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Ŝ set of auxiliary factors or states, [Ŝ]dn̂ = sd(t̂n̂)
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Chapter 1

Introduction

1.1 Problem setting

A spatio-temporal dataset is a collection of measurements which are taken at
several locations at different times. Examples of such data include temper-
ature and air pressure in climatology, apartment prices in economics as well
as mortality rates in medical science. The data has typically some underlying
dynamics, which can be extremely complex. In addition, these datasets can
be large in size.

Analysis and modeling of such large and complex spatio-temporal datasets
is a challenging task. For instance, the climate system has been studied by
using both physical and statistical models. Physical modeling utilizes deep
understanding of the first principles, leading to complex and computationally
demanding simulations. Although physical modeling remains indispensable,
statistical models offer a more practical approach to the problem. They can
be applied to climate observations to study complex climate variability, which
can significantly contribute to the climate knowledge.

Statistical analysis of complex models can be done in a principled way by
using Bayesian methods. This framework makes it straightforward to perform
several important tasks, including predicting unobserved variables, quantify-
ing uncertainty in the predictions, comparing different models and handling
missing data. However, Bayesian methods often lead to intractable integrals
and high computational cost, thus some approximation techniques must be
used to solve these issues.

For modeling and exploring high-dimensional systems, factor analysis (FA)
gives a reasonable basis. The model assumes that the observed variables are
generated as a linear combination of latent sources. These latent components
give insight into the observed data variability and make it possible to predict
missing data. However, standard FA is limited because not all prior informa-
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CHAPTER 1. INTRODUCTION 2

tion is used. For example, FA discards information about temporal correlations
in the data. Therefore, it is often necessary to extend the basic model in order
to model the system appropriately.

Spatial and temporal prior knowledge can be incorporated into FA using
Gaussian processes (GP). They enable setting flexible priors over functions, for
instance, whether the function is stationary, smooth or roughly periodic. By
setting GP priors over the spatial and temporal patterns in FA, the components
become continuous functions and can be predicted at arbitrary locations at
any time. However, GPs do not scale well to large problems due to high
computational cost. This computational limit can be pushed further by using
sparse approximations.

1.2 Contributions of the thesis

This thesis presents a novel extension of factor analysis for exploratory analysis
and modeling of spatio-temporal data. The model sets Gaussian process priors
over the spatial and temporal components in factor analysis. Preliminary
results with the model are published in a conference paper (Luttinen and Ilin,
2009).

From a modeling viewpoint, the model achieves significant advantages over
standard Gaussian process regression and factor analysis approaches by com-
bining them. In contrast to factor analysis, the presented model is capable of
modeling complex spatial and temporal structure. Compared to the standard
Gaussian process regression over the spatio-temporal domain, the presented
model gains substantial computational savings by operating only in the spatial
or temporal domain at a time. Thus, modeling of very large datasets which
have been infeasible for standard Gaussian process regression become feasible
for the proposed model.

The new model combines the modeling assumptions of several traditional
techniques used for analysis of spatially and temporally distributed data: krig-
ing is used for modeling spatial dependencies; empirical orthogonal functions
reduce the dimensionality of the problem; and temporal smoothing finds rele-
vant features from time series by removing noise.

The model is applied to reconstruct missing values in a historical sea surface
temperature dataset. The results are promising and suggest that the proposed
model may outperform the state-of-the-art reconstruction systems.

1.3 Structure of the thesis

The thesis is organized as follows: Chapter 2 presents the Bayesian framework
for doing inference in a principled way. As this often leads to analytically
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intractable integrals, variational Bayesian methods are introduced for finding
approximate solutions efficiently. Chapter 3 presents probabilistic latent vari-
able models for modeling high-dimensional datasets. It is shown how the basic
factor analysis model can be extended to handle dynamics and nonlinearities
in the data. Chapter 4 defines Gaussian processes for performing nonlinear
regression and presents the state-of-the-art sparse approximation method for
inference on large datasets. Chapter 5 introduces the novel Bayesian model
as a combination of factor analysis and Gaussian processes. For learning the
model, efficient algorithms are presented by using different levels of variational
Bayesian approximations. Chapter 6 presents experimental results with the
model using artificially generated data and a historical sea surface tempera-
ture dataset. Chapter 7 concludes the thesis and discusses some directions
for future work. The appendices provide some technical details for intrigued
readers.



Chapter 2

Bayesian inference

The Bayesian framework gives a principled way of doing modeling and data
analysis. The state of knowledge is presented by probabilities, and thus the
simple rules of probability theory can be used for doing inference. The same
basic rules are used regardless of the complexity or the application field of the
problem.

Bayesian modeling has several advantages over ad hoc approaches includ-
ing: 1) The probabilities account for the uncertainty in the results. 2) Missing
values are usually not a problem because the whole framework is about incom-
plete knowledge. 3) Model comparison can be done in a principled way. 4)
Overfitting is prevented by combining many models. 5) Modeling assumptions
and priors are expressed explicitly and can be altered. 6) Existing models can
be straightforwardly modified, extended or used as a building block for more
complex models.

This chapter gives a brief introduction to Bayesian modeling. Section 2.1
explains how Bayesian inference can be interpreted as a unique system of
consistent rational reasoning under uncertainty. Section 2.2 shows how to
apply this framework to modeling problems. However, modeling can rarely
be performed exactly, thus some approximation methods are needed, as dis-
cussed in Section 2.3. The section also explains in more details the variational
Bayesian approximation methods, and Section 2.4 illustrates the approxima-
tion in practice by using a simple toy example. More detailed philosophical
and machine-learning oriented views can be found in, for instance, the books
by Jaynes (2003) and Bishop (2006), respectively.

2.1 Probability theory

The probability theory can be seen as common sense reduced to calculation.
Jaynes (2003) presented a fascinating derivation of the probability theory,

4



CHAPTER 2. BAYESIAN INFERENCE 5

starting from very basic qualitative assumptions about rational reasoning:

(I) Degrees of plausibility are represented by real numbers.

(II) The theory qualitatively agrees with common sense.

(III) Consistent reasoning:

(IIIa) If a conclusion can be reasoned out in more than one way, then
every possible way must lead to the same result.

(IIIb) Always take into account all the evidence relevant to a question.

(IIIc) Always represent equivalent states of knowledge by equivalent plau-
sibility assignments.

After long and rigorous derivations, the resulting unique quantitative rules are
the well-known product rule

p(A,B) = p(A|B)p(B) = p(B|A)p(A) (2.1)

and the sum rule

p(A) + p(A) = 1,

where A and B are hypotheses, and A is the complement of A. The probabil-
ities p(·) represent the state of knowledge, where certainty is represented by
1 and impossibility by 0. Therefore, applying the Bayesian probability theory
to inference problems is nothing but using common sense consistently.

2.2 Probabilistic modeling

In Bayesian modeling, an unknown system is learned given some observations
y. The prior beliefs about the system are formed into a likelihood function
p(y|Z,M), where Z is some latent (i.e., unknown) variable and M represents
modeling assumptions. The prior belief for Z is expressed in the form p(Z|M).
The posterior probability is obtained by applying the Bayes’ rule

p(Z|y) =
p(y|Z,M)p(x|M)

p(y|M)
, (2.2)

which follows from the product rule (2.1). The denominator p(y|M) is called
the marginal likelihood, defined as

p(y|M) =

∫

p(y|Z,M)p(Z|M)dZ,
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which is the probability of the observations assuming the model M. Thus,
it can be used for model selection by evaluating the marginal likelihood of
several models and choosing the model with the highest marginal likelihood.
Typically, the conditioning on the model is not explicitly shown if there is no
risk of misunderstanding.

In order to simplify the calculations, the prior p(Z) is often chosen to be
of such a form that the resulting posterior p(Z|y) distribution is in the same
family as the prior. This type of prior distribution is called a conjugate prior
for the likelihood.

As an example, we present the conjugate priors for the multivariate normal
(also known as Gaussian) distribution

p(y|f ,Σy) = N (y |f ,Σy ) = (2π)−
N

2 |Σy|
− 1

2 exp

[

−
1

2
(y − f)TΣ−1

y (y − f)

]

,

where N is the length of the vector y, f is a N × 1 mean vector and Σy is a
N ×N covariance matrix.

The conjugate prior of the mean variable f is also a Gaussian

p(f) = N (f |µ,Σf ) ,

which results in the posterior Gaussian distribution

p(f |y) = N
(

f
∣

∣(Σ−1

f + Σ−1
y )−1(Σ−1

f µ + Σ−1
y y), (Σ−1

f + Σ−1
y )−1

)

. (2.3)

The posterior mean of f is a weighted average of the prior mean µ and the
data y. The posterior inverse covariance matrix is the sum of the inverted
covariance matrices in the prior and likelihood.

