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Abstract

A subset S = {s1, . . . , sk} of an Abelian group G is called an St -set of size k if all sums of t different
elements in S are distinct. Let s(G) denote the cardinality of the largest S2-set in G. Let v(k) denote the
order of the smallest Abelian group for which s(G) � k. In this article, bounds for s(G) are developed and
v(k) is determined for k � 15 by computing s(G) for Abelian groups of order up to 183 using exhaustive
backtrack search with isomorph rejection.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This work considers a packing problem in finite Abelian groups. A subset S of an Abelian
group, where |S| = k, is an St -set of size k if all sums of t different elements in S are distinct in
the group. See [4,5] for open problems in additive number theory related to St -sets and similar
configurations.
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Let s(G) denote the cardinality of the largest S2-set in G. Two central functions in the study
of S2-sets are v(k) and vγ (k), which give the order of the smallest Abelian and cyclic group G,
respectively, for which s(G) � k. Since cyclic groups are a special case of Abelian groups, clearly
v(k) � vγ (k), and any upper bound on vγ (k) is also an upper bound on v(k). In [6], the values
of vγ (k) for k � 15 are determined. In this paper we develop bounds for s(G), and we determine
v(k) for k � 15 by computing s(G) for Abelian groups of small order.

One motivation for studying v(k) and St -sets is that they have applications in coding theory
[2–4]. A constant weight error-correcting code is a set of binary vectors of length k and weight w

such that the Hamming distance between any two vectors is at least d . Given k, d , and w, the
maximum number of vectors in such a code is denoted by A(k, d,w). In [3, Theorem 16] it is
shown that A(k,6,w) �

(
k
w

)
/v(k).

In searching for an St -set of maximum size in a given group, symmetries of the search space
should be utilized in developing efficient algorithms. This is the motivation behind considering
the concepts of group automorphism and subset equivalence in Section 2. Several general bounds
for the size of S2-sets are proved in Section 3. The exhaustive computer search used is presented
in Section 4, and the paper is concluded in Section 5 by presenting computational results for all
Abelian groups of order at most 183. Thereby v(k) is obtained for k � 15.

2. Group automorphism and subset equivalence

By a result attributed to Gauss, every finite Abelian group G can be expressed as a direct
product of a finite number of cyclic groups of prime power order. We may arrange the cyclic
direct factors so that factors whose orders are powers of the same prime appear consecutively; in
effect, we are expressing the group as a direct product of Abelian p-groups, i.e., Abelian groups
of prime power order, whose orders are powers of distinct primes. This form is particularly
convenient for investigating the automorphisms of G: Shoda [9] showed that the automorphism
group of G is then the direct product of the automorphism groups of the Abelian p-subgroups.
Hence it suffices to consider the automorphism groups of Abelian p-groups only.

An Abelian p-group may be expressed as Gp = Zpe1 × · · · × Zpek , with p prime and ei

positive integers, and we may arrange the direct factors such that e1 � · · · � ek . Shoda [9] found
that when the elements of Gp are expressed as row vectors x, the automorphisms of Gp may be
described as α(x) = xMp , where Mp is a matrix of the form

Mp =

⎛
⎜⎜⎜⎜⎝

h11 h12 h13 h1k

pe1−e2h21 h22 h23 . . . h2k

pe1−e3h31 pe2−e3h32 h33 h3k

...
. . .

...

pe1−ekhk1 pe2−ekhk2 pe3−ekhk3 · · · hkk

⎞
⎟⎟⎟⎟⎠ (1)

with detMp �≡ 0 (mod p), where hij are integers in the range 0 � hij < peμ with μ = max(i, j).
In the backtrack search we will perform, the concept of equivalent subsets is essential in prun-

ing the search. Two subsets S and S′ of an Abelian group G are equivalent, if S = ψ(S′), where
ψ :G �→ G is a function of the form ψ(x) = α(x) + b, where α ∈ A(G) is an automorphism
of G, and b ∈ G is a constant. The equivalence mappings ψ form a group which we denote by
E(G) under function composition. They also preserve the property that all sums of pairs are
distinct, as α is an automorphism of G and adding the constant b to each element merely shifts
each sum of two elements by 2b.
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3. Properties of S2-sets

In this section, several bounds on S2-sets are proved. We start by showing a one-to-one cor-
respondence between binary linear codes and S2-sets in elementary Abelian 2-groups of the
form Z

m
2 , the direct product of m copies of Z2. The following theorem is implicitly used in [2].

