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Instructor: Kalle Palomäki, D.Sc. (Tech.), Helsinki University of Technology



HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF
Faculty of Information and Natural Sciences MASTER’S THESIS
Degree Programme of Computer Science and Engineering

Author: Heikki Kallasjoki
Title of thesis: Methods for Spectral Envelope Estimation

in Noise Robust Speech Recognition

Date: August 26, 2009 Pages: 10 + 62

Professorship: Computer and Information Science Code: T-61

Supervisor: Professor Erkki Oja
Instructor: Kalle Palomäki, D.Sc. (Tech.)

In real world applications speech recognition systems are challenged by a va-
riety of noisy environments, where prior knowledge of the type of noise may
not be available. The short-time spectral envelope of a speech signal em-
bodies the information relevant to the linguistic message communicated with
the speech in a form that is more robust against noise than the underlying
spectrum. Spectral envelope estimates can therefore be exploited to produce
feature representations for speech signals that are less affected by environ-
mental noise.

In this work, different spectral envelope estimation methods are evaluated in
the feature extraction stage of a large vocabulary continuous speech recogni-
tion system. Recognition error rates for speech recorded in real-world noisy
environments are compared between feature representations based on conven-
tional, weighted and a recently proposed stabilized weighted linear predictive
spectral envelope estimate, as well as FFT and other baseline methods. Meth-
ods for automatically adapting the parameters of the stabilized weighted
linear prediction method to the analyzed audio data are also investigated.
Significantly better recognition results are obtained using the systems based
on conventional and weighted linear predictive spectral envelope estimates
compared to the baseline FFT system, when recognizing noisy speech using
acoustic models trained with clean speech.
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Puheentunnistusjärjestelmien käytännön sovellusten on toimittava haasteelli-
sissa ympäristöissä, joissa tietoa mahdollisten häiriöäänien laadusta ei välttä-
mättä ole saatavilla ennakkoon. Puhesignaalin lyhytaikaisen spektrin verho-
käyrä sisältää puheen välittämään viestiin liittyvän tiedon muodossa, joka sie-
tää kohinaa paremmin kuin sen perustana oleva spektri. Malleja verhokäyräs-
tä voidaankin siten käyttää tuottamaan puhesignaaleille piirre-esitystapoja,
joihin ympäristöstä peräisin olevat häiriöäänet vaikuttavat vähemmän.

Tässä työssä eri menetelmiä verhokäyrän mallintamiseen tarkastellaan osana
laajan sanavaraston jatkuvan puheen tunnistusjärjestelmän piirreirroitusta.
Tunnistusvirheiden määrää todellisissa kohinaisissa ympäristöissä nauhoite-
tulle puheelle vertaillaan eri piirre-esitystapojen välillä. Vertailtavat piirteet
perustuvat perinteiseen, painotettuun ja hiljattain esiteltyyn stabiloituun pai-
notettuun lineaariprediktioon. Myös menetelmiä stabiloidun painotetun li-
neaariprediktion parametrien automaattiseen mukautukseen analysoitavalle
äänisignaalille sopivaksi tutkitaan. Merkittävästi parempia tunnistustulok-
sia saavutetaan perinteiseen ja painotettuun lineaariprediktioon perustuvia
verhokäyrän malleja käyttävillä piirteillä, kun tunnistettavana on kohinaista
puhetta ja käytetään puhtaalla puheella opetettuja akustisia malleja.

Avainsanat: automaattinen puheentunnistus, piirreirroitus, spektrin
verhokäyrän mallinnus, painotettu lineaariprediktio
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Chapter 1

Introduction

Speech is for the most a natural means of communication, and certainly
it would be advantageous if we could use spoken language as the medium
also when interfacing with computer systems. Automatic speech recognition
(ASR) systems have therefore been developed to enable computers to algo-
rithmically convert a digital audio signal to text. So far these systems have
mostly been confined to uses where the recognition vocabulary is limited,
such as command-based user interfaces for different devices, but research
continues on the challenging task of recognizing fluent speech with unlimited
vocabulary.

As speech has evolved for communication between humans, we have a natural
aptitude for it, with the capability of adapting to different speakers and au-
ditory environments. Automatic speech recognition systems, however, have
difficulties dealing with changes to the speaker or the environment. This
poses a problem for real-world applications such as mobile computing, where
a speech recognition system is used in a variety of noisy environments, with
no prior knowledge of potential noise types available.

Computer processing of speech utilizes digitized audio signals. The digitized
audio waveform itself, however, is not suitable for speech recognition use
directly, as the information about the spoken words it contains is not in an
easily extractable form. In the feature extraction stage the audio signal is
therefore transformed into a sequence of feature vectors designed to capture
the salient information related to the text content in a usable way.

In this work, the focus is on a specific class of methods for enhancing noise
robustness in speech recognition: the use of spectral envelope estimates in the
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CHAPTER 1. INTRODUCTION 2

feature extraction stage, motivated by the fact that the short-time spectral
envelope captures the information relevant to the text content of the speech
in a more noise-robust way than the underlying spectrum. Specifically, we
have chosen to evaluate the speech recognition performance of feature extrac-
tion systems based on conventional [29], weighted [26] and recently proposed
stabilized weighted [28] linear prediction signal modeling methods. The per-
ceptual linear prediction [15] method, as well as various methods based on
the minimum variance distortionless response [10, 31, 52] are also considered.
The popular mel-frequency cepstral coefficient [8] feature extraction scheme
is used as a baseline reference for all the methods.

The primary goal of the research on which this thesis is based was to evaluate
the suitability of the stabilized weighted linear prediction (SWLP) method
for speech recognition tasks, in collaboration with the Department of Sig-
nal Processing and Acoustics of Helsinki University of Technology where the
method was originally developed. To this end, a set of speech recognition
experiments were designed and performed. In this thesis, the results of these
experiments as well as our further research on the adaptive selection of opti-
mal parameters for the SWLP algorithm are reported.

The speech recognition experiments are carried out using the large vocabu-
lary continuous speech recognition (LVCSR) system developed in the Adap-
tive Informatics Research Centre at Helsinki University of Technology. The
recognizer is a state of the art hidden Markov model based system, using
Gaussian mixture models and Gamma distribution duration modeling for
the acoustic models, a variable-length sub-word n-gram language model and
a single-pass time-synchronous Viterbi decoder [7, 17, 18, 36, 37, 43]. The
SPEECON Finnish language corpus [20] was used as the source for real-world
noisy speech for training and recognition.

The structure of the thesis is as follows. An introduction to the topics of
automatic speech recognition and spectral envelope estimation is given in
Chapter 2. The feature extraction process and the evaluated spectral en-
velope estimation methods are presented in more detail in Chapter 3. In
Chapter 4 a series of speech recognition experiments are performed using the
methods, and Chapter 5 discusses the results of these experiments. Chapter
6 concludes the thesis by considering the stated research questions in light of
the body of this work.



Chapter 2

Automatic speech recognition

Large vocabulary continuous speech recognition (LVCSR) is one of the most
challenging and fundamental tasks in the field of automatic speech recog-
nition. The large vocabulary size makes it difficult to distinguish between
individual words, many of which may have very similar phonetic structure.
In addition, it is more difficult to construct a sufficiently large set of training
data in order to have representative samples available for each word. In con-
tinuous, fluent speech there are not always pauses to indicate word borders,
and the amount of possible interpretations for the audio data grows rapidly,
making it harder to find the correct one. Coarticulation between words can
also cause significant changes in the acoustic representation of a single word.
In this section, the general structure of an LVCSR system is described. For
the most part, the discussion is based on [9, 14, 19, 39].

The fundamental task of a speech recognition system is to find the word
sequences that are the most likely to have produced the observed acoustic
information. Figure 2.1 illustrates the speech recognition process. The initial
observed audio signal waveform x(n) is not suited for speech recognition as-
is, as the acoustic information related to the spoken words is represented in
a complex way, and the signal also contains information irrelevant from a
speech transcription point of view. The audio signal is therefore transformed
to a sequence of feature vectors S = {s(τ)}, where s(τ) are the features
observed at a discrete time τ , using a suitable time step so that the spectral
properties of speech are approximately stationary for each frame.

The task of the decoder is to find the most likely word sequence Ŵ based
on the posterior probability P (W |S), the conditional probability of the word
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CHAPTER 2. AUTOMATIC SPEECH RECOGNITION 4

Figure 2.1: The automatic speech recognition process

sequence W given the observed speech features S. Acoustic models are used
to estimate the probability P (S|W ) of observing the particular sequence of
feature vectors, given the word sequence W . The prior probability P (W )
for the word sequence is given by the language model. The most likely
word sequence Ŵ can then be obtained via Bayes’ theorem from the model
probabilities as [9]

Ŵ = arg max
W

P (W |S) = arg max
W

P (S|W ) P (W ). (2.1)

Each step is described in more detail in sections 2.1 to 2.4.

2.1 Feature extraction

The task of the feature extraction stage is to capture from the acoustic sig-
nal the information relevant for discriminating between the spoken words
or phonemes, while discarding any irrelevant information, such as speaker-
dependent variation and the prosodic content of speech. As speech has
evolved as a communication mechanism between humans, studies of the traits
of the human speech production and auditory system have been used as
guidance when developing feature extraction methods. Successful feature ex-
traction methods have usually included these psychoacoustical considerations
(e.g. [8, 10, 15], among others).

Due to physical limitations of the human speech production system, the
rate of change of the phonetic features of speech is limited. The frequency
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components of the speech signal are therefore nearly stationary over a short
period of time, and the short-time frequency spectrum is commonly used as
the basis for the feature vector representation for speech.

Mel-frequency cepstral coefficients (MFCCs) [8] are a popular choice for a
feature representation in ASR systems. To approximate the spectral resolu-
tion of the human hearing, the nonlinear mel frequency scale is used. The
speaker-dependent variation is also partially suppressed by the MFCC fea-
tures. A thorough description of the MFCC feature extraction system used
in this work is given in Section 3.2.

The upper envelope of the short-time spectrum contains the information
relevant to the spoken phonemes, and can therefore be used to construct
more noise-robust speech features. The topic of spectral envelope estimation
is discussed in Section 3.1, and the estimation methods used in this work in
sections 3.3 to 3.7.