The conjugate prior of the covariance matrix is a bit more complicated. Let
us consider an isotropic covariance matrix of form Σy = τ−1I. The conjugate
prior of τ is the gamma distribution

p(τ) = G (τ |a, b) =
ba

Γ(a)
τa−1e−bx, τ > 0,

where a and b are called a shape and rate parameters, respectively, and Γ is
the gamma function. The resulting posterior gamma distribution equals

p(τ |y) = G

(

τ

∣

∣

∣

∣

∣

α +
1

2
N, β +

1

2

N
∑

n=1

(yn − fn)2

)

.

The distributions have the following expectations. A Gaussian variable
f ∼ N (µ,Σf ) has moments

〈y〉 = µ
〈

yyT
〉

= µµT + ΣA.
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A variable τ ∼ G (a, b) has expectations

〈τ〉 =
a

b
〈log τ〉 = ψ(a) − log b,

where ψ is the digamma function. These expectations are used in our model.

2.3 Posterior approximations

After data y is given, it is a central task in Bayesian data analysis to compute
the posterior distribution p(Z|y) of the unknown variables Z = {Z1, . . . ,ZM}.
However, usually the posterior distribution (2.2) includes integrals that are
analytically intractable or computationally too heavy. Therefore, one has to
resort to some approximation methods, which can roughly be divided into two
categories: stochastic and deterministic techniques (Bishop, 2006).

Stochastic techniques approximate the posterior distribution with a finite
number of samples. The samples from the intractable posterior may be ob-
tained in several ways depending on the problem. These stochastic techniques
are covered comprehensively in the book by Gelman et al. (2003). In com-
plex problems, sampling is often implemented with random-walk type of al-
gorithms, called Markov chain Monte Carlo (MCMC). In general, stochastic
methods have the property that the approximation approaches the true poste-
rior at the limit of infinite computation time. However, for large and complex
problems, the convergence can be extremely slow.

Deterministic methods use analytic approximations to the posterior. The
resulting approximate distribution is often evaluated efficiently, but it usually
requires extra work because some formulas must be derived analytically. The
approximate distribution does not, in general, recover the true posterior dis-
tribution exactly. Important deterministic approximations include: maximum
likelihood and maximum a posteriori methods, which approximate the poste-
rior distribution with a point estimate; Laplace method, which fits a Gaussian
distribution to a mode of the posterior probability density function; and vari-
ational Bayesian (Jordan et al., 1998) and expectation propagation (Minka,
2001) methods, which find a simple distribution by minimizing information-
theoretic distance to the true distribution. The following subsections give
more details on the relevant approximation methods for the thesis: maximum
likelihood, maximum a posteriori and variational Bayesian methods.
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2.3.1 Maximum likelihood and maximum a posteriori

Maximum likelihood (ML) and maximum a posteriori (MAP) estimates of a
variable Z are defined as

ZML = arg max
Z

{log p(y|Z)},

ZMAP = arg max
Z

{log p(Z|y)} = arg max
Z

{log p(y|Z) + log p(Z)}.

Both estimates summarize the distribution with a single point, ignoring all the
uncertainty in the variable Z. Although this may lead to badly overfitted ap-
proximations, they can be sufficient and accurate for sharply peaked unimodal
posterior distributions. ML and MAP estimates also have the advantage that
they can be found efficiently using standard optimization methods.

2.3.2 Variational Bayesian methods

In variational Bayesian (VB) methods (see, e.g., Bishop, 2006) the idea is
often to find an approximate distribution q(Z) ≈ p(Z|Y) which minimizes the
Kullback-Leibler (KL) divergence of p(Z|Y) from q(Z), defined as

KL(q||p) = −

∫

q(Z) log
p(Z|y)

q(Z)
dZ.

The divergence is always nonnegative and zero only when q(Z) = p(Z|Y).
However, it can not be evaluated if the true posterior distribution is intractable.
Thus, the optimization has to be performed indirectly.

It turns out that the KL divergence can be minimized by maximizing a
specific lower bound of the marginal likelihood. To begin with, the log marginal
likelihood is decomposed as

log p(y) = log
p(y,Z)

p(Z|y)

= log
p(y,Z)q(Z)

p(Z|y)q(Z)

=

∫

q(Z) log
p(y,Z)q(Z)

p(Z|y)q(Z)
dZ

= L(q) + KL (q ‖p) ,

where we have defined

L(q) =

∫

q(Z) log
p(y,Z)

q(Z)
dZ. (2.4)
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Because log p(y) is constant with respect to q, changes in q result in opposite
changes to L(q) and KL (q ‖p). Thus, the Kullback-Leibler divergence can be
minimized by maximizing L(q). Furthermore, because the KL divergence is
always nonnegative, the L(q) can be seen as a lower bound of the log marginal
likelihood, that is,

log p(y) ≥ L(q).

This lower bound can be used for model selection or comparison similarly as
the true log marginal likelihood.

Actually, there is not yet anything approximate in this optimization, be-
cause clearly the optimal solution is the true posterior distribution itself q(Z) =
p(Z|Y). In order to find a tractable solution, the range of functions is typically
restricted somehow. On the other hand, the range must be as rich and flexible
as possible in order to find a good approximation. This can be achieved by
assuming a specific form for the distribution.

We restrict the class of approximate distributions by assuming that the q
distribution factorizes with respect to some grouping of the variables, that is,

q(Z) =

M
∏

m=1

qm(Zm).

Inserting this distribution to the lower bound (2.4) and organizing the terms
with respect to the m-th group Zm results in

L(q) =

∫

· · ·

∫

(

M
∏

m=1

qm(Zm)

)

log
p(y,Z)

∏M

n=1
qn(Zn)

dZ1 · · · dZM

=

∫

qm(Zm) (log p̃(y, Zm) − log q(Zm)) dZm + const, (2.5)

where const represents terms that are constant with respect to qm(Zm) and

log p̃(y, Zm) =

∫

· · ·

∫

(

∏

n 6=m

qn(Zn)

)

log p(y,Z)dZ\m

= 〈log p(y,Z)〉\m ,

where the expectation 〈·〉 is taken over the q distributions of all the other vari-
ables except Zm. Equation (2.5) can be seen as the Kullback-Leibler divergence
between qm(Zm) and p̃(y|Zm)

L(q) =

∫

qm(Zm) log
p̃(y, Zm)

q(Zm)
dZm + const,
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and it follows that the optimal qm(Zm) satisfies

qm(Zm) ∝ p̃(y, Zm) = exp
(

〈log p(y,Z)〉\m

)

. (2.6)

Thus, the log marginal likelihood lower bound (2.4) can be maximized with
respect to one factor qm(Zm) at a time. In order to maximize the approxi-
mate joint distribution q(Z), the individual factors can be updated in turns
by iterating until convergence. This learning method is called the variational
Bayesian expectation maximization (VB-EM) algorithm (Attias, 2000; Beal
and Ghahramani, 2003). Alternatively, it is also possible to use, for instance,
gradient-based optimization methods to optimize the parameters of the ap-
proximate q distributions (see, e.g., Honkela et al., 2008).

In the end, one has approximations of the posterior marginal distributions
of each variable group:

p(Zm|y) ≈ q(Zm),

and the joint posterior distribution:

p(Z|y) ≈ q(Z).

The lower bound L(q) for the log marginal likelihood is given in (2.4).

2.4 Toy example

We present a simple toy example to illustrate the variational Bayesian ap-
proximation. The toy data consists of a single observation y = 1 modeled as
a product of two unknown variables a and s with additive noise:

y = as+ noise. (2.7)

The priors for the variables a and s are given as Gaussian distributions

p(a) = N (a |0, 1) , p(s) = N (s |0, 1) .

The noise in (2.7) is assumed to be Gaussian, resulting in a likelihood function

p(y|a, s) = N
(

y
∣

∣as, σ2
)

,

where the variance σ2 is fixed to 0.1 for simplicity.
The true posterior is approximated with a factorized distribution as

p(a, s|y) ≈ q(a, s) = q(a)q(s).
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Figure 2.1: The true posterior p(a, s|y) is shown as black contours, and the
approximate posterior q(a, s) as red contours.

This approximation can be optimized by using the VB-EM algorithm, which
consists of alternate updates of the factors q(a) and q(s). The update rules
for these factors can be evaluated by applying the general update rule (2.6),
resulting in

q(a) = N
(

a
∣

∣ā, σ2

a

)

,

where the parameters are defined as

σ2

a = (1 + σ−2
〈

s2
〉

)−1,

ā = σ2
aσ

−2 〈s〉 y,

and the expectations 〈s2〉 and 〈s〉 are evaluated with respect to q(s). The
factor q(s) is updated by using identical formulas where a and s have been
appropriately exchanged. The update rules are applied until convergence.

Figure 2.1 shows the contours of the true posterior p(a, s|y) and the ap-
proximation q(a, s). The approximate distribution q(a, s) has converged to
one of the two modes and captured the probability mass in that mode rather
well. However, the approximation discards some posterior correlations because
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the variables a and s were assumed to be independent a posteriori. This be-
havior is a general feature of the VB methods that factorize the approximate
distribution with respect to the variables.