A binary linear code with length n, dimension k, and minimum distance d is called an [n, k, d]
code.

Theorem 1. There exists an [n,n − r,5] code iff there exists an S2-set of size n + 1 in Z
r
2.

Proof. Given a binary r × n matrix whose columns are distinct and nonzero, we may take the
columns together with the zero vector to form a subset of n + 1 elements in Z

r
2. Conversely,

given an n + 1 element subset of Z
r
2 that contains zero we may take the n nonzero elements as

the columns of a binary r × n matrix M whose columns are distinct and nonzero.
If the matrix M is a parity check matrix of an [n,n − r,5] code, then any subset of fewer

than five columns is linearly independent, that is, a + b + c + d �= 0 and a + b + c �= 0 for any
distinct columns a, b, c, and d of the matrix. If the (n + 1)-element subset S is an S2-set, then
a + b �= c + d and a + b �= c + 0 for any distinct and nonzero elements a, b, c, and d of the
subset. These conditions are clearly equivalent in Z

r
2.

It only remains to remark that given an S2-set of size n + 1 in Z
r
2, we may obtain an S2-set

that contains the zero element by adding the inverse of an arbitrary element of the S2-set to each
of the elements. �

From Theorem 1 and [1], we know s(Zr
2) for r � 9. The next theorem gives a bound for s(G)

for an arbitrary Abelian group G.

Theorem 2. For a given finite Abelian group G, let v = |G| and let S be a k-element S2-set in G.
Then

v �
(

1 − 1

n2(G) + 1

)(
k2 − 3k + 2

)
,

where n2(G) is the index of the subgroup of G formed by involutions and the identity.

Proof. Consider the k(k − 1) ordered pairs of distinct elements of S and partition them into sets
Dd = {(s1, s2) | s1, s2 ∈ S, s1 − s2 = d} according to their difference. Obviously |D0| = 0. Sup-
pose that |Dd | > 1 for some d ∈ G. Then for any two pairs in Dd , say (s1, s2) and (s3, s4), we
have s1 + s4 = s2 + s3, which implies that s1 = s4 or s2 = s3. Without loss of generality, assume
that s2 = s3. Now three cases must be considered separately. In each case below, it is straightfor-
ward to verify that the given set Dd is maximal; if Dd would contain another difference, S would
not be an S2-set.

(1) If d is of order 2 in G, then Dd = {(s1, s2), (s2, s1)}. We use v2 to denote the number of d of
order 2 with |Dd | > 1.

(2) If d is of order 3 in G, then Dd = {(s1, s2), (s2, s4), (s4, s1)}. We use v3 to denote the number
of d of order 3 with |Dd | > 1.

(3) If d is of order greater than 3 in G, then Dd = {(s1, s2), (s2, s4)} with s1 �= s4 and s4 −s1 �= d .
We use vn to denote the number of d of order greater than 3 with |Dd | > 1.
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There are v − 1 possible nonzero differences that may occur at least once. Of these, v2 + vn

may occur twice, and v3 may occur three times. By counting, we thus obtain the bound

v − 1 + v2 + 2v3 + vn � k(k − 1). (2)

Next we shall bound vn from above. For d �= 0 of order other than 2, we call s a middle element
with difference d , if {s −d, s, s +d} ⊆ S. Additionally, if s is a middle element with difference d ,
where d is of order 3, then s − d and s + d are also middle elements with difference d . Thus,
there are v3 differences d for which there are three middle elements with difference d and vn

differences d for which there is one middle element with difference d . Now, observe that if s is
a middle element with two differences d and d ′, then (s − d ′) + (s + d ′) = (s − d) + (s + d),
and we must have d = ±d ′; thus, each s ∈ S can be a middle element with at most two distinct
differences (d and −d). By calculating the total number of times an element of S occurs as a
middle element in two ways, we obtain 3v3 + vn � 2k. Substituting this into (2) gives us

v − 1 + v2 − v3 � k(k − 3). (3)

Now v2 is bounded by the number of elements of order 2 in G, that is v2 � v/n2(G) − 1, and
−v3 � 0. The theorem follows from substituting these into (3). �

The following result is given in [6]. Here it is an immediate corollary of the previous theorem.

Corollary 3. vγ (k) � k(k − 3).