2.2 Acoustic modeling

Phonemes are the basic units used to construct words in spoken language,
analogously to the role of letters in written text. To estimate the probabil-
ity of observing a sequence of speech features, given a sequence of words,
we have to establish a correspondence between the phonemes of the word
sequence and the individual feature vectors. However, the temporal dura-
tion region of a single phoneme will cover a chain of feature vectors, and
the phonemes themselves have an internal time structure. Furthermore, the
pronunciation of a phoneme depends on its context of adjacent phonemes,
causing a coarticulation effect. The acoustic models need to account for all
these complications. Hidden Markov models (HMM) are the predominant
method for acoustic modeling in modern ASR systems [13].

A discrete-time first order Markov chain is a statistical system, which at
any time is in one of a set of N states, and can change its state at discrete
time steps. Denoting the state of the system at time t as qt, the probability
P (qt = Si) for the system to be in a particular state Si at a given time
depends only on the previous state,

P (qt = Si|qt−1 = Sj, qt−2 = Sk, . . . ) = P (qt = Si|qt−1 = Sj). (2.2)

The system is therefore perfectly described by the static state transition
probabilities, denoted aij, between the states.
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/a/

1 2 3

Figure 2.2: Allowed transitions in a three-state HMM for the phoneme /a/

In the hidden Markov model case, the model states themselves are not ob-
served. Instead, the system creates a sequence of observations O = {o(τ)},
based on per-state probability distributions called observation probabilities
for the observed values, bi(o). The same particular observation can be gen-
erated by different model states, each of which has a separate observation
probability for it. When used in acoustic modeling for speech recognition,
the observations generated by an HMM correspond to the feature vectors
of recorded speech, while the state sequence corresponds to the sequence of
phonemes or other acoustic units, with single phonemes often modeled with
multiple states. The task is then to find the underlying state trajectory
responsible for producing the observed features.

In general, the states and the allowed transitions between states are fixed
beforehand for the HMM, and in model training simply the state transition
and observation probabilities are estimated. As a single HMM for a phoneme
cannot capture the context-dependent variation in pronunciation, triphones
are often chosen as the basic unit for modeling in large vocabulary systems
[32], while for limited vocabularies word-based models can be used. Triphone
models model the possible variants of a single phoneme with different preced-
ing and following phonemes separately. The internal structure of a phoneme
is typically modeled as a chain of 3 to 5 HMM states, with the only allowed
state transitions being back to the current state and forward to the next state
in the chain [13], as seen in figure 2.2.

As the modeled speech features are continuous, the observation probabilities
of the HMM states are described by probability density functions. Most com-
monly a mixture of Gaussian distributions is used to model the speech feature
space. For a Gaussian mixture model (GMM), the observation probabilities
are defined as [38]

bi(o) =
K

∑

k=1

cik N (o|µik,Σik), (2.3)

where µik and Σik are the mean vector and covariance matrix for the kth
Gaussian distribution of the observation probabilities for state Si. Separate
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duration models can also be associated with the HMM states [25].

To use a trained HMM in speech recognition, the likelihood that the model
produced a given sequence of observations, given the known state transition
and observation probabilities, needs to be estimated. It is not possible to
simply select the states that individually are most likely to have produced
the observations, as the resulting state sequence can contain state transitions
that are not allowed, with a transition probability aij of zero. The Viterbi
algorithm [45] can be used to find the most likely path, that is, the state
sequence that optimizes the joint probability of the state transitions and
observations. The path probability can then be used as the likelihood of the
HMM to produce the observed features.

In training the HMM, the state sequence and the sequence of observations
O are known, and the HMM model state transition probabilities aij and
observation probabilities bi(o) need to be estimated. Denoting the HMM
parameters with λ, maximizing the probability P (O|λ), the likelihood of the
training observations, leads to a model that produces high likelihood scores
for the training data. No analytical optimal solution for the parameters is
known, but iterative solutions are possible. In the Baum-Welch algorithm,
a transformation T presented in [3] with the property that P (O|T (λ)) ≥
P (O|λ) for any HMM parameters λ is used with an iterative expectation-
maximization (EM) algorithm to arrive at a reasonable solution for the model
parameters.

The HMM approach has achieved wide popularity in speech recognition, even
though the Markov assumption is unrealistic for speech signals [14]. The ba-
sic training scheme is also based solely on increasing the likelihood of correct
models, with no consideration of the scores of incorrect models. Discrimina-
tive training [14] can alleviate this problem, though a detailed description is
outside the scope of this work. For limited vocabularies, template matching
systems using dynamic time warping can also be used.

2.3 Language modeling

In large vocabulary speech recognition, the acoustic differences between words
are not sufficient for reliable recognition. Consider the English words“flower”
and “flour”, which have a similar pronunciation. Contextual information
about the surrounding text can, however, often be used to find out which
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interpretation is more likely. For example, if we have successfully recognized
the previous word as “beautiful”, the whole utterance is more likely to be
“beautiful flower”. To provide this kind of insight, language models are used.

Formally, the language model can provide a prior probability P (W ) for the
likelihood of a given word sequence W = {w1, . . . , wK}. Typically the se-
quence probability is defined as a product of the conditional probabilities of
individual words, [19]

P (W ) =
K
∏

k=1

P (wk|w1, . . . , wk−1), (2.4)

where the probability of each word depends on the preceding words in the
sequence. The available context is shorter at the beginning of the sequence,
and usually a special “start of sentence” token is explicitly added as the first
word to provide some context for the first actual content word of the sequence.

N-gram models are a class of language models commonly used in LVCSR
systems. The assumption made by an n-gram model of order N is that the
probability of a word depends only on the N − 1 preceding words, [19]

P (W ) =
K
∏

k=1

P (wk|wk−N+1, . . . , wk−1). (2.5)

In general, the probabilities are estimated based on the relative frequencies
of particular N word sequences in a large training corpus of textual data.

To model far-reaching dependencies, long n-grams have to be used. However,
for large vocabularies the amount of possible n-grams rises rapidly as the or-
der of n-grams is increased, and it is not possible to provide a training corpus
containing examples of all valid n-grams. Approaches for model smoothing,
such as back-off and interpolation, can be used to lessen the impact of the
sparsity of the training data [6].

For agglutinative languages such as Finnish, the number of possible inflec-
tions makes it difficult to model the language successfully with a word-based
model. Sub-word units can be used for better model coverage, and the use of
units resembling linguistic morphemes is especially effective [17]. An unsu-
pervised method called Morfessor for extracting a lexicon of morpheme-like
units from a text corpus was presented in [7]. The shorter unit size, however,
requires the use of longer n-grams than with a word-based model in order to
capture an equally long context. Model pruning or growing methods can be
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used to build variable-length n-gram models that include frequently occurring
longer n-grams without needlessly expanding the model size [43].

2.4 Decoding

The task of the decoder is to find the optimal word sequence Ŵ of Equation
(2.1) in a computationally efficient way. A number of different solutions to
the problem have been used in LVCSR systems [2].

The information provided by the acoustic and language models can be com-
bined into a search network [19]. The HMM chains corresponding to indi-
vidual phonemes can be combined to form models of entire words, and the
word network themselves combined using the language model probabilities
to form the complete utterance. The decoding task then is to find the word
sequence corresponding to the best path through the search network.

The search network can be represented as a tree structure, where alterna-
tive recognition hypotheses starting with the same prefix share the same
tree branch. In large vocabulary speech recognition, the tree of possible hy-
potheses is extremely large, and needs to be built up dynamically as needed.
Efficient pruning of unlikely hypotheses from the search tree is also required
for acceptable performance. For the one-pass Viterbi beam search decoder
used in this work, the pruning is performed by discarding at each time step
all paths whose likelihood differs more than a given threshold from the cur-
rent best path. Alternative approaches to the decoding problem are certainly
possible and can be found for example in [2].

The decoder used in this work utilizes a single-pass time-synchronous Viterbi
beam search algorithm [36]. The use of sub-word morpheme-like units in the
language model affects the design of the decoder, as word breaks need to be
modeled explicitly and the search space depends on the way words are split
into morphs [18].



Chapter 3

Spectrum estimation methods

in speech feature extraction

The theoretical background for the spectral envelope estimation methods
investigated in this thesis is presented in this chapter.

The conventional MFCC feature extraction process is described in detail in
Section 3.2. Section 3.3 presents the mathematical background for linear pre-
diction necessary for the discussion on perceptual linear prediction in Section
3.4 and weighted linear prediction in Section 3.5. Finally, the alternative min-
imum variance distortionless response (MVDR) spectral envelope estimation
method is introduced in Section 3.7.

3.1 Spectral envelope estimation

Consider the following simplified model for voiced speech production, where
the speech signal s(n) is formed as the convolution [9]

s(n) = e(n) ∗ θ(n), (3.1)

where e(n) is the excitation source and θ(n) the vocal tract response. For
speech recognition, extracting the vocal tract response and discarding the
excitation information from the resulting signal is useful, as the information
relevant for distinguishing the spoken words is mainly in the vocal tract
response, while the excitation source primarily contains the irrelevant pitch
information.

10
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In the spectral domain, the convolution of Equation (3.1) is represented as
the multiplication of the two spectra. In this model, the excitation source
resembles a periodic pulse train, causing the comb-like harmonic structure of
the resulting spectrum, while the vocal tract resonances provide the contour
of the smooth upper envelope of the spectrum [14]. It therefore follows that
modeling the upper envelope amounts to recovering the vocal tract informa-
tion, while discarding the excitation source.

A typical spectrum estimated with the FFT algorithm for a voiced speech
waveform is shown in Figure 3.1, along with a spectral envelope estimate.
The strongest resonances of the vocal tract are called formants, and they are
the primary means of distinguishing between vowels. The formant frequencies
can be seen in the figure as peaks in the spectral envelope.

In this work, spectral envelope estimation methods based on linear prediction
(sections 3.3, 3.4, 3.5) and minimum variance distortionless response model-
ing (Section 3.7) are considered. The cepstral smoothing performed by the
mel-frequency cepstral coefficient feature extraction process (Section 3.2) can
also be seen as a spectral envelope estimation method. Alternative methods
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Figure 3.1: Speech spectrum for phoneme /u/
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are presented in [41], among others.

