integrating feature repre-
sentations coming from different data sources or modalities. Most of
the previous research is focused on developing MKL algorithms for
classification problems. There are few attempts to formulate MKL
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models for regression problems [4, 8, 6, 13, 11]. Nevertheless, exist-
ing Bayesian MKL methods require too much computation time due
to their dependency on sampling methods or complex inference pro-
cedures. In this paper, we propose an efficient Bayesian MKL frame-
work for single and multiple output regression problems by formu-
lating the combination with a fully conjugate probabilistic model.
In Section 2, we give an overview of the related work by consider-

ing existing MKL regression algorithms. Section 3 explains the pro-
posed fully conjugate Bayesian formulation and deterministic varia-
tional inference scheme for single output regression. In Section 4, we
extend this formulation to multiple output regression. Section 5 tests
our framework, called Bayesian multiple kernel learning for regres-
sion (BMKLR), on a single output benchmark data set and reports
very promising results on two image recognition data sets, which are
frequently used to compare MKL algorithms.

2 RELATED WORK

MKL algorithms basically replace the kernel in (1) with a com-
bined kernel calculated as a function of the input kernels. The
most common combination is using a weighted sum of P kernels
{km : X × X → R}Pm=1:

f(x�) = a
�

(
P∑

m=1

emkm,�

)
︸ ︷︷ ︸

ke,�

+b

where km,� =
[
km(x1,x�) . . . km(xN ,x�)

]� and the vector
of kernel weights is denoted by e. Existing MKL algorithms with a
weighted sum differ in the way that they formulate restrictions on
the kernel weights: arbitrary weights (i.e., linear sum), nonnegative
weights (i.e., conic sum), or weights on a simplex (i.e., convex sum).
[8] proposes an MKL binary classification algorithm that opti-

mizes the kernel weights and the support vector coefficients jointly
with an alternating optimization strategy. Their algorithm requires to
solve an SVM problem and to update the kernel weights at each itera-
tion. They also show that their method can be extended to regression
with minor modifications. [6] presents a localized MKL regression
algorithm that allows us to combine kernels in a data-dependent way
using gating functions. This algorithm can learn complex fits using
multiple copies of a simple kernel (e.g., linear kernel) due to nonlin-
earity in the gating model.
[4] presents Bayesian MKL algorithms for regression and binary

classification using hierarchical models. The combined kernel is de-
fined as a convex sum of the input kernels using a Dirichlet prior
on the kernel weights. As a consequence of the nonconjugacy be-
tween Dirichlet and normal distributions, they choose to use an im-
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portance sampling scheme to update the kernel weights when deriv-
ing variational approximations. [13] proposes a fully Bayesian infer-
ence methodology for extending generalized linear models to kernel-
ized models using a Markov chain Monte Carlo approach. The main
issue with these approaches is that they depend on some sampling
strategy and may not be trained in a reasonable time when the num-
ber of kernels is large. Recently, [11] proposes a multitask GP model
that combines a common set of GP functions (i.e., information shar-
ing between the tasks) defined over multiple covariances with task-
dependent weights whose sparsity is tuned using the spike and slab
prior. A variational approximation approach is derived for an efficient
inference scheme.

3 BAYESIAN MULTIPLE KERNEL LEARNING
FOR SINGLE OUTPUT REGRESSION

In this section, we formulate a fully conjugate probabilistic model
and develop a deterministic variational approximation inference pro-
cedure for single output regression. The main novelty of our ap-
proach is to calculate intermediate outputs from each kernel using
the same set of weight parameters and to combine these outputs using
the kernel weights to estimate the target output. This idea is originally
proposed for binary classification problems [5]. Figure 1 illustrates
the proposed probabilistic model for single output regression with a
graphical model.
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Figure 1. Bayesian multiple kernel learning for single output regression.

The notation we use for this model is as follows: N and P repre-
sent the numbers of training instances and input kernels, respectively.
TheN ×N kernel matrices are denoted byKm, where the columns
of Km by km,i and the rows of Km by ki

m. The N × 1 vectors of
weight parameters ai and their precision priors λi are denoted by a
and λ, respectively. The P × N matrix of intermediate outputs gmi
is represented as G, where the columns of G as gi and the rows
ofG as gm. The precision prior for intermediate outputs is denoted
by υ. The bias parameter and its precision prior are denoted by b
and γ, respectively. The P × 1 vectors of kernel weights em and
their precision priors ωm are denoted by e and ω, respectively. The
N × 1 vector of target outputs yi is represented as y. The precision
prior for target outputs is denoted by ε. As short-hand notations, all
priors in the model are denoted by Ξ = {ε, γ,λ,ω, υ}, where the
remaining variables by Θ = {a, b, e,G} and the hyper-parameters
by ζ = {αε, βε, αγ , βγ , αλ, βλ, αω, βω, αυ, βυ}. Dependence on ζ
is omitted for clarity throughout the rest.