Proof. For finite cyclic groups, v2 � 1, so from (3) we obtain

v � v − 1 + v2 � v − 1 + v2 − v3 � k(k − 3). �
From [2,4] we know that

(
k
2

)
� v(k) < k2 + O(k36/23) and k2 − O(k) < vγ (k) < k2 +

O(k36/23). For cyclic groups we thus know that the ratio α = v(k)/k2 tends to 1 as k tends
to infinity, but in the general Abelian case the upper and lower bounds are separated by a factor
of 2.

We examine the lower bound for v(k). If there would be some α < 1 such that v(k) < αk2

for infinitely many k, then we could establish that the lower bounds for v(k) and vγ (k) are
asymptotically different. After two lemmas, in Theorem 6 we find that the existence of infinitely
many such k would imply that for some Abelian group G′ there are infinitely many groups G of
the form G′ × Z

m
2 that satisfy |G| < αs(G)2.

Lemma 4. For a given α < 1, there are only finitely many Abelian groups G for which n2(G) >

α/(1 − α) and |G| � αs(G)2.

Proof. By assumption and Theorem 2, for the groups in question we must have

(
1 − 1

n2(G) + 1

)(
s(G)2 − 3s(G) + 2

)
< αs(G)2. (4)

Since 1 − 1/(n2(G) + 1) > α, there is some s0 such that (4) can only hold for s(G) � s0; there
is only a finite number of such Abelian groups. �
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Lemma 5. For a given α < 1, there are only finitely many Abelian groups G with n2(G) �
α/(1 − α), no direct Z2-factor, and |G| � αs(G)2.

Proof. Note that n2(G1 × G2) = n2(G2)n2(G2) for any Abelian G1 and G2. Since n2(Zn)

equals n/2 for even n � 2, and n for odd n > 2, we may observe that n2(Zn) � n1/2 for n > 2.
By induction on the number of direct cyclic factors, we have n2(G) � |G|1/2 for an Abelian
group G with no direct Z2-factors. Thus α/(1 − α) � n2(G) � |G|1/2 from which we have
|G| � α2/(1 − α)2; there are only finitely many such Abelian groups. �
Theorem 6. If for some α < 1 there are infinitely many k for which v(k) < αk2, then for some
Abelian group G′ there are infinitely many Abelian groups G of the form G′ × Z

m
2 for which

|G| < αs(G)2.

Proof. For each k with v(k) < αk2, choose a group G with s(G) = k and |G| � αk2. By
Lemma 4, only finitely many of these groups can have n2(G) > α/(1 − α). Split the remaining
infinitely many groups G with n2(G) � α/(1 − α) into equivalence classes such that two groups
G1 and G2 are in the same class, if G1 = G2 ×Z

m
2 for some m; note that n2(G1) = n2(G2). Thus

each equivalence class is a subset of {G′ ×Z
m
2 : m � 0} for some Abelian group G′ with no direct

Z2-factors and n2(G
′) � α/(1 − α), with a distinct G′ for each equivalence class. By Lemma 5

there are only a finite number of such G′, so there are only a finite number of equivalence classes,
and at least one of the classes must contain an infinite number of groups. �

By Theorem 6, to search for infinitely many Abelian groups with |G| < αs(G)2 for any α < 1
it suffices to search families of groups where each group in the family is of the form G′ × Z

m
2 for

some fixed Abelian group G′. Theorem 2 would seem to suggest that a G′ with a small n2(G)

would be the most promising. The following theorem shows that the groups Z4, Z8, and Z
2
4

need not be separately considered as G′, since using, respectively, Z
2
2, Z

3
2, and Z

4
2 instead allows

packings that are never worse.

Theorem 7. For all m � 0,

(1) s(Zm
2 × Z4) � s(Zm+2

2 ),

(2) s(Zm
2 × Z8) � s(Zm+3

2 ), and

(3) s(Zm
2 × Z4 × Z4) � s(Zm+4

2 ).

Proof. For the first case, let G = Z
m
2 × G′, where G′ = Z4, let k = 2, and define the bijec-

tion f : Zk
2 �→ G′ as f ([x1, x2]) = [2x1 + x2]. For notational convenience, we will represent an

x ∈ Z
m+k
2 as an ordered pair (x̄, ¯̄x) where x̄ ∈ Z

m
2 and ¯̄x ∈ Z

k
2, and an x ∈ G = Z

m
2 × G′ as an

ordered pair (x̄, ¯̄x) where x̄ ∈ Z
m
2 and ¯̄x ∈ G′. We define the bijection f̂ : Zm+k

2 �→ G by letting
f̂ ((x̄, ¯̄x)) = (x̄, f ( ¯̄x)).