3.2 Mel-frequency cepstral coefficient features

Mel-frequency cepstral coefficients (MFCC) are a standard feature repre-
sentation used for speech recognition purposes. It has several advantages
over simpler solutions such as the linear frequency cepstrum. As it is based
on the psychoacoustic mel scale, it approximates the frequency-sensitive
spectral resolution of human hearing, suppressing insignificant changes in
high-frequency bands of the spectrum. A reasonably small number of mel-
frequency cepstral coefficients also capture well the phonetically significant
information, while discarding speaker-dependent variation. [8]

Cepstral processing of speech is motivated by the voiced speech production
model presented in Section 3.1. According to the model, the spectrum of
speech is formed as the multiplication of the spectra of the excitation source
and the vocal tract response. Correspondingly, the logarithmic spectrum is
simply the sum of the two components. In the cepstrum, which is obtained as
the inverse Fourier transform of the log-magnitude spectrum, the two com-
ponents are still linearly combined. However, as the excitation spectrum is
characterized by pulse-like fast variation in the spectral values, while the
vocal tract response is responsible for the smooth envelope of the spectrum
[9], the Fourier transform separates the components, as the vocal tract re-
sponse information is encoded mainly by the low-index values of the cepstral
“quefrency” axis, while the excitation information is in the “high-quefrency”
area.

Mel scale is a perceptual, nonlinear frequency scale corresponding to the per-
ceived frequency, as defined by the following measurement [9, 24]. Given an
arbitrary reference frequency of 1 kHz, designated as 1000 mel units, human
listeners were asked to alter it so that it was a given fraction or multiple of
the original frequency. The resulting physical frequencies where then labeled
with the corresponding fraction or multiple of 1000 mels. The frequency
scale constructed by this experiment is approximately linear below 1 kHz
and logarithmic above. Various approximations of the mel scale have been
used in speech recognition systems, either by using explicit linear spacing be-
low a threshold frequency and logarithmic above it, or a simpler logarithmic
approximation.
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Figure 3.2: The MFCC feature extraction process

The MFCC feature extraction process is shown in Figure 3.2. After an ini-
tial high-pass pre-emphasis filter, short-time spectrum analysis is done by
windowing the signal into frames. The linear spectrum is converted to the
logarithmic mel-scale spectrum, and the discrete cosine transform (DCT) is
performed to derive the cepstral coefficients. Finally, the cepstral coefficient
vectors are truncated to the desired length.

The mel spectrum calculation is based on an estimate of the short-time spec-
trum of the analyzed audio signal. For conventional MFCC features, this
estimate is obtained as the magnitude of the Fourier transformation of a
short time window. However, we can easily construct other MFCC-based
feature extraction systems by simply replacing the spectrum estimate with a
suitable alternative. Most of the systems evaluated in chapter 4 fall into this
category.

A pre-emphasis high-pass filter is often applied to the audio signal before any
further processing. Typically a first-order finite impulse response (FIR) filter
of the form

H(z) = 1 − αz−1 (3.2)

is used, with the α parameter commonly having values in the range from 0.9
to 1 [9]. The pre-emphasis filtering removes any DC offsets from the speech
signal [14] and equalizes the typically downward slope of the voiced speech
spectrum at high frequencies [19], in order to give equal importance to all
spectral regions. The typical shape of a voiced speech spectrum can be seen
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for example in Figure 3.1.

To obtain estimates of the short-time spectrum, the audio signal is divided
into short, overlapping frames. Chosen frame length varies from 10 to 25 mil-
liseconds, and the amount of overlap from 50 % upwards. To avoid artifacts
caused by discontinuities at the edges of the frame, the frames are windowed
with a suitable function, such as the Hamming window function. [14, 39]

In standard MFCC processing, the spectrum estimate is based on the Fourier
transformation. Combined with the windowing, we get the short-time dis-
crete Fourier spectrum S(k, τ) of frame τ as [33]

S(k, τ) =
N−1
∑

n=0

w(n) s(n, τ) e−jkn 2π
N , (3.3)

where w(n) is the window function, s(n, τ) the unwindowed audio signal
portion for frame τ , and N the frame length in samples. In real applications,
the Fourier transform is generally computed with the more computationally
efficient FFT algorithm.

The frequency-dependent spectral resolution [14] of the human hearing is
approximated by the MFCC representation using a mel-filterbank built of
logarithmically spaced triangular bandpass filters, applied to the bins of the
discrete spectrum S(k, τ). The output energies of the filters form the mel-
scale spectral representation. As the differences in the detailed definition
of the mel scale are not significant for speech recognition purposes [8], in
this work we use a filterbank of 23 logarithmically spaced filters, with center
frequency fi (in Hz) of the ith filter given by

fi =
1400

2

[

(

1 +
R

1400

)i/24

− 1

]

, i ∈ [1, 23] (3.4)

where R is the sampling rate (in Hz). The filterbank for the 16 kHz sampling
rate is shown in Figure 3.3.

The discrete cosine transform (DCT) is used to convert the logarithm of the
mel-scale spectrum to a cepstral form. For a given frame τ , denoting the
output energy of the kth filterbank output by Mk,τ , we get the ith cepstral
coefficient c(i, τ) with [8]

c(i, τ) =
23

∑

k=1

log |Mk,τ | cos
(

i (k − 0.5)
π

23

)

(3.5)
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Figure 3.3: The mel-scale filterbank used in MFCC computation

Typically approximately twelve [19] first cepstral coefficients are used in
the feature vector, as the higher-order coefficients mainly encode speaker-
dependent information [8]. Application of the DCT to the mel spectrum re-
sults in nearly decorrelated cepstral values. This makes it possible to model
them using Gaussian distributions with diagonal covariance matrices, which
makes the task of acoustic modeling with hidden Markov models less complex
[19].

Further advantages to using the MFCC features instead of a plain short-time
magnitude spectrum include the possibility for cepstral mean subtraction
(CMS) [14]. Convolutional degradation, for example from the signal record-
ing path, corresponds to multiplication in the spectral domain, and further-
more to a sum in the log-spectral domain. As the cepstral coefficients are
based on the log-spectrum values, subtracting a long-term average from the
cepstral speech features can therefore remove time-invariant signal degrada-
tion, leaving the original speech signal intact.

In addition to the cepstral coefficients, the logarithmic frame energy is often
used in the final speech features. For conventional MFCC, this corresponds
to the 0th cepstral coefficient, which can be seen by setting i = 0 in Equation
(3.5). To capture the dynamic behavior of the speech signal, the so-called
delta and delta-delta features [12] are also appended to the feature vector.
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These are estimates for the first and second order derivatives of the cepstral
coefficients over neighboring frames, and capture information about the cor-
relation of the static features between frames. Given a delta-window length
L (in our experiments L = 2) in frames, the dynamic features are calculated
as

∆(i, τ) =
L

∑

k=1

k (c(i, τ + k) − c(i, τ − k)) /K, (3.6)

∆∆(i, τ) =
L

∑

k=1

k (∆(i, τ + k) − ∆(i, τ − k)) /K, (3.7)

K =
(

4L3 + 6L2 + 2L
)

/6. (3.8)

The MFCC feature extraction process described in this section can be used in
combination with the spectral envelope estimation methods by replacing the
Fourier spectrum estimate of Equation (3.3) with an envelope estimate. The
LP-MFCC features use the conventional linear prediction models of Section
3.3, while the WLP-MFCC and SWLP-MFCC features use the unstabilized
and stabilized variants of the weighted linear prediction algorithm described
in Section 3.5, respectively. Finally, the MVDR-MFCC features are based on
the minimum variance distortionless response modeling discussed in Section
3.7.

3.3 Linear prediction

Linear prediction is a traditional signal processing tool for constructing para-
metric all-pole statistical models of arbitrary signals. In the context of speech
processing, linear prediction is used to derive a parametric representation for
the spectral envelope of a speech signal. The model produced by linear pre-
diction,

H(z) =
1

1 − ∑p
k=1 akz−k

, (3.9)

is an all-pole model. It models non-nasal voiced sounds well, but for nasals
and fricatives the effect of the zeros involved in the detailed acoustic model of
speech production have to be modeled using a sufficient number of poles. The
spectral resolution of the LP model depends on the model order parameter.
As the model order is increased, the LP model tracks the spectrum more
closely, but using too large number of poles causes the model to start tracking
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the harmonic structure of speech, as can be seen in the comparison of LP
and minimum variance distortionless response (MVDR) models of high order
in Figure 3.8.

The parametric representation of the spectral envelope has many potential
uses. For example, since a relatively small number of parameters can be used
to describe well the salient features of the analyzed sound, linear prediction
can be used in audio coding applications to encode a speech signal on a
channel with a very low bit rate [9]. In the context of this thesis, the spectral
envelope models provided by linear prediction or its variants can be used to
derive speech features that perform better, especially in noisy conditions.

In linear predictive signal modeling, a sample xn is estimated by a linear
combination of p previous samples, [29]

x̂n = −
p

∑

i=1

aixn−i, (3.10)

where ai ∈ R are the linear prediction coefficients for that particular signal,
and p is called the model order. By denoting a = [1 a1 · · · ap]

T and xn =
[xn xn−1 · · · xn−p]

T we can represent the prediction error εn in matrix form
as

εn(a) = xn − x̂n = aTxn. (3.11)

The optimal linear prediction coefficient vector a for a given signal is obtained
by using the squared prediction error as a cost function E (a) to minimize.
The cost function written in matrix form is

E (a) =

N+p
∑

n=1

(xn − x̂n)2 = aTRa, (3.12)

where N is the frame length, and R = (ri,j) is the (p + 1)× (p + 1) autocor-
relation matrix,

R =

N+p
∑

n=1

xnx
T
n . (3.13)

Here the signal xn is assumed to be zero when n is outside the range [1, N ],
leading to the autocorrelation method of LP coefficient estimation, for which
the resulting model is known to always be stable [29].

The minimization problem

min
a

E (a) = min
a

aTRa (3.14)
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can be solved by setting ∂E

∂ai
= 0, i ∈ [p]. This condition results in the Yule-

Walker system of p equations,











r1,1 r1,2 · · · r1,p

r2,1 r2,2 · · · r2,p
...

...
. . .

...
rp,1 rp,2 · · · rp,p











a = −











r1,2

r1,3
...

r1,p+1











. (3.15)

The autocorrelation matrix R in Equation (3.15) is a Toeplitz matrix, and
therefore the LP coefficients can be solved in a very computationally efficient
way with the Levinson-Durbin recursion [29].