2.5 Conclusions

This chapter presented the Bayesian framework, which gives a principled and
consistent way of doing inference. The basics of applying the framework to
probabilistic modeling were given. As the Bayesian inference often leads to
analytically intractable integrals, we discussed some approximation methods.
The variational Bayesian methodology was explained in more detail and illus-
trated with a simple toy example. This example showed the general properties
of the factorized VB posterior approximations: they often capture only one
mode of the true distribution and discard posterior correlations between the
variables.



Chapter 3

Latent variable models

Latent variable models (LVM) is a general tool for analyzing and modeling
large high-dimensional datasets. They can be used for reducing dimensionality
and finding important characteristics from datasets by explaining the data
with lower dimensional latent features. Many LVMs can be seen as extensions
of the basic factor analysis model, which has a significant role in exploratory
analysis, although it is a simple linear model.

This chapter presents latent variable models which work as a baseline for
further development of spatio-temporal factor analysis in Chapter 5. Sec-
tion 3.1 defines principal component analysis mathematically. Section 3.2 for-
mulates it as a probabilistic model and extends it to factor analysis. Section 3.3
explains some dynamic extensions, and Section 3.4 discusses the problem of
finding meaningful latent sources from data.

3.1 Principal component analysis

Principal component analysis (PCA) is a classical method for dimensional-
ity reduction (Jolliffe, 2002). In environmental statistics, PCA is known as
the method of empirical orthogonal function (EOF) analysis (von Storch and
Zwiers, 1999; Finkenstädt et al., 2007). These methods find uncorrelated com-
ponents that explain as much variance in the data as possible. Thus, they
can be seen to extract dominant patterns which can give insight to the high-
dimensional data.

PCA can be derived, for instance, from the minimization of the mean
squared error. Let us assume that the dataset consists of N data vectors
y:1, . . . ,y:N with dimensionality M , forming M×N matrix Y = [y:1, . . . ,y:N ].
As a preprocessing step, the row-wise mean is removed from Y. Then, Y is
decomposed as Y ≈ AS, where A is a M ×D matrix of loadings and S is a
D × N matrix of factors. The dimensionality D is chosen such that D < M

13
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andD < N . The task is to find such A and S that minimize the reconstruction
error

EAS = ‖Y − AS‖2 =

M
∑

m=1

N
∑

n=1

(ymn −
D
∑

d=1

amdsdn)2. (3.1)

The subspace spanned by the columns of A is called the principal subspace.
Note that A can be rotated arbitrarily by compensating it in S as AS =
(AR)(R−1S). Therefore, without loss of generality, in order to find a unique
solution, one can require that the column vectors of A are mutually orthog-
onal, and the row vectors of S are also mutually orthogonal and scaled to
unit variance. If these additional requirements are used, the method is called
principal component analysis.

If the data has no missing values, the principal components can be found
by using the singular value decomposition (SVD)

Y = UΣVT, (3.2)

where U is a M ×M orthogonal matrix, V is a N × N orthogonal matrix,
and Σ is a M × N matrix with the singular values on the main diagonal.
The PCA solution corresponds to selecting the D largest singular values, and
forming A and S from the corresponding D columns of U and D rows of ΣVT,
respectively.

However, standard PCA has some limitations as there is, for example, no
unified way of handling missing values nor selecting the correct number of
principal components. Although missing values can be handled by adapting
algorithms based on the minimization of the cost function (3.1), this may lead
to major overfitting problems for sparse datasets (Ilin and Raiko, 2008). The
number of principal components can be chosen by using, for instance, cross-
validation (CV) in which the data is split into several sets, and the choice is
made based on the generalization performance over each set by using the other
sets for estimating the variables A and S (Jolliffe, 2002). However, estimating
the variables several times can be computationally intensive for large datasets.
These issues can easily be solved by adopting the probabilistic framework. This
framework also makes it straightforward to extend the model to more complex
modeling problems.

3.2 Factor analysis

Factor analysis (FA) can be interpreted as the following probabilistic latent
variable model (see, e.g., Bishop, 1999a):

y:n = As:n + µ + ε:n, n = 1, . . . , N, (3.3)
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where A is the M×D loading matrix, s:n are the columns of the D×N matrix
of factors, µ is a M × 1 bias term and ε:n is a M × 1 vector of noise. The
priors for the latent variables s:n and ε:n are given as

p(s:n) =
D
∏

d=1

N (sdn |0, 1) , p(ε:n) =
M
∏

m=1

N
(

εmn

∣

∣0, τ−1

m

)

, (3.4)

where τ−1
m is the noise variance in the m-th dimension.

Maximum likelihood estimates for the parameters A, µ and τ can be
found by using the expectation maximization (EM) algorithm (Dempster et al.,
1977). The algorithm iteratively alternates between computing the expecta-
tion of the log likelihood with respect to the current estimate of the posterior
distribution (E-step) and maximizing this expectation with respect to the pa-
rameters (M-step). PCA is a special case of FA which assumes isotropic noise,
that is, τm = τ , and it can be shown that the maximum likelihood estimation
yields the result of standard PCA in the limit τ → ∞ (Tipping and Bishop,
1999).

Instead of using ML estimates, it is possible to set priors for A, µ and τ

and approximate the joint posterior distribution without using point estimates.
For instance, the priors could be

p(A) =
M
∏

m=1

D
∏

d=1

N
(

amd

∣

∣0, α−1

d

)

, p(µ) =
M
∏

m=1

N (µm |0, β ) ,

p(α) =

D
∏

d=1

G (αd |aα, bβ ) , p(τ) =

M
∏

m=1

G (τm |aτ , bτ ) ,

where αd is used to automatically prune out irrelevant components, and the
hyperparameters β, aα, bα, aτ and bτ can be fixed to small values (e.g., 10−3)
to obtain broad priors.

Inference with the model must be performed by using approximation meth-
ods because the joint posterior distribution p(A,S,µ,α,τ|Y) is intractable.
Variational Bayesian methods can be used to approximate the distribution by
a factorized distribution (Bishop, 1999b)

p(A,S,µ,α,τ|Y) ≈ q(A)q(S)q(µ)q(α)q(τ).

The variables are strongly coupled in the true posterior, thus the VB-EM
algorithm may suffer from zigzagging and converge slowly. To improve the
rate of convergence, it is possible to apply some transformations which help in
optimizing the factors jointly (see, e.g., Luttinen et al., 2009b).
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3.3 Dynamic latent variable models

In some applications, the observations are time series ym(t) having some un-
derlying temporal structure. Instead of modeling the dynamics of the time

series y(t) =
[

y1(t) . . . yM(t)
]T

directly, it can be more feasible to model
the dynamics in some latent space by using latent time series s(t). The latent
sources are then mapped to the observation space. Linear state-space models
typically use linear dynamics in the latent space and a linear mapping from
the latent space to the observations. Nonlinear state-space models can have
nonlinear dynamics or a nonlinear mapping to the observations.

3.3.1 Linear state-space models

A linear state-space model is defined as

y(t) = As(t) + noise,

s(t) = Bs(t− 1) + noise, (3.5)

where A is a M ×D loading matrix as in factor analysis, B is a D×D matrix
describing the first-order autoregressive (AR) dynamics in the latent space,
and the noise is often assumed to be Gaussian.

Learning this linear model has been studied extensively. If the parameters
A and B are known, the latent states can be estimated by using the Kalman
filter (Grewal and Andrews, 1993). If the parameters are unknown, maximum
likelihood estimates can be found by utilizing the EM algorithm (Ghahramani
and Roweis, 1999).

Linear state-space models have been applied in climate research extensively
(see, e.g., Banerjee et al., 2004; Calder, 2007). Lopes et al. (2008), for instance,
added spatial structure by using Gaussian processes1. Although AR models
offer an efficient framework to model dynamics, low-order AR models may
provide unrealistically simple dynamics, and the learning of high-order AR
dynamics can be difficult. In addition, the samples are often required to be
uniformly spaced.

3.3.2 Nonlinear state-space models

Nonlinear state-space models can be used for more complex dynamical struc-
ture. The model uses a nonlinear mapping f from the latent states s(t) to the
observations y(t) and nonlinear dynamics g in the latent space:

y(t) = f(s(t)) + noise,

s(t) = g(s(t− 1)) + noise,

1Gaussian processes are discussed in the following chapter.
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where the noise is often assumed to be Gaussian.
Learning a nonlinear state-space model is extremely difficult. Even if the

nonlinearities f and g were known, they cause the posterior distribution of
the states s(t) to be non-Gaussian. With unknown nonlinearities, the model
becomes very flexible, thus some regularization is needed to prevent overfit-
ting. In addition, there exists infinitely many solutions because any invertible
nonlinear transformation of the states can be compensated by a suitable trans-
formation of the mappings f and g.