We will show that f̂ −1 maps all S2-sets in G to S2-sets in Z
m+k
2 . By contraposition, we need to

show that f̂ maps all non-S2-sets in Z
m+k
2 to non-S2-sets in G. It suffices to investigate 4-element

subsets, since every set that is not an S2-set has a 4-element subset that is not an S2-set.

Let us choose any four-element non-S2-set S = {(ā, ¯̄a), (b̄, ¯̄b), (c̄, ¯̄c), (d̄, ¯̄d)} ⊆ Z
m+k
2 , where

{ā, b̄, c̄, d̄} ∈ Z
m and { ¯̄a, ¯̄b, ¯̄c, ¯̄d} ∈ Z

k (repetition of elements is possible here).
2 2
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Since S is not an S2-set, we must have ā + b̄ + c̄ + d̄ = 0 and ¯̄a + ¯̄b + ¯̄c + ¯̄d = 0. From the
structure of f̂ , it suffices to show that one of f ( ¯̄a)+f ( ¯̄b) = f ( ¯̄c)+f ( ¯̄d), f ( ¯̄a)+f ( ¯̄c) = f ( ¯̄b)+
f ( ¯̄d), and f ( ¯̄a) + f ( ¯̄d) = f ( ¯̄b) + f ( ¯̄c) holds for all ¯̄a, ¯̄b, ¯̄c, ¯̄d ∈ Z

k
2 satisfying ¯̄a + ¯̄b + ¯̄c + ¯̄d = 0.

This is easy to show: if two of ¯̄a, ¯̄b, ¯̄c, and ¯̄d are equal, the remaining two must also be equal, and

the condition clearly holds. If, on the other hand, {f ( ¯̄a), f ( ¯̄b), f ( ¯̄c), f ( ¯̄d)} = {0,1,2,3} ⊆ Z4,
then 0 + 3 = 1 + 2.

The second and third case can be proven similarly by letting G′ = Z8, k = 3, and
f ([x1, x2, x3]) = [4x1 + 2x2 + x3] for the second case, and G′ = Z4 × Z4, k = 4, and
f ([x1, x2, x3, x4]) = [2x1 + x2,2x3 + x4] for the third case. However, a somewhat more ex-
tensive case by case analysis is required in these cases. �

The next theorem shows that this proof idea cannot be extended to all Abelian 2-groups.

Theorem 8. Let G be an Abelian 2-group with a subgroup isomorphic to Z16. All bijections
f : Zm

2 �→ G, where m = log2 |G| map at least one non-S2-subset S ⊆ Z
m
2 to an S2-subset

f (S) ⊆ G.

Proof. Suppose the contrary, i.e., there is some f that maps all non-S2-sets in Z
m
2 to non-S2-sets

in G.
Let H denote a subgroup of G that is isomorphic to Z16. We denote the elements of H

with −8, . . . ,7 in the obvious way. In the following proof we consider the elements H and the
elements of Z

m
2 that f maps onto H . In our proof we will repeatedly make use of steps of

the following type: if a subset S = {a, b, c, d} ⊆ f −1(H) ⊆ Z
m
2 is not an S2-set, then f (S) ⊆

H must not be an S2-set. Thus, f (a) + f (b) = f (c) + f (d), f (a) + f (c) = f (b) + f (d),
or f (a) + f (d) = f (b) + f (c). By solving for f (d), it is straightforward to find that f (d) ∈
{f (a) + f (b) − f (c), f (a) + f (c) − f (b), f (b) + f (c) − f (a)}.

Choose b0, b1, and b2 such that f (b0) = 0, f (b1) = 1, and f (b2) = 2. Let b3 = b0 + b1 + b2.
Since {b0, b1, b2, b3} is not an S2-set in Z

m
2 , {0,1,2, f (b3)} must not be an S2-set in H , and we

get f (b3) ∈ {−1,1,3}. Since f is a bijection and b1 �= b3 (b3 = b0 + b1 + b2 and b0 �= b2), we
get f (b3) �= 1. Whether f (b3) equals −1 or 3, in each case, {b0, b1, b2, b3} map to consecutive
elements of H ; without loss of generality, let f (b3) = 3.