The distributional assumptions of our probabilistic model are

λi ∼ G(λi;αλ, βλ) ∀i

ai|λi ∼ N (ai; 0, λ
−1
i ) ∀i

υ ∼ G(υ;αυ, βυ)

gmi |a,km,i, υ ∼ N (gmi ;a�
km,i, υ

−1) ∀(m, i)

γ ∼ G(γ;αγ , βγ)

b|γ ∼ N (b; 0, γ−1)

ωm ∼ G(ωm;αω, βω) ∀m

em|ωm ∼ N (em; 0, ω−1
m ) ∀m

ε ∼ G(ε;αε, βε)

yi|b, e, gi, ε ∼ N (yi; e
�
gi + b, ε−1) ∀i.

N (·;μ,Σ) represents the normal distribution with the mean vec-
tor μ and the covariance matrix Σ. G(·;α, β) denotes the gamma
distribution with the shape parameter α and the scale parameter β.
Sample-level sparsity can be tuned by assigning suitable values to
the hyper-parameters (αλ, βλ) as in RVMs [10]. Kernel-level spar-
sity can also be tuned by changing the hyper-parameters (αω, βω).
Sparsity-inducing gamma priors, e.g., (0.001, 1000), can simulate the
	1-norm on the kernel weights, whereas uninformative priors, e.g.,
(1, 1), simulate the 	2-norm.
Exact inference for our probabilistic model is intractable and us-

ing a Gibbs sampling approach is computationally expensive [3]. We
instead formulate a deterministic variational approximation, which is
more efficient in terms of computation time. The variational methods
use a lower bound on the marginal likelihood using an ensemble of
factored posteriors to find the joint parameter distribution [1]. We can
write the factorable approximation of the required posterior as

p(Θ,Ξ|{Km}Pm=1,y) ≈ q(Θ,Ξ) =

q(λ)q(a)q(υ)q(G)q(γ)q(ω)q(b, e)q(ε)

and define each factor in the ensemble just like its full conditional
distribution:

q(λ) =

N∏
i=1

G(λi;α(λi), β(λi))

q(a) = N (a;μ(a),Σ(a))

q(υ) = G(υ;α(υ), β(υ))

q(G) =

N∏
i=1

N (gi;μ(gi),Σ(gi))

q(γ) = G(γ;α(γ), β(γ))

q(ω) =

P∏
m=1

G(ωm;α(ωm), β(ωm))

q(b, e) = N

([
b
e

]
;μ(b, e),Σ(b, e)

)
q(ε) = G(ε;α(ε), β(ε))

whereα(·), β(·), μ(·), andΣ(·) denote the shape parameter, the scale
parameter, the mean vector, and the covariance matrix for their argu-
ments, respectively.
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We can bound the marginal likelihood using Jensen’s inequality:

log p(y|{Km}Pm=1) ≥

Eq(Θ,Ξ)[log p(y,Θ,Ξ|{Km}Pm=1)]

− Eq(Θ,Ξ)[log q(Θ,Ξ)] (2)

and optimize this bound by optimizing with respect to each factor
separately until convergence. The approximate posterior distribution
of a specific factor τ can be found as

q(τ ) ∝ exp(Eq({Θ,Ξ}\τ)[log p(y,Θ,Ξ|{Km}Pm=1)]).

For our model, thanks to the conjugacy, the resulting approximate
posterior distribution of each factor follows the same distribution as
the corresponding factor.
The approximate posterior distribution of the precision priors for

the weight parameters can be found as

q(λ) =

N∏
i=1

G

(
λi;αλ +

1

2
,

(
1

βλ

+
ã2
i

2

)−1)

where the tilde notation denotes the posterior expectations as usual,
i.e., f̃(τ ) = Eq(τ)[f(τ )]. The approximate posterior distribution of
the weight parameters is a multivariate normal distribution:

q(a) = N

(
a; Σ(a)

(
υ̃

P∑
m=1

Kmg̃m�

)
,

(
diag(λ̃) + υ̃

P∑
m=1

KmK
�
m

)−1
⎞⎠. (3)