The LP all-pole model of Equation (3.9) can be used directly as a spectral
envelope estimate in speech recognition. It is well-known, however, that the
LP models do not model high pitch voiced speech well, because the harmonic
frequencies are so sparsely spaced that even a low order LP model tracks the
harmonic peaks instead of the spectral envelope [11]. In addition, the LP
model is not especially robust to noise [31].

In this work, the LP spectral envelope estimates have been used with the
MFCC feature extraction scheme discussed in Section 3.2 to generate fea-
tures for speech recognition. In LP-MFCC feature extraction, after the pre-
emphasis filtering and framing, the linear prediction coefficients are deter-
mined for each frame. The impulse response generated by the LP all-pole
model H(z) of Equation (3.9) is then used as the input signal for the rest of
the MFCC processing, starting with the FFT short-time spectrum analysis,
which in this case extracts the spectrum of the LP model.

3.4 Perceptual linear prediction

The conventional LP estimate follows the original spectrum uniformly over
all frequencies. However, the spectral resolution of the human auditory sys-
tem is markedly lower for high frequencies. In addition, the sensitivity of
hearing depends on the frequency, being highest in the middle of the audible
spectral range. Therefore, the sound power required for equally perceived
loudness is generally speaking lower for the middle frequencies. Accordingly,
the perceptual linear prediction (PLP) method proposes various changes to
conventional LP modeling that approximate the irregularities of human hear-
ing. [15]
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The major difference between PLP and conventional LP is the perceptual
scaling of the linear autocorrelation estimate used in conventional LP. As in
conventional linear prediction, the autocorrelation estimates are computed
via an inverse Fourier transformation of the signal power spectrum estimate.
However, in PLP a modified spectrum on a perceptual Bark scale is used.

The Bark frequency scale is based on psychoacoustic measurements related
to the masking effect in the human hearing [19, 24]. The critical bandwidth
is defined as the width of the frequency range that can contribute to the
masking of a pure tone at the center of the band. The Bark scale is defined
so that a difference of 1 Bark corresponds to the critical bandwidth over the
entire range of audible frequencies. The Bark scale closely corresponds to
the mel scale discussed in Section 3.2.

Like the mel-scale spectrum, the spectrum estimate used in PLP is computed
using a filterbank approximating the processes of the human hearing, derived
from psychoacoustic measurements. The PLP filters are spaced at regular
intervals in the Bark scale, where the Bark frequency Ω(ω) corresponding to
the angular frequency ω is given by [15]

Ω(ω) = 6 ln

{

ω

1200π
+

[

( ω

1200π

)2

+ 1

]0.5
}

. (3.16)

The triangular band-pass filters of the mel spectrum are replaced by filters
that approximate the critical band masking behavior [14], with the frequency
response in the Bark scale of a filter centered at Bark frequency Ω is [15]

Ψ(Ω) =























0 when Ω < −1.3
102.5(Ω+0.5) when − 1.3 ≤ Ω ≤ −0.5
1 when − 0.5 < Ω < 0.5
10−1.0(Ω−0.5) when 0.5 ≤ Ω ≤ 2.5
0 when Ω > 2.5

. (3.17)

Finally, the filterbank outputs are scaled with an approximation of the equal-
loudness curve of the human hearing [19] given by the function [15]

E(ω) =
(ω2 + 5.68 · 106)ω4

(ω2 + 6.3 · 106)2 · (ω2 + 0.38 · 109)
. (3.18)

This step has no direct analogy in the mel spectrum computation.

In practical implementations, each sample of the PLP spectrum is computed
by applying a single weighted summation to the discrete short-time FFT
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Figure 3.4: The perceptual linear prediction filterbank. FFT bin index 257
corresponds to the Nyquist frequency of 8 kHz.

magnitude spectrum [15]. The sum weights are chosen to implement the Bark
filterbank processing and the equal-loudness scaling factor for that particular
PLP spectrum sample. Figure 3.4 shows the filter shapes computed for a 512-
point FFT, using 21 PLP filters designed to analyze a signal with a 16 kHz
sampling rate.

The non-linear compression in the human auditory system [19], modeled in
the MFCC computation with the use of the logarithmic spectrum values, is
dealt with in PLP feature extraction by taking the cubic root of the PLP
power spectrum, as the cubic root approximates better the relationship be-
tween sound intensity and perceived loudness [15]. This is the final step
before the autoregressive processing of the “perceptual autocorrelation” val-
ues obtained with the inverse discrete Fourier transform from the final PLP
spectrum. The linear predictive modeling in other respects follows the con-
ventional LP method given in section 3.3.
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3.5 Weighted linear prediction

Weighted linear prediction [26] is based on applying a temporal weight term
to the conventional LP cost function of Equation (3.12). The temporal weight
function can therefore be used to guide the LP algorithm to focus on mod-
eling particular temporal regions of the input signal. In the case of noisy
speech, for example, more importance can be given to high-energy temporal
regions, where the relative effect of the noise is less prominent. In practice,
the weighting is implemented by replacing the autocorrelation matrix R of
Equation (3.13) with a weighted autocorrelation matrix of the form

R =

N+p
∑

n=1

wnxnx
T
n , (3.19)

where wn ≥ 0 are the temporal weights and N , p are again the frame length
and model order, respectively.

The weighted linear prediction coefficient vector a can be solved from the LP
minimization problem of Equation (3.14) using the autocorrelation matrix
from Equation (3.19). In this case, however, the symmetric autocorrela-
tion matrix does not necessarily have the Toepliz structure, so the Levinson-
Durbin recursion cannot be used to obtain the solution, and more complex
methods have to be used [5, 28].

The linear predictive algorithm as described in section 3.3 guarantees the
stability of the resulting all-pole model [39]. No such guarantees are possible
for the basic weighted linear prediction approach with an arbitrary weight
function, however. As the stability of the model is a desired property in
many applications, especially in the speech coding and synthesis areas, the
stabilised weighted linear prediction (SWLP) [27, 28] method modifies the
weighted autocorrelation matrix R as follows to ensure the stability of the
resulting system.
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It is possible to express the matrix R of Equation (3.19) as R = YTY, where

Y =





























√
w1x1 0 ...√
w2x2

√
w2x1

. . .

...

√
w3x2 0

...

√
wp+1x1√

wNxN
√

wp+2x2

0
√

wN+1xN
......

0

... √
wN+pxN





























, (3.20)

and the columns yk of matrix Y can be recursively constructed as

y1 = [
√

w1x1 · · · √
wNxN 0 · · · 0]T ,

yk = B yk−1, k = 2, 3, . . . , p + 1,
(3.21)

using the matrix

B =















0 0 0 · · · 0
√

w2/w1 0 0 · · · 0

0
√

w3/w2 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0
√

wN+p/wN+p−1 0















. (3.22)

The SWLP method produces a model guaranteed to be stable by altering
the nonzero elements of B to be [27]

Bi+1,i =

{ √

wi+1/wi, if wi ≤ wi+1

1, if wi > wi+1
(3.23)

It can be shown [28] that this leads to a stable model.

As was mentioned earlier in this section, in some applications such as au-
dio coding the stability of the model is essential. In the speech recognition
feature extraction task considered in this thesis, however, only a spectrum
estimate represented by the model is needed. We therefore have to extract
the frequency response of the LP synthesis filter H(z) of Equation (3.9) for
the obtained WLP coefficients, as that is the spectral envelope estimate used
when computing the MFCC features.

The LP analysis filter A(z) is the inverse of the synthesis filter,

A(z) =
1

H(z)
= 1 −

p
∑

k=1

akz
−k. (3.24)
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The analysis filter is a FIR filter and therefore stable, and its magnitude spec-
trum can be computed via FFT of the filter coefficients [44]. The magnitude
response of the synthesis filter is the inverse of this spectrum [35]. As the
model is not guaranteed to be stable, the magnitude spectrum of the analy-
sis filter can be zero, which would lead to infinite values in the final spectral
envelope estimate. To avoid this, all values of the magnitude spectrum of the
analysis filter that are more than a given amount below the maximum can
be clamped to that value. In this work, a threshold value of 80 dB below the
maximum has been used, as it is well above the dynamic range of the input
signal.

The stabilization step causes some further, uncontrollable smoothing of the
spectral envelope estimate, as can be seen in Figure 3.5, where WLP and
SWLP models of the same order are compared. The formant frequencies
important for distinguishing voiced sounds are clearly more pronounced in
the WLP estimate.
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Figure 3.5: Unstabilized and stabilized WLP envelope estimates of a voiced
clean speech frame, with the same model order of 20 and STE window width
of 16 samples
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The choice of the temporal weights wi strongly affects the models generated
by weighted linear prediction. For various reasons, use of the short-time
energy (STE) function as the weight function has been suggested [26, 28]
for speech processing tasks. The STE weight wn for the nth sample xn is
computed by taking the signal energy of a sliding window of M previous
samples,

wn =
n−1
∑

i=n−M

x2
i . (3.25)

Using the STE weight function causes the WLP model to emphasize highly
energetic regions of the speech frame. In these regions, the noise energy
relative to the signal energy is lower, especially in case of stationary additive
noise. In addition, for a voiced speech frame the peaks of the STE function
coincide with the closed phase of the glottal cycle, when the formants are
also most easily distinguished [28]. The short-time energy function for a
short sample of voiced speech can be seen in Figure 3.6.

0

0 5 10 15 20 25 30

Time (ms)

Speech signal
STE weight

Figure 3.6: STE weight function calculated with a window width of 3 ms (48
samples) for a 32 ms sample of voiced phoneme /i/
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The short-time energy window width parameter M can also be controlled
to tune the spectral estimates represented by the weighted linear prediction
models. As the M parameter is increased, the size of the portion of the frame
covered in Equation (3.25) grows, causing the variance between weights of
successive samples to decrease. From the WLP autocorrelation matrix of
Equation (3.19) it can be seen that if the sample weights are set to a constant
value, the generated all-pole model exactly matches the conventional linear
predictive model. Correspondingly, increasing the M parameter causes the
WLP or SWLP modeling behavior approach that of conventional LP, with the
more pronounced spectral peaks. In contrast, using a shorter STE window
results in more smoothed spectral estimates, as the model emphasizes more
strongly short sections of the speech frame. This behavior can be observed
in the spectral envelope examples of Figure 3.7.