The nonlinearities f and g can be modeled in different ways. For instance,
Roweis and Ghahramani (2001) modeled the nonlinearities with a radial ba-
sis function (RBF) network which was learned by using the EM algorithm.
Valpola and Karhunen (2002) applied multi-layer perceptron (MLP) networks
and used variational Bayesian methods for learning. The latent sources sd(t)
were assumed to be independent in the VB posterior approximation, thus the
algorithm favors solutions with decoupled latent space dynamics. Pang et al.
(2007) modeled the nonlinear mapping f from the latent states s(t) to the
observations y(t) with Gaussian processes but used a linear second-order AR
model for the dynamics in the latent space. Park and Choi (2007), on the
other hand, used a linear mapping f but a nonlinear mapping for the latent
space dynamics g using Gaussian processes.

3.4 Blind source separation

In source separation problems, the goal is to find a set of meaningful sources
sd(t) from a set of observation signals yd(t) which are mixtures of the sources.
A classical example is the cocktail party problem, where several people are
talking simultaneously in the same room and the task is to separate the voices
of the different speakers by using recordings of several microphones in the
same room. With minimum a priori assumptions about the sources, the source
separation problem is called blind source separation (BSS).

Independent component analysis (ICA) is a tool to solve the BSS problem
(Hyvärinen et al., 2001). It uses the linear latent variable model (3.3) but as-
sumes that the latent components are non-Gaussian. The intuition behind the
method can be understood from the central limit theorem, which states that
the mean of a large number of independent random variables is approximately
normally distributed under suitable conditions. If the observation signals are
mixtures of independent sources, non-Gaussianity can be interpreted as a mea-
sure of independence for the latent sources. Thus, ICA algorithms typically
find latent sources by maximizing their non-Gaussianity. However, standard
ICA algorithms do not take into account any temporal structure in the obser-
vations.



CHAPTER 3. LATENT VARIABLE MODELS 18

If the observations are time series, the sources can be separated by exploit-
ing the temporal structure. The separation is based on finding sources that
have independent dynamics. This can be achieved by, for instance, decoupling
the temporal correlations based on autocorrelations or frequency contents.

Separation based on autocorrelations can be performed by eliminating the
latent source autocorrelations

〈si(t)sj(t− δ)〉 , i 6= j

where δ is a time lag. The separation diagonalizes the sample covariance
matrix 1

T

∑T

t=1
y(t)y(t)T and the estimate of the time-lagged covariance matrix

1

T

∑T
t=1

y(t)y(t− τ)T (see, e.g., Tong et al., 1991). It is also possible to jointly
diagonalize several time-lagged covariance matrices using different time lags τ .
This approach is applied, for instance, in the algorithm called TDSEP (Ziehe
and Müller, 1998).

Denoising source separation (DSS) constructs source separation algorithms
by using denoising procedures (Särelä and Valpola, 2005). It looks for la-
tent sources that are uncorrelated and maximize some desired properties, for
example, smoothness, non-Gaussianity or distinct frequency structure. This
framework makes it possible to incorporate prior knowledge about the sources
because the desired property can be problem-specific. Exploiting the prior
knowledge may help in finding a good representation of the data. For in-
stance, Ilin et al. (2006) applied this framework in exploratory analysis of
climate data to extract components with distinct frequency structure.

3.5 Conclusions

This chapter presented basic latent variable models. Factor analysis and prin-
cipal component analysis are simple linear models for finding dominant pat-
terns in data. They can be extended to dynamical models in order to take into
account the temporal structure: linear state-space models offer possibly un-
realistically simple dynamics, and nonlinear state-space models, on the other
hand, are difficult to learn. With some extra criteria, these models can be
used for finding independent and meaningful latent sources to solve the BSS
problem.



Chapter 4

Gaussian process regression

In regression problems, the goal is to find an unknown function f which maps
the input space X to the real-valued output space R. Applications for regres-
sion analysis exist in almost every field: in climatology, the interest might be
in modeling temperature as a function of time and location; in financial appli-
cations, one may attempt to predict the prices of apartments as a function of
location, size and age.

Traditionally, the regression problem has been solved by setting some pa-
rameterized form for the function f and then learning the parameters, for
instance, the bias and slope in linear regression or the coefficients in poly-
nomial regression. After learning the parameters, predictions can be made
conditioned only on the parameters. When such an approach is used, we can
only model such functions that can be obtained with some values of the pa-
rameters. However, the real underlying phenomenon is probably much more
complex than the parameterized function with a few degrees of freedom. In-
creasing the number of parameters increases the flexibility of the model, but
the effect of the parameterization and the priors over the parameters become
harder to interpret. Instead of working on a large set of parameters, one
can work over the functions more directly by having interestingly an infinite
number of parameters, which is called a non-parameteric approach.

Gaussian process (GP) is a non-parametric regression tool which allows the
complexity of the function to increase as much as there is evidence in the data
while keeping the model and the hyperparameters easily interpretable. Section
4.1 explains Gaussian processes, and Section 4.2 applies them to the regression
problem. The prior assumptions about the unknown function are set in the
form of covariance functions, which are discussed in Section 4.3 with some ex-
amples. The covariance functions include hyperparameters, which control the
high-level properties of the unknown function and must be learned using some
approximate methods, as presented in Section 4.4. Section 4.5 discusses the
computational problem of applying Gaussian processes to large datasets and

19
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presents the state-of-the-art variational Bayesian sparse approximations. For
more detailed introduction to Gaussian processes, refer to, for instance, the
book by Rasmussen and Williams (2006) or the shorter tutorial by MacKay
(1998). When Gaussian processes are used for spatial interpolation, the ap-
proach is also known as kriging, which is a fundamental tool in the field of
geostatistics (Cressie, 1993).

4.1 Introduction to Gaussian processes

Gaussian processes are used to set probability distributions over the space of
functions f : X → R, where X is the input space. Therefore, the realizations
of the random variables from this distribution are functions, and the standard
tools of probabilistic inference can now be applied to functions. It is possible,
for instance, to draw random functions, evaluate probabilities of given func-
tions and use probabilistic calculus to obtain the posterior distribution over
functions.

Gaussian process can be defined as a stochastic process {f(x)}x∈X for
which any finite set of samples is normally distributed. For an arbitrary
finite set of inputs X = {xn ∈ X}N

n=1, the corresponding function values

f =
[

f(x1) . . . f(xN)
]T

are distributed as

f |X ∼ N (µ,K) , (4.1)

where the parameters µ and K are defined as

[µ]i = m(xi),

[K]ij = k(xi,xj),

and the functions m and k are the mean and covariance functions, respectively.
The mean function m(x) describes what is the expected value of function f for
input x. The covariance function k(x,x′) defines the covariance between two
function values f(x) and f(x′) based on the inputs x and x′. Loosely speaking,
the value of the covariance defines the expected similarity of the function
values. For smooth functions, the function values for two nearby inputs are
expected to be very similar, that is, their correlation should be close to one.
The covariance functions are extremely flexible for setting rather high-level
properties of the function, such as smoothness, periodicity and stationarity.
They are the heart of Gaussian process modeling and will be discussed in
more detail in Section 4.3. Learning with Gaussian processes is essentially
learning the covariance function, but let us assume for now that the form of
the covariance function k(x,x′) is given from some prior knowledge.
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Defining the distribution for finite sets of function values is consistent,
because Gaussian distribution has the property that marginalization of other
variables does not affect the mean and covariance of the remaining variables.
Thus, we can interpret (4.1) as a finite-dimensional marginal distribution of
an infinite-dimensional Gaussian distribution, called Gaussian process. Refer
to the paper by Orbanz (2009) for more detailed theoretical discussion on the
existence, consistency and uniqueness of this infinite-dimensional probability
distribution.

The infinite-dimensional Gaussian process distribution for a “random” func-
tion f is denoted as

f(x) ∼ GP (m(x), k(x,x′)) . (4.2)

As it represents the state of knowledge about the function, it can, similarly to
other probability distributions in general, describe prior and posterior distri-
butions. For a GP prior distribution, the mean function is usually assumed to
be zero (i.e., m(x) = 0) for simplicity.

4.2 Regression problem

One of the most common applications of Gaussian processes is the regression
problem. The univariate regression model for input x ∈ X and output y ∈ R

is defined as

y = f(x) + noise, (4.3)

where f : X → R is the function of interest. The task is to estimate f from a
known set of input-output pairs {yn,xn}N

n=1 called the training set.
The traditional approach parameterizes the function f with some regression

parameters λ, for instance,

f(x; λ) = λ1 + λ2x+ λ3x
2.

The task is to learn the parameters λ given the data. In the Bayesian frame-
work, this means finding the posterior distribution p(λ|y) of the regression
parameters given some prior p(λ). Then, the data can be discarded and pre-
dictions can be made based on the posterior distribution of λ. However, the
range of possible functions is limited to such functions that are obtained with
some values of the regression parameters λ. In addition, the prior beliefs about
the function may be difficult to set as a prior distribution p(λ).