The approximate posterior distribution of the precision prior for
the intermediate outputs can be found as

q(υ) = G

⎛⎜⎜⎜⎝υ;αυ +
PN

2
,

⎛⎜⎜⎝ 1

βυ

+

P∑
m=1

N∑
i=1

(̃rmi )2

2

⎞⎟⎟⎠
−1⎞⎟⎟⎟⎠

where rmi = gmi − a�km,i. The approximate posterior distribution
of the intermediate outputs can be found as a product of multivariate
normal distributions:

q(G) =

N∏
i=1

N

⎛⎜⎝gi; Σ(gi)

⎛⎜⎝υ̃

⎡⎢⎣ki
1

...
ki
P

⎤⎥⎦ã+ ε̃(yiẽ− b̃e)

⎞⎟⎠,

(
υ̃I+ ε̃ẽe�

)−1

⎞⎟⎠. (4)

The approximate posterior distributions of the precision priors for
the bias and the kernel weights can be found as

q(γ) = G

(
γ;αγ +

1

2
,

(
1

βγ

+
b̃2

2

)−1)

q(ω) =
P∏

m=1

G

(
ωm;αω +

1

2
,

(
1

βω

+
ẽ2m
2

)−1)
.

The approximate posterior distribution of the bias and the kernel
weights can be formulated as a multivariate normal distribution:

q(b, e) = N

([
b
e

]
; Σ(b, e)

[
ε̃1�y

ε̃G̃y

]
,[

γ̃ + ε̃N ε̃1�
G̃�

ε̃G̃1 diag(ω̃) + ε̃G̃G�

]−1)
(5)

where we allow kernel weights to take negative values.
The approximate posterior distribution of the precision prior for

the target outputs can be found as

q(ε) = G

⎛⎜⎜⎜⎝ε;αε +
N

2
,

⎛⎜⎜⎝ 1

βε

+

N∑
i=1

s̃2i

2

⎞⎟⎟⎠
−1⎞⎟⎟⎟⎠

where si = yi − e�gi − b.∑P

m=1 KmK
�
m in (3) should be cached before starting inference

to reduce the computational complexity. (3) requires inverting an
N × N matrix for the covariance calculation, whereas (4) and (5)
require inverting P × P and (P + 1) × (P + 1) matrices, respec-
tively. One of these two update types will dominate the running time
depending on whether N > P .
The inference mechanism sequentially updates the approximate

posterior distributions of the model parameters and the latent vari-
ables until convergence, which can be checked by monitoring the
lower bound in (2). The first term of the lower bound corresponds to
the sum of exponential form expectations of the distributions in the
joint likelihood. The second term is the sum of negative entropies of
the approximate posteriors in the ensemble.
In order to obtain the predictive distribution of the intermediate

outputs g� for a new data point, we can replace p(a|{Km}Pm=1,y)
and p(υ|{Km}Pm=1,y) with their approximate posterior distribu-
tions q(a) and q(υ):

p(g�|{km,�,Km}Pm=1,y) =

P∏
m=1

N

(
gm� ;μ(a)�km,�,

1

υ̃
+ k

�
m,�Σ(a)km,�

)
.

The predictive distribution of the target output y� can also be found
by replacing p(b, e|{Km}Pm=1,y) and p(ε|{Km}Pm=1,y)with their
approximate posterior distributions q(b, e) and q(ε):

p(y�|g�, {Km}Pm=1,y) =

N

(
y�;μ(b, e)

�

[
1
g�

]
,
1

ε̃
+
[
1 g�

]
Σ(b, e)

[
1
g�

])
.

4 BAYESIAN MULTIPLE KERNEL LEARNING
FOR MULTIPLE OUTPUT REGRESSION

The multiple output regression problems are generally considered as
independent single output regression problems. In this approach, we
can not make use of correlation between the outputs. Instead, we
propose to use a common similarity measure by sharing the kernel
weights between the outputs. We extend the probabilistic model of
the previous section to handle multiple output regression. Figure 2
illustrates the modified probabilistic model for multiple output re-
gression with a graphical model.
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Figure 2. Bayesian multiple kernel learning for multiple output regression.