The M parameter can be given a fixed value based on experiments on de-
velopment set data, like is commonly done with the model order parameter.
This approach has been taken in the experiments of sections 4.4, 4.5 and
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Figure 3.7: Spectral envelopes for order 20 linear predictive models, for a
sample of voiced phoneme /i/
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4.6. However, the optimal M value seems [23, 35] to be different for example
for different amounts of environmental noise in the speech data being recog-
nized. This naturally prompts the question whether the M value could be
adaptively updated during the recognition, based on changes in the incom-
ing audio data. Some promising preliminary results along these lines have
been seen in [23, 35] and the methods described in Section 3.6 have been
experimentally evaluated in sections 4.7 and 4.8 of this thesis.

3.6 Weight function parameter adaptation

Performance of the SWLP feature extraction method depends on the correct
selection of the STE weight function window width M . Instead of using a
constant value for M , it is possible to make an adaptive system where the
weight function window width used in the analysis of the τth frame of the ith
utterance of the test set is a function M(i, τ). The M(i, τ) value can depend
on any suitable characteristics, such as for example per-frame SNR estimates
from on-line noise models, or confidence measures based on likelihood values
from the models used by the recognizer.

In the adaptation methods described in this section, we consider only the
task of selecting separate M values on a per-utterance level, so M(i, τ) =
M(i). There is no theoretical reason why the M parameter could not be
updated for each frame τ separately, and the limitation is simply to make it
easier to evaluate the possible methods, as their effect can then be observed
without having to implement any changes to the speech recognition system.
The final recognition results for any per-utterance adaptation method can
be constructed by first recognizing each utterance with an array of fixed
M values, and then selecting the per-utterance results corresponding to the
adapted M(i) values.

For each of the N utterances in a test set, the parameter adaptation method
has to select a suitable window width parameter value M(i), where i is the
index of the utterance. We want to optimize the average recognition error
rate E for the entire test set,

E =

∑N
i=1 LiE

M(i)
i

∑N
i=1 Li

, (3.26)

where EM
i is the error rate for the ith individual utterance when using window

width M in the recognition, and Li is the length of the utterance, measured
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in letters or words, depending on the type of the error rate in question. The
term error rate is here used to mean either the word or letter error rate as
described in Section 4.3.

3.6.1 Oracle-based M adaptation

In order to find a theoretical lower bound for E, knowledge of the correct
recognition result can be used. As the EM

i values are then known, the optimal
M(i) for equation (3.26) can simply be selected as

M(i) = arg min
M

EM
i . (3.27)

This method is in this work referred to as oracle-based M adaptation. Ex-
perimental results obtained using it are presented in Section 4.7.

3.6.2 M adaptation based on acoustic model probabil-

ities

In a practical adaptation method, the exact EM
i values in equation (3.26)

cannot be known. However, different confidence measures can be used to
give an estimate for the reliability of the recognition result [21]. The acous-
tic model probability based M adaptation uses the per-frame observation
probabilities of the acoustic HMM described in Section 2.2.

A given utterance is first recognized using an array of pre-defined fixed M
values. As described in Section 2.4, the speech recognition hypothesis is
formed as a path through a search network of the acoustic HMM states.
The states of the winning path corresponding to the selected recognition
hypothesis are here denoted by qM

i,τ , where i is the utterance index, τ the
specific speech frame and M the fixed window width used in the recognition.

For any observed speech feature vector o and acoustic HMM state q, the
observation probabilities of the HMM can be used to determine the logarith-
mic likelihood value a(o|q) for observing the particular feature vector in that
state. As the choice of M affects the feature extraction, the observed speech
features o(i, τ,M) depend on both the input frame and the M value that
was used. Some of the acoustic model states describe silent parts of speech,
such as breaks between words, and the set of these states is here denoted by
S.
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Using these notations, we define the final per-utterance window width M(i)
using the average per-frame acoustic likelihood of the states qM

i,τ on the win-
ning recognition hypothesis path, for any non-silent frames, as

M(i) = arg max
M

1

NM
i

∑

τ,
qM
i,τ 6∈S

a(o(i, τ,M)|qM
i,τ ), (3.28)

where NM
i is the number of frames for which the winning path was in non-

silent HMM states. The recognition result corresponding to the selected
M(i) value is then used as the final result. Results of M adaptation using
this criterion are given in Section 4.8.

The average per-frame acoustic model likelihood, though not with the elim-
ination of silent states, has been used as a basis for a confidence measure in
several tasks. In [4] a similar measure was used as one of the features for
word verification in a key-word spotting system, while in [42] the method
was selected as one of the features for a confidence tagger for spontaneous
speech. Both systems also utilized a set of other features, and a possible topic
for future work is to see whether the M adaptation described here could be
enhanced with an improved confidence measure.

As the M adaptation method discussed in this section is based on the acoustic
HMM state paths of k final recognition hypothesis, for k different values of
M , it causes a k-fold increase in computational cost of the recognition. An
important topic for future work is to find effective adaptation methods that
do not need the decoder output for the M selection.

3.7 Minimum variance distortionless response

modeling

Minimum Variance Distortionless Response (MVDR) method for modeling
the spectral envelope addresses many of the shortcomings of the conventional
LP model. Notably, the MVDR spectral estimate is much less prone to
modeling the sharp contours of the harmonic structure of speech, even for
high pitch speech where the harmonics are located more sparsely, as can be
seen in Figure 3.8. The MVDR spectrum can also be efficiently computed
from conventional LP coefficients, which is useful in many applications. [31]

Conceptually, the MVDR method estimates the signal power at a given fre-
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quency ωl with the output power of a specific Mth order FIR filter with
impulse response hl(n). This filter is designed to produce the lowest possi-
ble output power for the particular speech frame being analyzed, under the
distortionless constraint, that it has a unit frequency response at frequency
ωl: [31]

Hl(e
jωl) =

M
∑

k=0

hl(k)e−jωlk = 1 (3.29)

It is possible to express also the FFT based periodogram spectrum estimate
as the output of a filterbank, constructed from a fixed set of filters that
are independent of the analyzed data or the center of the frequency band. In
contrast, the MVDR filters are designed to be optimal for a particular speech
frame and center frequency. The use of this constrained optimization filter
design enhances the bias and variance properties of the MVDR spectrum
estimate. Bias in the output at a specific frequency caused by leakage of
power from surrounding frequencies through the band-pass filter is reduced,
as each band-pass filter is specifically designed to have as small side-lobes
as possible in any nearby frequency regions that have high energy. The
improvement in the variance of the output comes from averaging several
samples of the band-pass filter output, instead of using just a single sample
as is done in the periodogram. [31]

The need to design a separate filter hl(n) for each frequency band and each
frame of input data is purely conceptual, however, and it is actually possible
to represent the MVDR power spectrum in a parametric form based on con-
ventional LP coefficients. The Mth order MVDR power spectrum estimate
P

(M)
MV can be written as [31]

P
(M)
MV (ω) =

1
∑M

k=−M µke−jωk
, (3.30)

where

µk =

{

1
Pe

∑M−k
i=0 (M + 1 − k − 2i)aia

∗
i+k, for k = 0, . . . ,M,

µ∗
−k, for k = −M, . . . ,−1,

(3.31)

and ak are the Mth order LP model coefficients, while Pe is the LP prediction
error variance.

The MVDR estimate can be used in speech recognition in various ways: as
a direct replacement for the FFT spectrum in MFCC computation (called
the MVDR-MFCC method), using perceptually modified autocorrelation es-
timates as in the PLP method (called the PMCC method) [10, 50] or possibly
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with direct warping of the FFT spectrum instead of a filterbank (called the
PMVDR method) [51, 52].

In the PMCC approach, the autoregressive LP analysis from which the
MVDR coefficients are derived is done using autocorrelation estimates ob-
tained from a mel-smoothed spectrum. This procedure resembles closely the
perceptual linear prediction (PLP) method described in Section 3.4, with
the exception that the LP coefficients are then converted into the MVDR
spectrum estimate. PMCC feature generation has two main advantages over
MVDR-MFCC. As the mel-smoothed spectral samples are an average over
several FFT samples, the variance of the resulting perceptual autocorrela-
tion estimates is lower, and the results are more reliable. The dimensionality
of the mel-scale spectrum is also lower than the original spectrum, and the
computation of the MVDR model parameters therefore less computationally
intensive. [10]

In the PMVDR method, the psychoacoustically motivated change in spectral
resolution is provided using a suitable warping function directly on the MFCC
spectrum, to obtain suitable perceptual autocorrelation estimates for MVDR
modeling without the spectral smoothing step. One reason for the mel-scale
spectral smoothing in the MFCC features is that the smoothing step discards
some of the speaker and pitch-dependent information such as the harmonic
structure that is not useful from a pure speech recognition perspective [9].
As the MVDR modeling process is itself capable of providing a good estimate
of the spectral envelope, the spectral smoothing performed by the filterbank
processing is redundant. [52]



Chapter 4

Experimental evaluation

This chapter presents the speech recognition experiments designed to evalu-
ate the performance of the considered spectral envelope estimation methods.
The experiments on automatically adapting the SWLP weight function win-
dow width parameter M are also described.

The SPEECON Finnish language corpus described in Section 4.1 was used
as the source of speech data in all the experiments described in this work.
The experiments were performed with the large vocabulary continuous speech
recognition system developed in the Adaptive Informatics Research Centre at
the Helsinki University of Technology. The design of the system is presented
in Section 4.2. The evaluation metrics for speech recognition performance
are detailed in Section 4.3. Finally, the remaining sections of this chapter
describe the results obtained from the experiments. The initial small-scale
feature evaluation results are presented in Section 4.4, the comprehensive
evaluation of SWLP features against the MFCC baseline is described in Sec-
tion 4.5, and the comparison of the unstabilized WLP features against the
SWLP features is discussed in Section 4.6. Finally, sections 4.7 and 4.8 out-
line our experiences from the M parameter adaptation test.

4.1 Speech data used in the experiments

Material from the Finnish language version of the SPEECON [20] speech
corpus was used exclusively in all experiments. SPEECON is an EU-funded
project to collect speech data for 18 different languages, with the primary

32
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aim to promote the development of voice controlled user interfaces.

The SPEECON corpus includes realistic noisy speech data recorded in many
different environments. The experiments described in this paper used noisy
speech from the “car” and “public places” environments. The “car” environ-
ment recordings were done in a 5-passenger vehicle, driving on highways,
country roads and in city traffic, with the speaker in the co-driver’s seat.
“Public places” recordings come from large rooms or halls, or open-air loca-
tions, and often have other people talking in the vicinity.