In order to model complex non-linear functions flexibly, a Gaussian process
can be used as the prior distribution over functions as in (4.2). If the mean
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function is assumed to be zero a priori, the prior distribution of the function
values f for the inputs X = {xn}

N
n=1 equals

f |X ∼ N (0,Kf) , (4.4)

where Kf is the covariance matrix of the function values.
The notation for covariance matrices is as follows. Let {xn}

N
n=1

and {zm}
M
m=1

be two sets of inputs from the input space X , and f =
[

f(x1) . . . f(xN)
]T

and g =
[

f(z1) . . . f(zM)
]T

the corresponding function values. The N ×M
matrix of the covariances between the function values f and g is denoted as
Kf ,g and defined as [Kf ,g]ij = k(xi, zj). We also use a shorthand notation
Kf ≡ Kf ,f . Note that although the notation of a covariance matrix Kf ,g uses
the function values f and g, the covariance matrix itself does not depend on
the function values but on the corresponding inputs.

The noise term in the regression model (4.3) can be modeled with a Gaus-
sian distribution, resulting in a likelihood function

y|f ,X ∼ N (f ,Σ) . (4.5)

Often, the noise covariance is assumed to be isotropic Σ = σ2I. However,
in Chapter 5 we will have to deal with non-isotropic, block-diagonal noise
covariance matrices, thus the derivations here are done with an arbitrary noise
covariance matrix Σ.

The posterior distribution of the function values is obtained by applying
the general posterior Gaussian distribution (2.3), yielding

f |X,y ∼ N
(

f̄ ,Vf

)

, (4.6)

where

f̄ =
(

K−1

f + Σ−1
)−1

Σ−1y, (4.7)

Vf =
(

K−1

f + Σ−1
)−1

, (4.8)

and y =
[

y1 . . . yN

]T
.

The posterior predictive distribution of function values f̃ for new inputs
X̃ = {x̃}Ñ

ñ=1 can be obtained by using the general equations for Gaussian
distributions. The joint distribution of these new function values f̃ and the
observations y is

[

y

f̃

]

∼ N

(

0,

[

Kf + Σ Kf ,f̃

Kf̃ ,f Kf̃

])

.
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Applying the formula of conditional Gaussian distribution (A.6) to this joint
distribution results in the posterior predictive distribution

f̃ |X,y, X̃ ∼ N
(

¯̃
f ,Vf̃

)

, (4.9)

where

¯̃
f = Kf̃ ,f (Kf + Σ)−1

y, (4.10)

Vf̃ = Kf̃ −Kf̃ ,f (Kf + Σ)−1
Kf ,f̃ . (4.11)

Note that (4.9) can also be used to obtain the posterior distribution of the same
function values f̃ ≡ f , that is, X̃ = X and Kf = Kf ,f̃ = Kf̃ ,f = Kf̃ . Then,
applying the matrix inversion lemmas (A.2) and (A.1) to (4.10) and (4.11)
gives the result in the same form as in (4.7) and (4.8). The equations for
the parameters in (4.10) and (4.11) are computationally more feasible as they
involve only one matrix inversion. However, we will not present formulas in
the form which is computationally most efficient because the implementation
is discussed separately in Appendix B.

Gaussian processes have a few advantages over the parameterized regression
methods. First, Gaussian processes make the setting of priors over functions
easily interpretable, whereas with parameterized regression models, the mean-
ing and effect of the parameterization of the function f and the parameters λ

can be difficult to understand. Second, parameterized regression models often
correspond to GP models with some specific covariance functions and can thus
be seen as special cases of the more general GP framework. For instance, AR
models (3.5) can be seen as a special case of Gaussian processes which use a
particular covariance function and the time instances t as inputs (Rasmussen
and Williams, 2006).

4.3 Covariance functions

Covariance functions play an important role in Gaussian process modeling,
as they encode our assumptions about the estimated mapping f . By choos-
ing the covariance function properly, one can set the prior knowledge about
the expected properties of the function, such as continuity, differentiability,
smoothness, stationarity or periodicity. The covariance function can also be
seen to define a similarity measure between function values f(x) for different
inputs x. Similarity is an essential measure when doing predictions because it
tells which known function values are relevant for prediction.

The range of possible covariance functions k(x,x′) is restricted by only a
few simple mathematical properties. Although covariance functions are flexi-
ble, an arbitrary function k(x,x′) is not, in general, a valid covariance function.
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A valid covariance function is symmetric, that is, k(x,x′) = k(x′,x). It should
also be positive semidefinite, that is, for any set of input points {xn}

N
n=1, the

resulting Gram matrix K, whose elements are [K]ij = k(xi,xj), is positive

semidefinite (i.e., vTKv ≥ 0 for all v ∈ R
N ).

Next, some covariance functions are presented as examples, and they will be
used in the later chapters. The considered covariance functions are isotropic,
that is, they are functions of r = d(x,x′), where d is a distance measure
between x and x′. For instance, d could be the Euclidean distance d(x,x′) =
√

(x − x′)T(x − x′) or, in climatology, the distance between two locations on
Earth measured over the surface of the sphere, as defined in Appendix A.2.

One of the most commonly used isotropic covariance functions is the squared
exponential covariance function

k(r; θ1) = exp

(

−
r2

2θ2
1

)

, (4.12)

where the parameter θ1 is a characteristic length scale controlling the smooth-
ness of the function. Figure 4.1a shows the covariance function with different
length scales θ1 and samples drawn from the corresponding GPs.

Periodic functions can be modeled with a periodic covariance function

k(r; θ1, θ2) = exp

(

−
2 sin2(πr/θ1)

θ2
2

)

, (4.13)

where θ1 is the length of the period and θ2 controls the smoothness (MacKay,
1998). Figure 4.1b shows the covariance function with different smoothness
θ2 and samples from the corresponding GPs. Clearly, the periodic component
does not need to be sinusoid.

A computationally interesting class of covariance functions is a family of
piecewise polynomials with compact support. These covariance functions have
the property that the covariance between two data points becomes exactly zero
as the distance r exceeds a certain threshold. Thus, they produce sparse co-
variance matrices by construction, leading to computational advantages. One
of the piecewise polynomial covariance functions defined in the D-dimensional
real space R

D is

k(r; θ1) =
1

3
(1 − r̂)j+2

(

(j2 + 4j + 3)r̂2 + (3j + 6)r̂ + 3
)

, (4.14)

where r̂ = min(1, r/θ1), θ1 is the distance threshold and j = ⌊D
2
⌋ + 3. Fig-

ure 4.1c shows the covariance function with different thresholds θ1 and samples
from the corresponding GPs.

One can derive new valid covariance functions from old ones using some
basic operations. Valid operations are, for example, multiplying and adding
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Figure 4.1: Left hand side shows the covariance function values and right
hand side samples from the corresponding GP distribution using (a) squared
exponential, (b) periodic (θ1 = 0.25), (c) piecewise polynomial, and (d) decaying
periodic (θ1 = 0.1, θ2 = 1.5, θ3 = 2) covariance functions.
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(a) (b) (c)

Figure 4.2: Data is generated from a GP using squared exponential covariance
function, as shown by the + symbols. Three GPs are fitted to the data by using
(a) shorter, (b) equal, and (c) longer length scale than was used in generating the
data. The noise variance σ2 was also set to (a) smaller, (b) equal and (c) larger
values than the true noise variance. The solid line and the gray coloring show
the mean and two standard deviations computed from the posterior distribution.

existing covariance functions together. For instance, multiplying the squared
exponential (4.12) and periodic (4.13) covariance functions results in a quasi-
periodic covariance function

k(r; θ1, θ2, θ3) = exp

(

−
2 sin2(πr/θ1)

θ2
2

−
r2

2θ2
3

)

, (4.15)

where θ1 and θ2 have similar functions as in (4.13), and θ3 controls the decay
of the periodicity. Sample functions from this covariance function have the
property that they are approximately periodic: the correlation between points
even in the same phase approaches zero as the distance between the points
increases enough. Thus, the functions are periodic on a local scale but not
necessarily on a global scale. This is illustrated in Figure 4.1d. New covariance
functions are also obtained by multiplying a valid covariance function by a
scalar. For instance, the squared exponential covariance function (4.12) can
be scaled with an additional parameter θ2 as

k(r; θ1, θ2) = θ2

2 exp

(

−
r2

2θ2
1

)

. (4.16)

A more comprehensive list of examples can be found, for instance, in the book
by Rasmussen and Williams (2006). In addition, Cressie and Huang (1999)
discuss how to assign realistic and complex enough covariance functions to
model spatio-temporal systems.

The parameters in the covariance functions are important in determining
the properties of the function. Figure 4.2 illustrates the effect of the parameters
by showing the posterior distribution of the underlying function given some
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observations by using three different values for the length scale. Clearly, each of
the length scales corresponds to different interpretations of the data. In some
cases, the parameters of the covariance function can be known quite accurately
a priori, and then their values can be fixed. However, the parameters are
usually not known a priori, and they must be learned somehow.