Choose b4 such that f (b4) = 4 and let b5 = b0 + b1 + b4 and b6 = b0 + b2 + b4. Since
{b0, b1, b4, b5} is not an S2-set, we must have f (b5) ∈ {−3,3,5}. As {b2, b3, b4, b5} is not an
S2-set, we get f (b5) ∈ {1,3,5}, and as b3 �= b5, it follows that f (b5) = 5.

Since {b0, b2, b4, b6} is not an S2-set, we similarly obtain f (b6) ∈ {−2,2,4}. By considering
{b1, b3, b4, b6} we similarly obtain f (b6) ∈ {0,2,6}. Since f −1(2) = b2 �= b6, there remains no
possible value for f (b6), a contradiction. �
4. Backtracking with isomorph rejection

Our algorithm for computing a maximum S2-set in an Abelian group is a backtrack search
with isomorph rejection. First an ordering of the elements of the Abelian group G is defined.
Starting from an empty set, at each level the algorithm tries adding, in turn, each element that
succeeds all elements previously in the set. If the newly added element would cause the property
that sums of pairs are distinct to be violated, or if the subset after augmentation is equivalent to a
subset that has been searched at another point in the search, then that search branch need not be
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pursued further. A record of the largest S2-set found so far is stored throughout the search, and
the largest such subset is output at the end.

To describe the isomorph rejection process, we define the canonical representative of an equiv-
alence class of subsets. Recall that E(G) is the group of equivalence mappings in G. Then E(G)

partitions the subsets of G into orbits. Once an ordering on the elements of G is defined, the
subsets in each orbit can be lexicographically ordered. The canonical representative of each or-
bit is the lexicographically first subset in that orbit; equivalently a subset S is canonical if no
ψ ∈ E(G) maps S to a set that precedes S in the lexicographical ordering:

iscanon(S): ∀ψ ∈ E, ψ(S) � S.

It can be shown that if a nonempty subset S is a canonical representative of its equivalence
class, then the subset S \ {max(S)} is also a canonical representative of its equivalence class.
Therefore our algorithm constructs all canonical representatives via a path that consists of canon-
ical representatives only, and throughout the search we may discard all augmentations of the
current subset that are not canonical representatives of their equivalence class. Search algorithms
with such structure are known as orderly algorithms [8].

Since the automorphism group of an Abelian group may be very large, we do not carry out
a complete equivalence test. Our algorithm still constructs the canonical representatives, but it
will also construct some subsets that are equivalent to subsets considered in other branches of
the search.

We start by choosing an arbitrary element g of maximum order in G. We then compute a set T

of automorphisms of G such that for each element s ∈ G of maximum order, T will contain an
automorphism that maps s to g. Throughout the search, we only consider equivalence mappings
of the form ψ(x) = α(x) + b, where α ∈ T and b ∈ G. It may be shown that |T | � φ(|G|),
where φ is the Euler totient function, and equality holds for cyclic G; therefore we expect our
isomorph rejection to exhibit at least comparable performance with non-cyclic Abelian groups
as with cyclic groups.

As an additional simplification aiming to reduce computation time we choose a particular or-
dering of the elements of G and consider only an appropriate subset of the equivalence mappings
for isomorph rejection. For ordering the group elements, we consider them as ordered tuples and
order the elements in the lexicographical order of the tuples with the exception that the element g

precedes all other elements except the identity element. In testing canonicity of a subset S, we
only consider those equivalence mappings that map an ordered pair of elements (s1, s2) in the
current subset S to (0, g). Such an equivalence mapping exists whenever s2 − s1 is an element of
maximum order in G, and whenever S contains such a pair, the canonical subset must contain the
two elements 0 and g. When S contains no pair whose difference would be of maximum order
in S, this results in further missed opportunities for pruning the search, but although we have not
carried out explicit tests, we expect the faster equivalence testing to compensate for this.

It seems to be an open question whether every maximum S2-set in a finite Abelian group G

contains two elements whose difference is of maximum order in the group, or even whether
in every finite Abelian group |G| there is a maximum S2-set with such two elements. If we
restrict ourselves to S2-sets where there are no such two elements, we can subtract the number
of elements of maximum order in |G| from the left-hand side of (2), considerably tightening the
bound in Theorem 2. The number of elements of maximum order in a finite Abelian group G

can be shown to be at least φ(|G|), and φ(|G|) is relatively large compared with |G| when |G|
is the product of a small number of prime powers. Curiously, in the context of an analogous
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Table 1
Orders that uniquely determine s(G)

s(G) |G|
2 2
3 3, . . . ,5
4 6, . . . ,10
5 11, . . . ,15, 17, . . . ,18
6 19, . . . ,23, 25, . . . ,27
7 28, . . . ,39, 41
8 42, . . . ,51, 53, . . . ,55
9 56, . . . ,71, 75