The noisy material was divided into separate training, development and eval-
uation subsets by a random selection of speakers, in order to get data sets
with similar characteristics. For example, the car environment data con-
tained metadata information about the type of car used and the general
driving environment (city, country, highway).

For training purposes, two different data sets were constructed from the data
allocated for training. The first training set consisted of approximately 21
hours of clean speech recorded with no background noise, from 293 separate
speakers. The second data set was a multicondition training set of simi-
lar size, containing even amounts of clean and noisy speech, with the noisy
data from both the car and public place environments. The distribution of
signal-to-noise ratio (SNR) estimates taken from SPEECON transcription
annotations for the two training sets is shown in Figure 4.1.

The tests with the multicondition training set were also the first experiments
utilizing noisy speech training for Finnish language speech recognition with
the speech recognizer used in the experiments.

A separate evaluation set was constructed for each recording channel of the
two different noisy environments. Each utterance in the SPEECON corpus
was recorded using four audio channels corresponding to microphones with
different distances to the speaker in order to obtain a range of realistic noise
conditions. Increasing the distance between the microphone and the speaker
is a natural way of producing more challenging noise conditions. Audio from
the first three SPEECON recording channels was used in the test sets.

The“car”environment evaluation set contained 30 phonetically rich sentences
of read speech by 20 different speakers, with a total length of 57 minutes
including the leading and trailing silences. Channel 0 was recorded with
a headset microphone at a distance of 2–5 centimeters from the speaker’s
mouth. Channel 1 microphone was a lavalier microphone positioned the chin
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and the shoulder of the speaker. Finally, audio for channel 2 was recorded
with a medium-distance microphone mounted at the car ceiling behind the
rear-view mirror. Notably, for the car data set the SNR estimates for channel
1 were lower than those for channel 2, even though the microphone was
positioned closer to the speaker. Spectral analysis suggests that the low SNR
estimate for channel 1 was caused by high levels of noise at frequencies below
200 Hz, which are outside the spectral ranges most important for speech
recognition.

The evaluation data set for the “public places” environment had a similar
structure, with 30 sentences by 30 speakers, and a total length of 94 minutes.
Recording equipment was mostly the same, with the exception that channel 2
was recoded with a different medium-distance microphone placed 0.5–1 meter
away for the speaker. SNR estimates provided by the recording system for
both evaluation sets can be found in Figure 4.2.

For the “car” environment, the SNR estimates given for channel 1 recordings
(lavalier microphone, average SNR of 5 dB) are consistently lower than the
SNR estimates for channel 2 (medium-distance microphone, average SNR of
8 dB), even though the speech recognition tests in all experiments produced
better results for channel 1 than channel 2. Spectral analysis of the recordings
revealed as a likely explanation that the low SNR estimate for channel 1 was
caused by high noise levels at frequencies below 200 Hz, which however are
outside the spectral areas important for speech recognition.

Smaller development sets of similar composition were used for tuning the
parameters of the various algorithms. The “car” and “public places” develop-
ment sets each had 30 sentences by 10 and 20 speakers, with a total length of
21 and 60 minutes, respectively. Averages of all per-utterance SNR estimates
for the development sets were within 1 dB of the averages of corresponding
evaluation sets.

4.2 Speech recognition system used in the ex-

periments

All speech recognition experiments were performed with the large vocabulary
continuous speech recognizer developed in the Adaptive Informatics Research
Centre at the Helsinki University of Technology. The general structure of the
system is described thoroughly in Chapter 2. This section gives information
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the SNR estimate from the SPEECON corpus transcription annotations falls
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about the details of this particular recognizer.

The feature extraction stage of the recognizer is based on the MFCC method
described in detail in Section 3.2. Unless otherwise noted, a pre-emphasis
filter of the form 1 − 0.97z−1 and frame lengths of 16 ms, with 8 ms over-
lap between frames, have been used in the experiments. Logarithmic frame
energy and the 12 first cepstral coefficients were used as features, with cep-
stral mean subtraction applied using a window of 150 neighboring frames.
First and second derivatives of the MFCC features were computed to yield
39-dimensional feature vectors. Finally, as a post-processing step the fea-
tures were normalized to have zero mean and unit variance, and a maximum
likelihood linear transform (MLLT) estimated during training was applied.

Acoustic modeling of the selected speech features were based on cross-word
triphones modeled with state-clustered hidden Markov models (HMM) using
Gaussian mixtures. Individual HMM states used a mixture of on average
30 Gaussian distributions to model the speech feature space, and an addi-
tional Gamma probability distribution to model the state duration [37]. The
language model used by the speech recognizer was a variable-length n-gram
model, trained using a growing method [43] on the Finnish Language Bank
[1] data set containing book and newspaper data, to a total of approximately
145 million words. The units used in language modeling were statistical
morpheme-like units learned with the unsupervised Morfessor method [7]
from the text data. Finally, the recognition hypothesis was built with a
decoder employing a single-pass time-synchronous Viterbi beam search algo-
rithm [36].

The different feature extraction systems of Chapter 3 have mostly been im-
plemented with MATLAB code, with the exception of the conventional and
weighted linear prediction approaches, which were implemented with C++
code directly into the speech recognizer. The main advantage of embedding
the SWLP feature extraction directly as a part of the speech recognition
was that it removed the cumbersome step of pre-processing the large train-
ing audio data into stored SWLP feature vectors, which required a large
amount of storage space. In addition, having the SWLP feature extraction
implemented in the speech recognizer was seen as potentially useful for later
experiments involving the M parameter adaptation. The SWLP feature ex-
traction was naturally more computationally intensive compared to the use
of pre-processed features, but the time spent in feature extraction was dom-
inated by the actual speech recognition step.
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4.3 Performance evaluation metrics

The speech recognition performance of the different feature extraction meth-
ods was measured using letter (LER) and word error rates (WER) of the
recognition results. When optimizing parameters of the ASR system in de-
velopment set experiments, letter error rate was used as the primary perfor-
mance measure for selecting the best performing system for the final evalua-
tion. The letter error rate was also used for evaluating the differences between
systems. Despite being the more common measure for several other lan-
guages, the word error rate is not as well suited for Finnish, as Finnish words
are often concatenations of several morphemes and correspond to more than
one English word. As an example, the Finnish word “kahvin+juoja+lle+kin”
translates to “also for a coffee drinker.”

The error rate calculation is based on the edit distance between the reference
transcript and the recognition hypothesis [30]. The edit distance between two
strings is defined as the minimum number of substitution (changing one unit),
insertion (adding a unit) and deletion (removing a unit) operations required
to transform one of the strings to the other. Denoting the substitution,
insertion and deletion error counts by S, I and D, and the total count of
units in the reference text by N , the error rate is calculated as

error rate =
S + I + D

N
. (4.1)

For letter and word error rates naturally letters and words, respectively, are
used as the units in the edit distance calculation. As the number of insertions
is unbounded, the error rates can in exceptional cases exceed 100 %.

The statistical significance of differences between systems was evaluated by
performing the Wilcoxon signed-rank test [46] on the letter error rates of the
compared pair of systems for corresponding speakers in the evaluation sets.
For the test, the individual utterances of the test set are ranked according to
the absolute value of the difference between the letter error rates obtained by
the systems being compared. The utterance with the smallest absolute value
of the difference is assigned rank 1, with successive ranks given to each larger
difference, and the ranks are labeled as positive or negative depending on the
sign of the difference. The test measure is the smaller value of either the sum
of the positive ranks or the sum of the negative ranks. The significance level
of p = 0.05 was used to classify differences as statistically significant.
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4.4 Small-scale experiments

The initial experiments were small-scale tests, using a range of different fea-
ture representations prototyped in MATLAB code. In addition to the base-
line MFCC features, representations based on linear predictive methods were
used. These were based on conventional linear prediction (LP), perceptual
linear prediction (PLP) and stabilized weighted linear prediction (SWLP).
The relative speech recognition performance of an alternative spectral mod-
eling tool, the minimum variance distortionless response (MVDR) analysis,
was also investigated, as well as perceptually motivated ways of utilizing the
MVDR estimation.

Most of the evaluated feature extraction methods were based on MFCC fea-
tures. In LP-MFCC, SWLP-MFCC and MVDR-MFCC feature extraction,
the FFT-based magnitude spectrum estimate of traditional MFCC com-
putation was simply replaced with an envelope estimate obtained from an
unweighted linear predictive model, a stabilized weighted LP model and a
MVDR model, respectively. The perceptual linear prediction (PLP) feature
extraction method was not directly based on conventional MFCC features,
using instead a more detailed and recent model of the human hearing, as
described in Section 3.4. Finally, the PMVDR method is substantially dif-
ferent, as unlike the other methods it does not use a perceptually motivated
filterbank approach at all. A more detailed description of all the feature ex-
traction methods can be found in Chapter 3. The PMVDR features were also
extracted using tools from the SONIC speech recognizer [34], so different pa-
rameter values were used for the pre-processing steps, such as pre-emphasis
and framing, as well as the cepstral mean subtraction post-processing step.

The first experiments used a clean speech training set of substantially re-
duced size, only 111 minutes (1000 utterances), compared to the full training
set of over 21 hours (11575 utterances). Also for the recognition, a small
development set of a single type of noisy speech from the “car” environment
was used. The small data sets were used to make the training and recog-
nition tasks less computationally intensive, as the primary aim was initial
development and tuning of the algorithms and their parameters. To con-
clude the small-scale experiments, a single run with the the full training set
was done using the optimal selected parameter values for the different feature
extraction methods.

Resulting letter error rates for both the reduced and full training set exper-
iments can be found in Figure 4.3. Results for the unweighted LP-MFCC
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are not included in the figure, as the method was not tested with the full
training set at all.

In these tests, the best performing feature extraction system in most cases
was the SWLP-MFCC method. The MVDR-MFCC features achieved a sim-
ilar decrease in letter error rates for the noisier channels 1 and 2, compared
to the baseline MFCC model, but incurred some degradation of results when
recognizing the clean speech or channel 0. Results for the PLP and PMVDR
features were unexpectedly poor.