4.4 Learning the hyperparameters

Ideally, one would set the priors over the (hyper)parameters in the covariance
function and integrate the hyperparameters out. However, they usually have
such a complicated relation to the observations through the covariance func-
tion that the relevant integrals become intractable. Therefore, approximation
methods, such as MCMC or maximum likelihood, are typically used (Williams
and Rasmussen, 1996). The integration can be done numerically using MCMC
methods, but this method can become computationally too expensive. Using
gradient-based optimization methods, the hyperparameters can be set to max-
imum likelihood values. Although ML estimates tend to overfit, the risk of
getting badly overfitted solutions is rather small if the posterior is well peaked,
which is more common to the hyperparameters than to the latent function val-
ues f (MacKay, 1999).

The hyperparameters are optimized to maximize the marginal likelihood
from which the latent function values f have been integrated out. The joint
distribution p(y, f |X) is obtained by multiplying the prior (4.4) and the likeli-
hood (4.5), and then f can be integrated out, yielding

p(y|X,θ) = N (y |0,Kf + Σ) ,

where we have now explicitly conditioned on the hyperparameters θ, which
include the parameters of the covariance function. The log marginal likelihood
equals

L(θ) = log p(y|X,θ) = −
N

2
log 2π −

1

2
log |Kf + Σ| −

1

2
yT(Kf + Σ)−1y.

Note that Kf and Σ are functions of the hyperparameters. Finding maximum
likelihood estimates for the hyperparameters can be implemented efficiently
by utilizing the gradient

∂L(θ)

∂θi

=
1

2
yT(Kf + Σ)−1∂Kf

∂θi

(Kf + Σ)−1y −
1

2
tr

(

(Kf + Σ)−1∂Kf

∂θi

)

,

where the elements of ∂Kf

∂θi

are the derivatives of the covariance function.
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4.5 Variational sparse approximation

One of the main issues with Gaussian processes is that they do not scale well
to large problems. This issue arises because the posterior distribution requires
inverting the matrix Kf + Σ or evaluating (Kf + Σ)−1y. The computation
time of this inverse scales cubically with respect to the number of data points
N , that is, the computational complexity is O(N3). The storage requirement
for the covariance matrices is O(N2), which also limits the size of solvable
problems (e.g., the memory requirement for N = 105 data points using 64-bit
floats is over 74 GB).

In order to reduce the computational cost and memory requirements, sev-
eral sparse approximation techniques have been suggested (see, e.g., Seeger
et al., 2003; Snelson and Ghahramani, 2006). The key idea is that if the data
points are located densely compared to the length scale of the function, it is
sufficient to know the value of the function only at some of the input points
in order to recover the function at the rest of the input points accurately.
These approximations are based on using a small set of N̂ << N inducing in-
puts such that the corresponding function values capture the behavior of the
function sufficiently well. Different sparse approximations differ in how they
choose these inducing inputs and approximate the likelihood function. For in-
stance, Seeger et al. (2003) suggested selecting inducing inputs as a subset of
the inputs in the dataset and solving this combinatorial problem of finding the
optimal subset by using greedy selection methods. Snelson and Ghahramani
(2006) noted that the inducing inputs do not have to be selected from the
dataset but they can be arbitrary points, which are then optimized by using
a gradient-based optimization method.

Quiñonero-Candela and Rasmussen (2005) showed that these approxima-
tions can be interpreted as modifications of the GP prior and likelihood. Thus,
the approximations can be seen as doing exact inference on an approximate
model. In practice, this may increase flexibility in some unexpected way as was
seen in the example by Snelson and Ghahramani (2006). A major drawback
of these approaches is the lack of a distance measure between the true and the
modified model to be minimized.

4.5.1 Form of approximation

Recently, Titsias (2009) applied the variational Bayesian framework to sparse
approximations in GP learning. By using the VB methodology, one obtains
a lower bound of the marginal likelihood, which can be used to optimize the
hyperparameters and the inducing inputs. As the VB iteration minimizes the
Kullback-Leibler divergence between the true and the modified model, the
sparse approximation is guaranteed to get closer to the true distribution at
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each step until convergence.
The variational sparse approximation introduces a set of N̂ << N auxiliary

variables {f̂n̂}N̂
n̂=1 defined as f̂n̂ = f(x̂n̂) for auxiliary inputs X̂ = {x̂n̂}N̂

n̂=1,
called the inducing inputs. These inducing inputs can be chosen as a subset
from the data inputs or by using some heuristic. In any case, they can be
optimized during learning.

The goal of the sparse approximation is to find such an approximate pos-
terior distribution that the auxiliary variables f̂ are used to summarize the
data. The true joint posterior of the auxiliary variables and the original latent
function values f can be written as

p(f , f̂ |y) = p(f |f̂ ,y)p(f̂ |y),

where f̂ =
[

f̂1 . . . f̂N̂

]T
contains the auxiliary variables. To keep the nota-

tion compact, we have omitted the conditioning on the inputs X and X̂. If the
inducing inputs are located sufficiently densely, the auxiliary variables f̂ sum-
marize the information about the function well, and it holds that p(f |f̂ ,y) ≈
p(f |f̂), that is, the data does not give any additional information compared to
the auxiliary variables when recovering the latent function. This suggests a
convenient form of the approximate posterior:

q(f , f̂) = p(f |f̂)q(f̂). (4.17)

The factor p(f |f̂) can easily be computed from the GP prior by using the
conditional Gaussian distribution (A.6). The factor q(f̂) is found by free-form
maximization of the variational lower bound of the marginal likelihood, as
discussed generally in Section 2.3.2.
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4.5.2 Approximate posterior distribution

Starting from the definition in (2.4), the lower bound of the log marginal
likelihood can be written as

L
(

q(f , f̂),θ, X̂
)

=

∫∫

q(f , f̂) log
p(y, f , f̂)

q(f , f̂)
dfdf̂

=

∫∫

p(f |f̂)q(f̂) log
p(y|f)p(f |f̂)p(f̂)

p(f |f̂)q(f̂)
dfdf̂

=

∫∫

p(f |f̂)q(f̂) log
p(y|f)p(f̂)

q(f̂)
dfdf̂

=

∫

q(f̂)

[

∫

p(f |f̂) log p(y|f)df + log
p(f̂)

q(f̂)

]

df̂

=

∫

q(f̂)

[

log p̃(y|f̂) + log
p(f̂)

q(f̂)

]

df̂

=

∫

q(f̂) log
p̃(y|f̂)p(f̂)

q(f̂)
df̂ , (4.18)

where the second line is obtained by expressing the factors of the joint distri-
butions q(f , f̂) and p(y, f , f̂), the third line by canceling out p(f |f̂) inside the
logarithm, the fourth line by reorganizing the terms, the fifth line by denoting

log p̃(y|f̂) =

∫

p(f |f̂) log p(y|f)df

= logN
(

y

∣

∣

∣
K

f ,f̂K
−1

f̂
f̂ ,Σ

)

−
1

2
tr
(

cov
(

f

∣

∣

∣
f̂
)

Σ−1

)

, (4.19)

and the final line by reorganizing the terms. We have also used the following
notation:

cov
(

f

∣

∣

∣
f̂
)

= Kf − Kf ,f̂K
−1

f Kf̂ ,f , (4.20)

as defined for the conditional Gaussian distribution in (A.6). Note that cov
(

f

∣

∣

∣
f̂
)

does not depend on the function values f̂ but on the inducing inputs X̂ and
the hyperparameters θ.

The optimal q(f̂) can be found by interpreting (4.18) as the Kullback-
Leibler divergence between q(f̂) and p̃(y|f̂)p(f̂). It follows that the optimal q(f̂)
is proportional to p̃(y|f̂)p(f̂), and can thus be seen as the posterior distribution
of a model with a likelihood function p̃(y|f̂) and a prior p(f). This posterior
has the form

q(f̂) = N
(

f̂

∣

∣

∣
VK−1

f̂
Kf̂ ,fΣ

−1y,Vf̂

)

, (4.21)
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where we have denoted

Vf̂ =
(

K−1

f̂
+ K−1

f̂
Kf̂ ,fΣ

−1Kf ,f̂K
−1

f̂

)−1

,

which is similar to the posterior (4.6) in regular GP with the difference that
the output space is projected to the lower dimensional space of the auxiliary
variables f̂ . Note that the approximate posterior q(f̂) is different from the true
marginal posterior p(f̂ |y) in (4.9).

The sparse approximate posterior distribution (4.21) is computationally
much more feasible than the full posterior distribution (4.6), because the ma-
trix inversion is done to a matrix of size N̂ × N̂ instead of N ×N . Assuming
that one can efficiently evaluate the term Σ−1Kf ,f̂ because of a very sparse
structure of Σ, for example, (block-)diagonality, the main cost comes from
the term K−1

f̂
K

f̂ ,f . Thus, the time complexity of the sparse approximation

is O(N̂2N). In addition, the approximate posterior (4.21) reduces the mem-
ory requirement to O(N̂N) as it does not require the evaluation of the large
covariance matrix Kf .