There are slight modifications to the notation but we explain them
in detail for completeness. N , P , and L represent the numbers
of training instances, input kernels, and outputs, respectively. The
N × N kernel matrices are denoted by Km, where the columns of
Km by km,i and the rows of Km by ki

m. The N × L matrices of
weight parameters ai

c and their priors λi
c are denoted byA andΛ, re-

spectively, where the columns ofA andΛ by ac and λc. The P ×N
matrices of intermediate outputs for each output gmo,i are represented
as Go, where the columns of Go as go,i and the rows of Go as
gm
o . The L× 1 vector of precision priors υo for intermediate outputs
is denoted by υ. The vectors of bias parameters bo and their priors
γo are denoted by b and γ, respectively. The P × 1 vectors of kernel
weights em and their priors ωm are denoted by e andω, respectively.
The L×N matrix of target outputs yo

i is represented asY, where the
columns ofY as yi and the rows ofY as yo. TheL×1 vector of pre-
cision priors εo for target outputs is denoted by ε. As short-hand no-
tations, all priors in the model are denoted by Ξ = {ε,γ,λ,ω,υ},
where the remaining variables by Θ = {a, b, e,G} and the hyper-
parameters by ζ = {αε, βε, αγ , βγ , αλ, βλ, αω, βω, αυ, βυ}. De-
pendence on ζ is omitted for clarity throughout the rest.
The distributional assumptions of our modified probabilistic

model are defined as

λi
o ∼ G(λi

o;αλ, βλ) ∀(i, o)

ai
o|λ

i
o ∼ N (ai

o; 0, (λ
i
o)

−1) ∀(i, o)

υo ∼ G(υo;αυ, βυ) ∀o

gmo,i|ao,km,i, υo ∼ N (gmi ;a�
o km,i, υ

−1
o ) ∀(o,m, i)

γo ∼ G(γo;αγ , βγ) ∀o

bo|γo ∼ N (bo; 0, γ
−1
o ) ∀o

ωm ∼ G(ωm;αω, βω) ∀m

em|ωm ∼ N (em; 0, ω−1
m ) ∀m

εo ∼ G(εo;αε, βε) ∀o

yo
i |bo, e, go,i, εo ∼ N (yo

i ; e
�
go,i + bo, ε

−1
o ) ∀(o, i)

where we use the same set of kernel weights for all outputs and this
strategy enables us to capture the dependency between outputs.
We write the factorable approximation of the required posterior as

p(Θ,Ξ|{Km}Pm=1,Y) ≈ q(Θ,Ξ) =

q(Λ)q(A)q(υ)q({Go}
L
o=1)q(γ)q(ω)q(b, e)q(ε)

and define each factor in the ensemble just like its full conditional
distribution:

q(Λ) =
N∏
i=1

L∏
o=1

G(λi
o;α(λ

i
o), β(λ

i
o))

q(A) =

L∏
o=1

N (ao;μ(ao),Σ(ao))

q(υ) =

L∏
o=1

G(υo;α(υo), β(υo))

q({Go}
L
o=1) =

L∏
o=1

N∏
i=1

N (go,i;μ(go,i),Σ(go,i))

q(γ) =
L∏

o=1

G(γo;α(γo), β(γo))

q(ω) =
P∏

m=1

G(ωm;α(ωm), β(ωm))

q(b, e) = N

([
b

e

]
;μ(b, e),Σ(b, e)

)

q(ε) =
L∏

o=1

G(εo;α(εo), β(εo)).

We can again bound the marginal likelihood using Jensen’s in-
equality:

log p(Y|{Km}Pm=1) ≥

Eq(Θ,Ξ)[log p(Y,Θ,Ξ|{Km}Pm=1)]− Eq(Θ,Ξ)[log q(Θ,Ξ)]

and optimize this bound by optimizing with respect to each factor
separately until convergence. The approximate posterior distribution
of a specific factor τ can be found as

q(τ ) ∝ exp(Eq({Θ,Ξ}\τ)[log p(Y,Θ,Ξ|{Km}Pm=1)]).

The approximate posterior distribution of the precision priors for
the weight parameters can be found as

q(Λ) =
N∏
i=1

L∏
o=1

G

(
λi
o;αλ +

1

2
,

(
1

βλ

+
(̃ai

o)2

2

)−1)
.

The approximate posterior distribution of the weight parameters is a
multivariate normal distribution:

q(A) =

L∏
o=1

N

(
ao; Σ(ao)

(
υ̃o

P∑
m=1

Kmg̃m
o

�

)
,

(
diag(λ̃o) + υ̃o

P∑
m=1

KmK
�
m

)−1
⎞⎠.