10 73, . . . ,74, 76, . . . ,79, 82, . . . ,95
11 97,101, . . . ,107, 109, . . . ,113, 115, . . . ,116, 118, . . . ,119
12 114, 122, . . . ,124, 126, . . . ,146
13 147, . . . ,149, 151, . . . ,161, 163, . . . ,177, 179, 181
14 178, 182
15 183

Table 2
Groups whose order does not uniquely determine s(G)

|G| s(G) : G s(G) : G
16 5 : Z16, Z2 × Z8 6 : Z

4
2, Z

2
2 × Z4, Z

2
4

24 6 : Z2 × Z4 × Z3, Z24 7 : Z
3
2 × Z3

40 7 : Z
3
2 × Z5 8 : Z2 × Z4 × Z5, Z40

52 8 : Z52 9 : Z
2
2 × Z13

72 9 : Z
3
2 × Z

2
3, Z8 × Z

2
3, Z

3
2 × Z9, Z2 × Z4 × Z

2
3,

Z2 × Z4 × Z9

10 : Z72

80 9 : Z
4
2 × Z5 10 : Z80, Z

2
2 × Z4 × Z5, Z2 × Z8 × Z5, Z

2
4 × Z5

81 9 : Z
4
3, Z

2
3 × Z9 10 : Z3 × Z27, Z81, Z

2
9

96 10 : Z
5
2 × Z3, Z

3
2 × Z4 × Z3, Z2 × Z

2
4 × Z3,

Z4 × Z8 × Z3

11 : Z2 × Z16 × Z3, Z
2
2 × Z8 × Z3, Z96

98 10 : Z2 × Z
2
7 11 : Z98

99 10 : Z
2
3 × Z11 11 : Z99

100 10 : Z
2
2 × Z

2
5 11 : Z

2
2 × Z25, Z100, Z4 × Z

2
5

108 10 : Z
2
2 × Z

3
3 11 : Z

2
2 × Z27, Z

2
2 × Z3 × Z9, Z108, Z4 × Z

3
3,

Z4 × Z3 × Z9
117 11 : Z117 12 : Z

2
3 × Z13

120 11 : Z
3
2 × Z3 × Z5 12 : Z2 × Z4 × Z3 × Z5, Z120

121 11 : Z
2
11 12 : Z121

125 11 : Z5 × Z25, Z
3
5 12 : Z125

150 12 : Z2 × Z3 × Z
2
5 13 : Z150

162 12 : Z2 × Z
4
3 13 : Z2 × Z3 × Z27, Z2 × Z

2
9 Z2 × Z

2
3 × Z9,

Z162,
180 13 : Z

2
2 × Z

2
3 × Z5, Z

2
2 × Z9 × Z5 14 : Z180, Z4 × Z

2
3 × Z5

covering problem, every sum cover of Zn for n < 2 · 3 · 5 · 7 · 11 = 2310 is equivalent to one
which contains 0 and 1; see [7] and its references.



152 H. Haanpää, P.R.J. Östergård / Journal of Number Theory 123 (2007) 144–153
Table 3
The values of v(k) for k � 15

k v(k) G Sample maximum packing

2 2 Z2 {0, 1}
3 3 Z3 {0, 1, 2}
4 6 Z6 {0, 1, 2, 4}
5 11 Z11 {0, 1, 2, 4, 7}
6 16 Z

4
2 {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 1)}

6 16 Z
2
2 × Z4 {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (1, 0, 1), (1, 1, 3)}

6 16 Z
2
4 {(0, 0), (0, 1), (0, 2), (1, 0), (2, 3), (3, 0)}

7 24 Z
3
2 × Z3 {(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1), (0, 0, 0, 2), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 0)}

8 40 Z2 × Z4 × Z5 {(0, 0, 0), (0, 1, 1), (0, 0, 2), (0, 2, 1), (0, 3, 3), (0, 3, 4), (1, 0, 0), (1, 2, 0)}
8 40 Z40 {0, 1, 5, 7, 9, 20, 23, 35}
9 52 Z