The posterior predictive distribution is evaluated by using the posterior of
the auxiliary variables. The function values f̃ for any new inputs X̃ = {x̃ñ}Ñ

ñ=1

are modeled with the posterior distribution q(f̃) =
∫

p(f̃ |f̂)q(f̂)df̂ , which equals

q(f̃) = N
(

f̃

∣

∣

∣
Kf̃ ,f̂Λ

−1Kf̂ ,fΣ
−1y,Kf̃ − Kf̃ ,f̂

(

K−1

f̂
− Λ−1

)

Kf̂ ,f̃

)

,

where we have denoted

Λ = K
f̂
+ K

f̂ ,fΣ
−1K

f ,f̂ . (4.22)

This distribution is derived in Appendix B.2. Evaluating the full covariance
matrix of the predictive distribution can be computationally expensive as it
includes the term Kf̃ . Thus, instead of evaluating the full covariance, it is
often sufficient to only evaluate the variances, that is, the diagonal elements
of the covariance matrix.

4.5.3 Variational lower bound

Let us derive a lower bound of the log marginal likelihood for optimizing the
hyperparameters and the inducing inputs. To begin with, we insert the nor-
malized approximate posterior distribution q(f̂) = p̃(y|f̂)p(f̂)/

∫

p̃(y|f̂)p(f̂)df̂
to the lower bound (4.18), yielding

L(θ, X̂) = log

∫

p̃(y|f̂)p(f̂)df̂

= logN
(

y

∣

∣

∣
0,Σ + K

f ,f̂K
−1

f̂
K

f̂ ,f

)

−
1

2
tr
(

cov
(

f |f̂
)

Σ−1

)

. (4.23)
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The first term encourages the approximation to fit well to the data. The
second term penalizes for the conditional covariance of f given f̂ , that is,
the uncertainty in predicting f from the auxiliary variables f̂ . Although the

conditional covariance cov
(

f

∣

∣

∣
f̂
)

includes the full covariance matrix Kf , as

shown in (4.20), this computationally heavy evaluation can be avoided if the
inverse noise covariance Σ−1 is sparse. This follows from the fact that in order
to evaluate the trace term in (4.23), one needs to evaluate only those elements

of cov
(

f

∣

∣

∣
f̂
)

that correspond to the nonzero elements of Σ−1.

Now, the hyperparameters θ in the covariance function and the inducing
inputs X̂ can be chosen by maximizing the lower bound (4.23). The optimiza-
tion of the hyperparameters can be implemented efficiently by exploiting the
gradient

∂L(θ, X̂)

∂θi

=
1

2
tr

[

(

K−1

f̂
− Λ−1

) ∂Kf̂

∂θi

]

− tr

(

Σ−1Kf ,f̂Λ
−1
∂Kf̂ ,f

∂θi

)

−

1

2
νT

∂Kf̂

∂θi

ν + νT
∂Kf̂ ,f

∂θi

Σ−1(y − Kf ,f̂ν)+

tr

(

∂Kf

∂θi

Σ−1

)

+ tr

(

∂Kf̂

∂θi

K−1

f̂
Kf̂ ,fΣ

−1Kf ,f̂K
−1

f̂

)

−

2 tr

(

∂Kf ,f̂

∂θi

K−1

f̂
Kf̂ ,fΣ

−1

)

,

where Λ is defined in (4.22) and ν = Λ−1K
f̂ ,fΣ

−1y. The derivation of this
gradient is shown in Appendix B.2.

Note that the optimization of the hyperparameters θ and the inducing
inputs X̂ does not depend on the explicit form of the approximate posterior
distribution q(f̂). On the other hand, q(f̂) in (4.21) is conditional on the
hyperparameters and the inducing inputs through the covariance matrices K

f̂

and K
f̂ ,f . Therefore, one should first optimize θ and X̂, and then evaluate the

approximate posterior q(f̂).

4.6 Conclusions

This chapter presented Gaussian processes as a flexible tool for nonlinear re-
gression problems. The infinite-dimensional Gaussian process distribution was
seen as a consistent way of setting finite-dimensional marginal Gaussian dis-
tributions. We presented some important covariance functions and illustrated
them by showing samples from the corresponding GPs. Because the values
of the hyperparameters are important, they can be learned by using gradient-
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based optimization methods. We also explained in detail the state-of-the-art
variational sparse approximation to reduce the computational cost.



Chapter 5

Gaussian-process factor analysis

This chapter introduces a novel method for spatio-temporal modeling and ex-
ploratory data analysis (Luttinen and Ilin, 2009). The model is defined in
Section 5.1 as an extension to factor analysis in which the loading matrix
A and the states S are given Gaussian process priors. Because the result-
ing posterior distribution is analytically intractable, we apply the variational
Bayesian methodology to find an approximate posterior distribution. Sec-
tion 5.2 derives the approximation focusing on the states S. As the Gaussian
process priors raise the computational cost extremely high for large datasets,
Section 5.3 presents sparse approximations to reduce the computational bur-
den. Sections 5.2 and 5.3 also explain how to further reduce the computational
cost by factorizing with respect to the components and how to find maximum
likelihood estimates for the hyperparameters. Section 5.4 explains how to learn
the other variables in the model. Because the main problem with the model is
the high computational cost, Section 5.5 discusses some implementation issues.
Section 5.6 briefly discusses other closely related models.

5.1 Model

Let us consider spatio-temporal data which consists of observations ymn =
y(lm, tn) at spatial locations {lm}M

m=1 at time instances {tn}N
n=1. We model the

data using the factor analysis model defined in (3.3):

ymn = aT

m:s:n + noise, m = 1, . . . ,M, n = 1, . . . , N (5.1)

where aT
m: is the m-th row of the M ×D loading matrix A and s:n is the n-th

column of the D × N matrix S of factors. We can also summarize the entire
dataset in a matrix form

Y =
D
∑

d=1

a:ds
T

d: + noise, (5.2)

34
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where Y is a M ×N matrix containing the elements ymn on the m-th row and
n-th column, a:d is the d-th column of A and sT

d: is the d-th row of S. The
vectors a:d and sd: can be seen as spatial and temporal patterns, respectively.

In order to model complex spatial and temporal structure, the prior distri-
butions of the patterns a:d and sd: are set to Gaussian processes:

p(A) =

D
∏

d=1

N (a:d |0,Ka:d
) = N (a: |0,Ka:

) , (5.3)

p(S) =
D
∏

d=1

N (sd: |0,Ksd:
) = N (s: |0,Ks: ) , (5.4)

where a: and s: denote long vectors formed from all elements of A and S,
respectively, and the covariance matrices are defined as

[Ka:d
]
ij

= kad
(li, lj; φd),

[Ksd:
]
ij

= ksd
(ti, tj; θd),

where φd and θd are the hyperparameters of the covariance functions. The
ordering of the elements in a: and s: can be arbitrary as long as they are consis-
tent with the ordering of the rows and columns of the covariance matrices Ka:

and Ks: . If the elements are ordered component-wise (i.e., column-wise for A

and row-wise for S), the resulting covariance matrices are block-diagonal with
blocks Kad:

and Ksd:
on the diagonal, because the components are independent

a priori.
The spatial and temporal patterns can be interpreted as functions ad(l)

and sd(t), which have the following prior distributions:

ad(l) ∼ GP (0, kad
(l, l′; φd)) ,

sd(t) ∼ GP (0, ksd
(t, t′; θd)) .

This functional viewpoint makes it more clear that the inputs {lm}M
m=1 and

{tn}
N
n=1 do not need to form any regular grid. This viewpoint also emphasizes

that we are modeling a spatio-temporal function y(l, t) as

y(l, t) =
D
∑

d=1

ad(l)sd(t) + noise. (5.5)

The value of this function can be predicted at arbitrary locations at arbitrary
times.

The noise term in (5.1), (5.2) and (5.5) can be modeled simply as Gaussian
noise, resulting in a likelihood function

p(Y|A,S,τ) =

M
∏

m=1

N
∏

n=1

N
(

ymn

∣

∣aT
m:s:n, τ

−1
mn

)

. (5.6)
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Instead of using spatio-temporally varying noise level, the noise can be as-
sumed to vary only temporally (τmn = τn) or spatially (τmn = τm), as in
standard factor analysis. However, if the model used independently varying
noise levels, it could no longer make predictions at a new location because it
has no information about the noise level at that location. This issue could be
solved by using a generative hierarchical model for τmn. However, the dataset
may contain very little evidence for spatially or temporally varying noise, and
modeling such variability would complicate the modeling quite remarkably.
Therefore, isotropic noise (τmn = τ) can often be a sufficient compromise in
practice. For areal data, the noise levels may be weighted by the size of the
area.