The approximate posterior distribution of the precision priors for
the intermediate outputs can be found as

q(υ) =

L∏
o=1

G

⎛⎜⎜⎜⎝υo;αυ +
PN

2
,

⎛⎜⎜⎝ 1

βυ

+

P∑
m=1

N∑
i=1

(̃rmo,i)
2

2

⎞⎟⎟⎠
−1⎞⎟⎟⎟⎠

where rmo,i = gmo,i −a�
o km,i. The approximate posterior distribution

of the intermediate outputs can be found as a product of multivariate
normal distributions:
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q({Go}
L
o=1) =

L∏
o=1

N∏
i=1

N

⎛⎜⎝go,i; Σ(go,i)

⎛⎜⎝υ̃o

⎡⎢⎣ki
1

...
ki
P

⎤⎥⎦ão + ε̃o(yiẽ− b̃oe)

⎞⎟⎠,
(
υ̃oI+ ε̃oẽe�

)−1

⎞⎟⎠.

The approximate posterior distributions of the precision priors for
the bias parameters and the kernel weights can be found as

q(γ) =

L∏
o=1

G

(
γo;αγ +

1

2
,

(
1

βγ

+
b̃2o
2

)−1)

q(ω) =

P∏
m=1

G

(
ωm;αω +

1

2
,

(
1

βω

+
ẽ2m
2

)−1)
.

The approximate posterior distribution of the bias parameters and the
kernel weights can be formulated as a multivariate normal distribu-
tion:

q(b, e) = N

⎛⎜⎜⎜⎜⎜⎝
[
b

e

]
; Σ(b, e)

⎡⎢⎢⎢⎢⎢⎣
ε̃1y

1
1

...
ε̃Ly

L
1

L∑
o=1

ε̃oG̃oy
o�

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎣

diag(γ̃) + diag(ε̃)N

ε̃11
�
G̃�

1

...
ε̃L1

�
G̃�

L

ε̃1G̃11 . . . ε̃LG̃L1 diag(ω̃) +
L∑

o=1

ε̃oG̃oG
�
o

⎤⎥⎥⎥⎥⎥⎥⎦

−1
⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The approximate posterior distribution of the precision priors for
the target outputs can be found as

q(ε) =
L∏

o=1

G

⎛⎜⎜⎜⎝εo;αε +
N

2
,

⎛⎜⎜⎝ 1

βε

+

N∑
i=1

(̃soi )
2

2

⎞⎟⎟⎠
−1⎞⎟⎟⎟⎠

where soi = yo
i − e�go,i − bo.

In order to obtain the predictive distribution of the inter-
mediate outputs G.,� for a new data point, we can replace
p(A|{Km}Pm=1,Y) and p(υ|{Km}Pm=1,Y) with their approxi-
mate posterior distributions q(A) and q(υ):

p(G.,�|{km,�,Km}Pm=1,Y) =

L∏
o=1

P∏
m=1

N

(
gmo,�;μ(ao)

�
km,�,

1

υ̃o

+ k
�
m,�Σ(ao)km,�

)
.

The predictive distribution of the target output y� can also be found
by replacing p(b, e|{Km}Pm=1,Y) and p(ε|{Km}Pm=1,Y) with
their approximate posterior distributions q(b, e) and q(ε):

p(y�|G.,�, {Km}Pm=1,Y) =

L∏
o=1

N

(
yo�;μ(bo, e)

�

[
1

go,�

]
,
1

ε̃o
+
[
1 go,�

]
Σ(bo, e)

[
1

go,�

])
.

5 EXPERIMENTS

We first test our new framework BMKLR on a single output bench-
mark data set to show its effectiveness. We then illustrate its gener-
alization performance comparing it with previously reported MKL
results on two image recognition data sets. We implement the pro-
posed variational approximations for BMKLR in Matlab and our
implementations are available at http://users.ics.aalto.
fi/gonen/bmklr/.

5.1 Motorcycle data set

We show the effectiveness of our framework on Motorcycle data
set discussed in [9]. The data set is normalized to have zero mean
and unit standard deviation. We construct Gaussian kernels with 21
different widths ({2−10, 2−9, . . . , 2+10}). We force sparsity at both
sample-level and kernel-level using sparsity inducing Gamma pri-
ors for the sample and kernel weights. The hyper-parameter values
are selected as (αε, βε) = (αγ , βγ) = (αυ, βυ) = (1, 1) and
(αλ, βλ) = (αω, βω) = (10−10, 10+10).
Figure 3 gives the kernel weights obtained by BMKLR on

Motorcycle data set. We see that most of the kernels are elimi-
nated from the combination with zero weights. Gaussian kernels with
widths {2−2, 2−1, 2+1} are enough to get a good fit for this data set
as we will see next.