2
2 × Z13 {(0, 0, 0), (0, 1, 1), (0, 0, 1), (0, 0, 2), (0, 1, 4), (0, 1, 7), (1, 0, 0), (1, 0, 4), (1, 0, 9)}

10 72 Z72 {0, 1, 2, 4, 7, 13, 23, 31, 39, 59}
11 96 Z2 × Z16 × Z3 {(0, 0, 0), (0, 1, 1), (0, 0, 1), (0, 0, 2), (0, 2, 0), (0, 4, 0), (0, 8, 0), (0, 11, 0), (1, 0, 0),

(1, 10, 1), (1, 13, 2)}
11 96 Z

2
2 × Z8 × Z3 {(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1), (0, 0, 4, 0), (0, 0, 7, 2), (0, 1, 0, 0), (0, 1, 3, 0),

(0, 1, 6, 0), (1, 0, 0, 2), (1, 0, 2, 0), (1, 0, 5, 1)}
11 96 Z96 {0, 1, 2, 4, 10, 16, 30, 37, 50, 55, 74}
12 114 Z114 {0, 1, 4, 14, 22, 34, 39, 66, 68, 77, 92, 108}
13 147 Z147 {0, 1, 2, 4, 7, 29, 40, 54, 75, 88, 107, 131, 139}
13 147 Z3 × Z

2
7 {(0, 0, 0), (1, 0, 1), (0, 0, 1), (0, 0, 4), (0, 1, 0), (0, 2, 0), (0, 4, 2), (0, 5, 0), (1, 1, 2),

(1, 6, 4), (2, 0, 1), (2, 3, 2), (2, 4, 4)}
14 178 Z178 {0, 1, 2, 4, 16, 51, 80, 98, 105, 111, 137, 142, 159, 170}
15 183 Z183 {0, 1, 2, 14, 18, 21, 27, 52, 81, 86, 91, 128, 139, 161, 169}

5. Conclusions

We calculated the maximum S2-set in each finite Abelian group up to order 183 using the
backtrack procedure described. The results for the cyclic groups are taken from an earlier study
reported in [6]. For each group, the size of the maximum such subsets is summarized in Tables 1
and 2. The orders for which |G| determines s(G) are listed in Table 1, and the groups for which
|G| alone does not determine s(G) are listed in Table 2.

Of particular interest are the Abelian groups of least order that admit an S2-set with a given
number of elements. These, along with sample maximum packings, are given in Table 3. Even
though Theorem 2 would appear to suggest that groups with many elements of order 2 could
allow tight packings, the computational results give this hypothesis only weak support: while
v(k) < vγ (k) for k ∈ {6,7,9}, for all other 2 � k � 15 we have v(k) = vγ (k).

It remains an open problem whether it would be possible to find an infinite sequence of k

for which v(k) < αk2 for some α < 1. We have not been able to answer this question, but we
have shown that if there is such a sequence, then there must be an infinite family of the form
F = {G′ × Z

m
2 : m ∈ M ⊆ N}, where G′ is some Abelian group, such that |G| < αs(G)2 for each

group G in F .

References

[1] A.E. Brouwer, Bounds on the size of linear codes, in: V.S. Pless, W.C. Huffman (Eds.), Handbook of Coding Theory,
Elsevier, Amsterdam, 1998, pp. 295–461.



H. Haanpää, P.R.J. Östergård / Journal of Number Theory 123 (2007) 144–153 153
[2] A.E. Brouwer, J.B. Shearer, N.J.A. Sloane, W.D. Smith, A new table of constant weight codes, IEEE Trans. Inform.
Theory 36 (1990) 1334–1380.

[3] R.L. Graham, N.J.A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Inform. Theory 26 (1980) 37–43.
[4] R.L. Graham, N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Methods 1 (1980)

382–404.
[5] R.K. Guy, Unsolved Problems in Number Theory, second ed., Springer, New York, 1994.
[6] H. Haanpää, A. Huima, P.R.J. Östergård, Sets in Zn with distinct sums of pairs, Discrete Appl. Math. 138 (2004)

99–106.
[7] R.E. Jamison, The Helly bound for singular sums, Discrete Math. 249 (2002) 117–133.
[8] R.C. Read, Every one a winner, or how to avoid isomorphism search when cataloguing combinatorial configurations,

Ann. Discrete Math. 2 (1978) 107–120.
[9] K. Shoda, Über die Automorphismen einer endlichen abelschen Gruppe, Math. Ann. 100 (1928) 674–686.