4.5 Stabilized weighted linear prediction ex-

periments

In these experiments, the main focus was on the speech recognition per-
formance of the SWLP signal modeling method, especially when compared
to conventional linear prediction. Some of the preliminary development set
experiments were performed also for the MVDR-based feature extraction
systems, but due to their unexpectedly low performance, these systems were
excluded from the final comparisons. This decision is discussed in Section
5.1.

Initial results and the experiment setup for these experiments were previously
presented in a special assignment report by the author of this thesis [22]. The
results given in this section are from a later, final test run, where algorithm
parameters were optimized with a more comprehensive set of tests with the
development set data. These results were also published in our conference
paper in the SPECOM 2009 conference [23].

The behavior of the SWLP algorithm depends on the values of the STE
weight function window width parameter M , with the use of a short window
causing a more prominent emphasis on the energetic regions of the speech
frame, and therefore leading to a smoother spectrum estimate. The effect of
the M parameter is described in more detail in Section 3.5. In this set of
experiments, fixed M parameter values derived from development set experi-
ments were used. Notably, it was found advantageous to use a larger window
width in recognition than what was used in training, when recognizing nois-
ier speech with models trained in clean speech only. Preliminary experiences
with automatic adaptation of the M parameter are described in sections 4.7
and 4.8.
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Full recognition results for the public place and car evaluation sets can be
found in Table 4.1. These results compare the performance of the SWLP fea-
tures (denoted SWLP-MFCC) to conventional linear prediction (LP-MFCC)
and the baseline (MFCC) method. Wilcoxon signed rank test was used in
pairwise comparisons to find out whether the differences between systems are
statistically significant. For significance testing, the “public place” and “car”
test sets were combined to a single, larger set. Results of the significance test
for the different recording channels and systems, using models trained with
clean speech only, can be found in Table 4.2.

From the results it is clear that when using models trained on clean speech to
recognize speech recorded in noisy environments, both linear predictive meth-
ods show clear improvements in the letter error rate. For the noisy recording
channels 1 and 2, these improvements are statistically significant. Further-
more, the recognition results of the SWLP-MFCC system are slightly better
than the unweighted LP-MFCC system, reaching statistical significance for
the noisier channel 2.

In the multicondition training case, differences between feature extraction
systems diminished, with the MFCC baseline system being most often the
best performing one. The multicondition training set contained noisy data
from both the “car” and “public places” environments described in Section
4.1. While the recordings were independent with respect to the individual
noise signals, there was no large mismatch between noise types (e.g. car
noise, babble) in the training and test data. However, the noise types used
in the training data correspond to very common real-world noisy scenarios,
and the test is therefore still quite realistic, compared, for example, to the
use of the same artificially added noise sample in both the training and test
data, as is done in the popular Aurora noisy speech corpus [16].

4.6 Weighted linear prediction experiments

As described in Section 3.5, the stabilization step performed in the SWLP
method has a significant effect on the spectral envelope estimates gener-
ated by the weighted linear predictive modeling. A method for extracting
a spectral envelope estimate even for a potentially unstable model gener-
ated by weighted linear prediction was also presented in Section 3.5. The
set of speech recognition experiments described in Section 4.5 were there-
fore performed also with the unstabilized WLP, in order to investigate if the
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Table 4.1: Letter error rate (word error rate) percentages for the MFCC,
LP-MFCC and SWLP-MFCC systems

“Car” test set, models trained with clean
speech.

channel

method 0 1 2

MFCC 4.0
(14.2)

29.6
(51.9)

68.6
(84.7)

LP-MFCC 3.9

(14.4)

27.2
(49.7)

55.0
(78.9)

SWLP-MFCC 4.0
(14.6)

27.1

(49.5)

53.4

(77.4)

“Car” test set, models trained with noisy
speech.

channel

method 0 1 2

MFCC 3.7

(14.0)

6.8

(22.1)

18.0
(38.3)

LP-MFCC 3.9
(14.8)

7.2
(23.4)

17.6

(40.1)

SWLP-MFCC 4.1
(15.1)

7.9
(24.2)

18.2
(39.8)

“Public places” test set, models trained with
clean speech.

channel

method 0 1 2

MFCC 3.3

(13.6)

23.4
(41.8)

40.8
(56.5)

LP-MFCC 3.4
(14.2)

20.8
(40.4)

34.9
(53.2)

SWLP-MFCC 3.3

(13.6)

20.4

(41.2)

33.2

(53.6)

“Public places” test set, models trained with
noisy speech.

channel

method 0 1 2

MFCC 3.4

(14.1)

6.3

(21.1)

11.9

(28.8)

LP-MFCC 3.6
(14.8)

7.1
(23.4)

12.2
(30.2)

SWLP-MFCC 3.7
(15.0)

6.7
(22.1)

12.0
(30.0)
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Table 4.2: Statistical significance results for pairwise comparisons between
models using the combined “car” and “public places” data set, with models
trained on clean speech only. The name of the better system is shown with
the significance level. No statistically significant differences were found for
channel 0 results.

Channel 1

LP-MFCC SWLP-MFCC

MFCC
LP-MFCC
(p<0.001)

SWLP-MFCC
(p<0.05)

LP-MFCC (p=N.S.)

Channel 2

LP-MFCC SWLP-MFCC

MFCC
LP-MFCC
(p<0.001)

SWLP-MFCC
(p<0.001)

LP-MFCC
SWLP-MFCC

(p<0.05)
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modification of the spectrum estimate caused by the SWLP stabilization step
results in degraded speech recognition performance.

In these experiments, a fixed STE window width value of M = 16 was used
consistently for all weighted linear prediction tests, as time for the compu-
tationally intensive step of selecting the M value based on the results of a
large number of development set experiments was not available. The value
M = 16 was selected based on earlier speech recognition experiments made
with WLP in the Department of Signal Processing and Acoustics of Helsinki
University of Technology. As can be seen by comparing the results in Table
4.3 with the results presented in Section 4.5, Table 4.1, slightly better per-
formance for the SWLP method can be achieved, based on careful tuning of
the M parameter using the development set data. Even the improved SWLP
results do not outperform the unstabilized WLP, however.

As the SWLP method was shown to improve results only for the clean speech
training case in the experiments of Section 4.5, these experiments omitted
the multicondition training tests. Letter error rates for the various systems
and recording channels are given in Table 4.3. The MFCC and LP-MFCC
baseline results are identical to the results given in Section 4.5. For statis-
tical significance testing, the “car” and “public places” test sets were again
combined, as in the experiments of Section 4.5. Results of the statistical
significance tests are presented in Table 4.4.

The general trends of the experiment results follow those established in Sec-
tion 4.5. The linear predictive features outperform the baseline MFCC sys-
tem for noisy speech, and the difference is more marked for the channel
2 recordings with lower SNR values. The WLP-MFCC method also con-
sistently outperforms the other linear predictive methods LP-MFCC and
SWLP-MFCC.

4.7 Oracle-based M adaptation

Since the optimal performance of the SWLP feature extraction method is
achieved with a different M parameter value under different noise condi-
tions, automatic adaptation of M is clearly of interest. Theoretical limits for
the possible increase in recognition performance that could be obtained by
adaptive M selection can be derived using knowledge of the correct recogni-
tion result. Considering adaptation where there is a fixed but independent M
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Table 4.3: Letter error rate (word error rate) percentages for the MFCC,
LP-MFCC, WLP-MFCC and SWLP-MFCC systems. Only the case of noisy
speech being recognized with models trained on clean speech is shown.

“Car” test set, models trained with clean speech.

channel

method 0 1 2

MFCC 4.0
(14.2)

29.6
(51.9)

68.6
(84.7)

LP-MFCC 3.9

(14.4)

27.2
(49.7)

55.0
(78.9)

WLP-MFCC 4.7
(16.3)

23.1

(45.5)

51.2

(77.7)

SWLP-MFCC 4.2
(15.2)

32.3
(54.4)

55.9
(77.3)

“Public places” test set, models trained with clean speech.

channel

method 0 1 2

MFCC 3.3

(13.6)

23.4
(41.8)

40.8
(56.5)

LP-MFCC 3.4
(14.2)

20.8
(40.4)

34.9
(53.2)

WLP-MFCC 4.7
(18.3)

20.0

(43.3)

31.9

(56.0)

SWLP-MFCC 3.6
(14.4)

20.4
(41.2)

34.3
(53.2)
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Table 4.4: Statistical significance results for pairwise comparisons between
models using the combined “car” and “public places” data set, with models
trained on clean speech only. The name of the better system is shown with
the significance level. Results are again shown only for the noisier channels
1 and 2.

Channel 1

LP-MFCC WLP-MFCC SWLP-MFCC

MFCC
LP-MFCC
(p<0.001)

WLP-MFCC
(p<0.001)

(p=N.S.)

LP-MFCC
WLP-MFCC

(p<0.01)
LP-MFCC
(p<0.01)

WLP-MFCC
WLP-MFCC
(p<0.001)

Channel 2

LP-MFCC WLP-MFCC SWLP-MFCC

MFCC
LP-MFCC
(p<0.001)

WLP-MFCC
(p<0.001)

SWLP-MFCC
(p<0.001)

LP-MFCC
WLP-MFCC
(p<0.001)

(p=N.S.)

WLP-MFCC
WLP-MFCC
(p<0.001)
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Figure 4.4: Letter error rates for the oracle-based M adaptation

parameter value for each recognized utterance, a lower bound for the letter
error rate can be estimated by recognizing each utterance with an array of
different M values, and computing the letter error rate achieved by selecting
the recognition result with least errors. This method is here referred to as
oracle-based M adaptation.

The oracle-based M adaptation tests were performed using development set
data for the“car”and“public places”environments, channels 0 and 2. Result-
ing letter error rates can be seen in Figure 4.4. The oracle-based M selection
achieves relative letter error rate improvements of approximately 6 % and 18
% over the best fixed M value for recording channels 0 and 2, respectively.

Note that the oracle-based M adaptation was tested in order to seek a theo-
retical performance bound for adaptive selection of the M value. Our prelim-
inary experiments of automatically selecting an M value which is as close as
possible to the oracle-based selection, based on the acoustic model likelihood
values, are presented in Section 4.8.
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4.8 M adaptation based on acoustic model

probabilities

Speech recognition performance of the SWLP features depends strongly on
the weight function used. The short-time energy (STE) weights used in this
thesis are affected by the window width parameter M , and therefore selecting
an M value well-suited to the audio data being recognized is important. The
oracle-based M adaptation tests in Section 4.7 suggest that recognition per-
formance can be improved by allowing an independent M value separately for
each utterance. For this to be practical, adaptive methods for automatically
estimating suitable M values are required.