−10 −5 0 5 10
0

5

10

Figure 3. Kernel weights on Motorcycle data set obtained by BMKLR.

Figure 4 shows the fitted curve superimposed with the training
samples obtained by BMKLR on Motorcycle data set. Only three
samples shown as filled points have nonzero weights. BMKLR is
able to learn a very good fit to the data using only three training sam-
ples and three out of 21 input kernels in the final decision function.
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Figure 4. Fit on Motorcycle data set obtained by BMKLR. Training
samples with nonzero weights are shown as filled points.
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5.2 Oxford flower data sets

We use two data sets, namely, Flowers17 and Flowers102, that
are previously used to compare MKL algorithms and have kernel ma-
trices available for direct evaluation. The proposed framework has
been designed for regression problems, but it can also be used ap-
proximately to solve classification problems using output values to
identify class membership. Both data sets consider multiclass clas-
sification problems and we set the corresponding output to +1 for
the target class, whereas the outputs for the others are set to −1. We
have small numbers of kernels available and do not force any spar-
sity on the sample and kernel weights. The hyper-parameter values
are selected as (αε, βε) = (αγ , βγ) = (αλ, βλ) = (αω, βω) =
(αυ, βυ) = (1, 1). We report both single and multiple output results.

Flowers17 data set contains flower images from 17 different
types with 80 images per class and it is available at http://www.
robots.ox.ac.uk/˜vgg/data/flowers/17/. It also pro-
vides three predefined splits with 60 images for training and 20 im-
ages for testing from each class. There are seven precomputed dis-
tance matrices over different feature representations. These matri-
ces are converted into kernels as k(xi,xj) = exp(−d(xi,xj)/s)
where s is the mean distance between training point pairs. The clas-
sification results on Flowers17 data set are shown in Table 1.
BMKLR achieves higher average test accuracy with smaller standard
deviation across splits than the boosting-type MKL algorithm of [2].
On this data set, single output approach is better than multiple output
approach in terms of classification accuracy.

Table 1. Performance comparison on Flowers17 data set.

Method Test Accuracy

[2] 85.5±3.0
BMKLR (single output) 86.2±1.6
BMKLR (multiple output) 86.0±1.6

Flowers102 data set contains flower images from 102 dif-
ferent types with more than 40 images per class and it is
available at http://www.robots.ox.ac.uk/˜vgg/data/
flowers/102/. There is a predefined split consisting of 2040
training and 6149 testing images. There are four precomputed dis-
tance matrices over different feature representations. These matrices
are converted into kernels using the same procedure on Flowers17
data set. Table 2 shows the classification results on Flowers102
data set. We report averages of area under ROC curve (AUC) and
equal error rate (EER) values calculated for each class in addition to
multiclass accuracy. We see that BMKLR outperforms the GP-based
method of [11] in all metrics on this challenging task. Different from
Flowers17 data set, multiple output approach is better than single
output approach in terms of classification accuracy. This shows that
sharing the same kernel function between the outputs improves the
generalization performance.

Table 2. Performance comparison on Flowers102 data set.

Method AUC EER Accuracy

[11] 0.952 0.107 40.0
BMKLR (single output) 0.977 0.060 68.8
BMKLR (multiple output) 0.977 0.062 69.3

Note that the results used for comparison may not be the best re-
sults reported on these data sets but we use the exact same kernel
matrices that produce these results for our algorithm to have compa-
rable performance measures.

6 CONCLUSIONS

In this paper, we introduce a Bayesian multiple kernel learning
framework for single and multiple output regression. This framework
allows us to develop fully conjugate probabilistic models and to de-
rive very efficient deterministic variational approximations for infer-
ence. We give detailed derivations of the inference procedures for
single and multiple output regression scenarios. Our algorithm for
single output regression can be interpreted as multiple kernel variant
of RVM [10].
Experimental results on a single output benchmark data set shows

the effectiveness of our method in terms of kernel learning capability.
We also report very promising results on two image recognition data
sets, which contain multiclass classification problems, compared to
previously reported results.
When extending our single output formulation to multiple output

regression, we assume that the outputs share the same kernel weights.
This strategy may not be suitable for the problems where the outputs
depend on different feature subsets. This setup requires to have dif-
ferent kernel functions for different outputs and we can choose to
share the same sample weights instead of the kernel weights. In such
a case, the model uses the same set of training points to calculate
a single set of intermediate outputs and combines them with differ-
ent sets of kernel weights for each output. However, we leave this
extension for future research.
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