Probabilities returned by the acoustic and language models for the recogni-
tion hypothesis can be used to judge the reliability of the recognition result
[21]. In the performed maximum-probability M adaptation experiments, we
have again used the results of recognizing the test data with an array of
M values to estimate possible speech recognition performance improvements
gained by per-sentence M adaptation. In this case, however, the method for
selecting the M values does not depend on knowledge of the correct results.

From the acoustic model we can extract for each audio frame an estimate for
the probability of the observed speech features, given the HMM state trajec-
tory of the final recognition result. Our experiments showed that selecting
the M value for which the probability of non-silent frames is highest leads to
improvements in the letter error rate (LER).

Figure 4.5 shows the recognition results for the recording channel 2 of the
development set data for the “car” and “public places” environments. In all
cases, a fixed M parameter value was used during training, while the recogni-
tion was performed with an array of M values. Results reported in the figure
include the average letter error rate of the test set for the individual fixed M
parameter values, the theoretical lower bound of selecting each recognized
sentence with the least errors (the oracle-based M adaptation of Section 4.7)
and finally the error rate obtained by selecting the recognition M value using
the criterion based on the acoustic model probabilities. For comparison, the
MFCC baseline results are also shown.

For both the “car” and “public places” environments, results with models
trained with clean speech only are included. In addition, multicondition
training results for the “car” environment are given. The proposed method
for selecting the M value is an improvement over the best fixed M value for
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all three test scenarios, but the improvement in the multicondition training
case is not sufficient to surpass the MFCC baseline.
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Figure 4.5: Letter error rates for the acoustic model probability based M adap-
tation tests on development set data, for both clean speech and multicondition
training in the “car” environment, and clean speech training only in the “pub-
lic places” environment.



Chapter 5

Discussion

Discussion on the experiments of Chapter 4 is divided to two topics. Section
5.1 considers the spectral envelope estimation method experiments, while
Section 5.2 focuses on the parameter adaptation task for the weighted linear
prediction approach.

5.1 Spectral envelope estimation models in

speech recognition

Results for three sets of experiments comparing the speech recognition perfor-
mance of feature extraction systems based on different spectrum estimation
methods were presented in chapter 4 of this work. Section 4.4 described
the results of a preliminary study of a number of dissimilar feature extrac-
tion methods. In these experiments, the stabilized weighted linear prediction
(SWLP) approach achieved results comparable to feature extraction based
on minimum variance distortionless response (MVDR) modeling, which has
been studied much in a speech recognition context [10, 31, 48, 49, 50, 51, 52].

After the promising initial results for the SWLP method, a more compre-
hensive evaluation of its applicability in the feature extraction stage of a
large vocabulary continuous speech recognition (LVCSR) system was per-
formed. For these experiments, details such as the filterbank construction
for the mel-scale spectrum (see Section 3.2) used by the compared feature
extraction systems were made to conform to the MFCC features used by the
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Adaptive Informatics Research Centre speech recognizer used in this work.
As the change caused an unexpected drop in the performance of the MVDR-
based feature extraction methods, they were dropped from later experiments.
It was also not possible to alter the parameters used by the Sonic [34] utilities
used to generate the PMVDR features. A more thorough comparison of the
WLP and MVDR methods remains a possible topic for future work.

In the main set of experiments, the SWLP spectral envelope estimate was
compared to two baseline methods. The first baseline method used the
FFT periodogram, leading to the common Mel-frequency cepstral coefficient
(MFCC) features described in section 3.2, while the second was based on con-
ventional LP. Furthermore, two different sets of training data were tested:
one set containing only clean speech, and a multicondition training set in-
cluding also speech recorded in noisy conditions. Results of this evaluation
were presented in section 4.5 and published in [23].

In the case where noisy speech from car and public place environments was
recognized using acoustic models trained on clean speech only, both linear
predictive methods showed prominent improvement in the recognition results.
SWLP was also consistently the better system, with statistically significant
improvements for the lower SNR rates. When recognizing clean speech, dif-
ferences between systems were insignificant, but it should be noted that the
use of the SWLP envelope did not cause any degradation of results in this
case, which is a common problem with noise robust systems.

Using a multicondition training set containing noisy audio to train the recog-
nition system achieved significant improvements in the recognition perfor-
mance, a result which agrees well with existing literature [16]. Under these
conditions the MFCC baseline generally outperformed the linear predictive
methods. It is good to keep in mind, however, than in the section 4.5 ex-
periments the multicondition training set contained noise types from both
the car and public place noisy environments used for testing, and while the
training and test data were from different recording sessions and speakers,
there was no large mismatch between noise types in the data. A recognition
experiment with noisy test data of different type could be performed to find
out if the robustness of the spectral envelope models could lead to improved
recognition performance in that case.

Results from the third set of experiments were presented in section 4.6 and
published in [35]. Here the focus was on determining the necessity of the
stabilization step of the SWLP method in a speech recognition task, as well
as any possible degradation of the results caused by the stabilization. In these
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experiments, unstabilized weighted linear prediction with the dynamic range
limiting detailed in section 3.5 was compared against stabilized weighted
linear prediction and the two baseline methods of section 4.5, for the clean
speech training scenario. The unstabilized weighted linear was found out to
be the best performing system for noisy test material, though at the cost of
some degradation of recognition results for clean speech.

The research presented in this work related to weighted linear prediction has
focused mostly on the stabilized version, the SWLP algorithm. Based on
the results of section 4.6 the unstabilized weighted linear prediction could
however be a better fit for speech recognition applications, and is likely to
be focused on in further experiments.

Other topics for future work could be based on recent work related to the
MVDR spectrum estimation, for example on warped MVDR [48, 49]. The
weighted linear prediction approach could be compared against the new
MVDR methods. Additionally, ideas from the various refinements of the
MVDR method could also be applicable in the weighted linear prediction
case.

5.2 Parameter adaptation for the weighted

linear prediction

The oracle-based adaptation tests for the STE weight function window width
parameter M presented in Section 4.7 suggest that the speech recognition
performance of the SWLP method could be improved by adaptively selecting
an M value separately for each recognized utterance. In addition, section 4.8
presented one way of selecting the per-utterance M value without utilizing
knowledge of the correct recognition result, as was done in the oracle-based
adaptation. The results remain preliminary, however, and much future work
could be done in this area.

The adaptation tests in section 4.7 and 4.8 were done on an utterance-level
granularity, as this made it possible to use the speech recognition system
without any modifications to recognize the entire test set separately using a
fixed M value. The test results could then be derived by post-processing the
per-utterance recognition results to find out the effect of selecting a particular
M for a particular utterance. In a real speech recognition system, however,
the M value could by dynamically updated as often as desired, possibly for
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each individual frame if necessary. This could enable the system to better
handle noises that are not stationary for the duration of an entire utterance.

In the comparison between stabilized and unstabilized weighted linear pre-
diction in section 4.6, the unstabilized weighted linear prediction had better
speech recognition performance. The experiments in that section were car-
ried out using a fixed M parameter value. The performed M adaptation
tests could be repeated for the unstabilized WLP method, and in general the
WLP method could be used in further adaptation experiments if it is found to
have consistently better performance also in these situations. Furthermore,
using the unstabilized WLP method caused some degradation in recognition
results for clean speech with no background noise. The possibility for reduc-
ing or eliminating this degradation with M parameter adaptation could be
investigated.

The acoustic model probability criteria used for M value selection in the
experiments of section 4.8 was arrived to through exploratory testing. A
wide variety of methods have been proposed for deriving confidence values
for the recognition results of a speech recognition system [21]. The suitability
of these methods for the M selection task could be examined.

The need to recognize the provided input with an array of k different values
of M inherent in the M adaptation scheme used in section 4.8, or any re-
finements of it using a different confidence measure, naturally causes a k-fold
increase in the computational complexity of the recognition task. An impor-
tant research objective would therefore be to find a more practical adaptation
method without this limitation.

In [23], the optimal M values were found to be different for the various record-
ing channels, where the major difference between the channels is the relative
amount of noise present in the signal. On-line noise estimation methods such
as the one presented in [40] could possibly be used in the selection of the M
parameter value.

Finally, in this work, a speaker-independent recognizer with no speaker or en-
vironment adaptation was used, as the objective was to compare the spectral
envelope estimation methods themselves. Adaptation approaches such as the
linear transform based maximum likelihood linear regression (MLLR) have
been used to obtain impressive improvements in recognition performance [47].
The possibility of using the WLP features in combination with model-level
adaptation could be investigated. Research on adaptation methods could
also provide new insight on the WLP parameter adaptation task.
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Conclusions

The original motivation for this thesis was to perform a comprehensive eval-
uation of the stabilized weighted linear prediction (SWLP) spectral envelope
estimation method in a large vocabulary automatic speech recognition appli-
cation, especially when speech is corrupted by the noise in real-world acoustic
environments. Feature extraction methods based on the SWLP algorithm as
well as a number of other spectral envelope estimation methods were there-
fore tested in the feature extraction stage of a state of the art large vocabulary
continuous speech recognition system. The SPEECON corpus consisting of
speech recorded in real-world noisy environments was used to get reliable
results of the practical noise-robustness of the compared methods.

Significantly better recognition performance was obtained with the feature
extraction methods based on linear prediction (LP) and stabilized weighted
linear prediction (SWLP) when compared to a baseline system based on
the popular mel-frequency cepstral coefficient (MFCC) feature representa-
tion. In addition, the SWLP method was slightly better than unweighted
LP, with more pronounced differences in the recognition rates for the nois-
ier test data. Comparisons between speech features based on the stabilized
and unstabilized weighted linear prediction also suggest that the unstabilized
WLP approach is a better fit for speech recognition purposes, and should be
investigated in further research.

The behavior of the weighted linear prediction models depend on the weight
function, and in the case of the short-time energy (STE) weight function
used in this work, on the STE window width parameter M . Performance
improvements were shown to be possible by allowing separate M parameter
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values for each utterance in the test data, and promising preliminary results
were achieved by a method for selecting the per-utterance M value based on
the HMM state probabilities provided by the acoustic model of the speech
recognizer. The parameter adaptation task also remains a possible topic for
later research.
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