The conjugate prior for τmn is the gamma distribution:

p(τmn) = G (τmn |ατ , βτ ) . (5.7)

In order to obtain a broad prior, ατ and βτ may be set to small positive
values, for instance, 10−3. We will refer to the model defined in (5.1)–(5.7) as
Gaussian-process factor analysis (GPFA).

The GPFA model has a few advantages compared to the regular GP regres-
sion over the spatio-temporal domain: (1) GPFA models spatial and temporal
functions separately by using D independent Gaussian processes for both do-
mains. If D << M and D << N , the savings may be significant compared
to the computational cost O(M3N3) of regular GP regression. (2) GPFA ex-
tracts spatial and temporal features, which are easily interpreted, and making
the selection of the priors for these spatial and temporal features intuitive.
(3) The factor analysis modeling assumption might be quite reasonable, be-
cause the variability of a multidimensional process can often be captured in a
low-dimensional representation.

The model has two major issues which should be addressed: The posterior
p(A,S,τ|Y) is intractable, and the computational load for dealing with GPs
becomes too high for large datasets. The variational Bayesian framework is
used to cope with these difficulties by finding a tractable posterior approxima-
tion and allowing sparse approximations for the GPs.

5.2 Variational full approximation for S

5.2.1 Approximate posterior distribution

In order to find a tractable posterior approximation, we apply the variational
Bayesian framework. The true posterior is approximated by a factorized dis-
tribution as

p(A,S,τ|Y) ≈ q(A,S,τ) ≡ q(A)q(S)q(τ).
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The optimal approximation q(A,S,τ) is found by minimizing the Kullback-
Leibler divergence to the true posterior, which is equivalent to maximizing the
lower bound of the log marginal likelihood.

In order to maximize with respect to q(S), the lower bound can be written
as

L (q(S),Θ) =

∫

q(A)q(S)q(τ) log
p(Y|A,S,τ)p(A)p(S)p(τ)

q(A)q(S)q(τ)
dAdSdτ

=

∫

q(S) log
p̃(Y|S)p(S)

q(S)
dS, (5.8)

=

∫

q(S)

[

log p̃(Y|S) + log
p(S)

q(S)

]

dS,

where

log p̃(Y|S) =

∫

q(A)q(τ) log
p(Y|A,S,τ)p(A)p(τ)

q(A)q(τ)
dAdτ

= 〈log p(Y|A,S,τ)〉+ const

= logN
(

U−1z:

∣

∣s:,U
−1
)

+ const. (5.9)

The notation const refers to the terms that are constant with respect to S,
and z: is a DN × 1 vector formed by concatenating vectors

z:n =
∑

m∈O:n

〈τmn〉 〈am:〉 ymn, n = 1, . . . , N. (5.10)

Matrix U in (5.9) is a DN × DN block-diagonal matrix with the following
D ×D matrices on the diagonal:

Un =
∑

m∈O:n

〈τmn〉
〈

am:a
T

m:

〉

, n = 1, . . . , N. (5.11)

The summations in (5.10) and (5.11) are over sets O:n of indices m for which
ymn is observed (i.e., O:n = {m|ymn is observed}), and 〈·〉 is the expectation
over the approximate posterior distribution q. Note that if theelements in s: are
ordered component-wise making the covariance matrix Ks: block-diagonal, the
elements of U are scattered on the (d−1)N -th diagonals, where d = 1, . . . , D.
Thus, these matrices have overlapping nonzero elements only on the main
diagonal. In addition, the ordering of the elements in z: should also correspond
to the ordering in s:.

The optimal q(S) can be found by interpreting (5.8) as the Kullback-Leibler
divergence between q(S) and p̃(Y|S)p(S). Thus, the optimal q(S) is propor-
tional to p̃(Y|S)p(S) and can be seen as the posterior distribution in a model



CHAPTER 5. GAUSSIAN-PROCESS FACTOR ANALYSIS 38

with a likelihood function p̃(Y|S) and a prior p(S). Applying the formula of
the posterior Gaussian distribution (2.3) yields the optimal q(S) as

q(S) = N
(

s:

∣

∣

∣

(

K−1

s:
+ U

)−1
z:,
(

K−1

s:
+ U

)−1
)

. (5.12)

Note that the form of this approximate posterior is similar to the posterior (4.6)
in standard GP regression: if one interprets U−1z: as noisy observations, and
U−1 as the noise covariance matrix in the likelihood (4.5), then q(S) equals the
posterior distribution (4.6) of the latent functions values. Thus, each update of
q(S) can be seen as applying standard GP regression to projected observations,
where A and τ define the projection.

5.2.2 Component-wise factorization

In practice, one may need to further factorize the posterior approximation in
order to reduce the computational burden. This can be done in two ways:
by neglecting the posterior correlations between different components sd: (and
between spatial patterns a:d, respectively) or by neglecting the posterior cor-
relations between different time instances s:n (and between spatial locations
am:, respectively). The first way is computationally more expensive but cap-
tures much stronger posterior correlations which arise with Gaussian processes.
Therefore, we apply the former posterior approximation:

q(S) =

D
∏

d=1

q(sd:).

The approximate posterior distribution q(sd:) can be derived similarly as
the full approximate posterior distribution q(S) in (5.12). The optimal q(sd:)
is proportional to p̃(Y|sd:)p(sd:), where the pseudo-likelihood term p̃(Y|sd:) is
now defined as

p̃(Y|sd:) ∝ N
(

U−1

d zd

∣

∣sd:,U
−1

d

)

,

where zd is an N × 1 vector and Ud is an N ×N diagonal matrix defined as

[zd]n =
∑

m∈O:n

〈τ〉 〈amd〉

(

ymn −
∑

j 6=d

〈amj〉 〈xjn〉

)

, (5.13)

[Ud]nn =
∑

m∈O:n

〈τ〉
〈

a2

md

〉

. (5.14)

Applying the formula of the posterior Gaussian distribution (2.3) yields

q(sd:) = N
(

sd:

∣

∣

∣

(

K−1

sd:
+ Ud

)−1
zd,
(

K−1

sd:
+ Ud

)−1
)

, (5.15)
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The main difference to (5.12) is that each component is fitted to the residuals
of the reconstruction based on the rest of the components.

Although the component-wise factorization ignores even more posterior un-
certainty than the full posterior (5.12), it may provide a meaningful representa-
tion of data because the model is biased in favor of solutions with dynamically
and spatially decoupled components. When the factors are modeled using
rather general covariance functions, the proposed method is somewhat related
to the blind source separation techniques using time structure, discussed in
Section 3.4. The advantage here is that the method can handle more sophisti-
cated temporal correlations and it is easily applicable to incomplete data. In
addition, one can use the method in semi-blind settings when the prior knowl-
edge is used to select a proper type of covariance functions. This would enable
extraction of components with specific types of temporal or spatial features.

5.2.3 Learning the hyperparameters

The hyperparameters θd can be point estimated by maximizing the lower
bound of the log marginal likelihood. By inserting the normalized approximate
posterior distribution q(S) = p̃(Y|S)p(S)/

∫

p̃(Y|S)p(S)dS to the lower bound
(5.8), it follows that the lower bound of the marginal likelihood equals

L(Θ) = log

∫

p̃(Y|S)p(S)dS,

= logN
(

U−1z
∣

∣0,U−1 + Ks:

)

+ const. (5.16)

Similarly, the lower bound for the approximation using component-wise fac-
torization equals

L(θd) = logN
(

U−1

d zd

∣

∣0,U−1

d + Ksd:

)

+ const (5.17)

These bounds can be used to optimize the hyperparameters θd of the covari-
ance functions ksd

(t, t′; θd). Note that q(S) does not need to be explicitly
evaluated in order to optimize the hyperparameters. Thus, one should first
optimize the hyperparameters, and then evaluate the approximate posterior
q(S) while keeping the hyperparameters fixed. Evaluation of the lower bound
and its gradients is discussed in Appendix B.1.

5.3 Variational sparse approximation for S

5.3.1 Approximate posterior distribution

One of the main issues with Gaussian processes is the high computational
cost with respect to the number of observations. Although the variational
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learning of the GPFA model works only in either the spatial or temporal
domain at a time, the size of the data may still be too large in practice, as the
time complexity O(D3N3 +D3M3) scales cubically with respect to N and M .
This computational load can be reduced by applying the variational sparse
approximations to the GP components, as discussed in Section 4.5 for the
standard GP regression.

The sparse approximation introduces auxiliary variables Â and Ŝ which
contain the values of the latent functions ad(l) and sd(t) for a small number

of inducing inputs L̂ = {l̂dm̂}
M̂d

m̂=1
and T̂ = {t̂dn̂}

N̂d

n̂=1
. Although the numbers

M̂d << M and N̂d << N of inducing inputs for each of the D components
may be different, we have denoted the collection of the auxiliary variables

â:d =
[

ad(l̂d1) . . . ad(l̂dM̂d
)
]T

and ŝd: =
[

sd(t̂d1) . . . sd(t̂dN̂d
)
]T

as matrices Â and Ŝ because this imprecise notation is less cluttered. For
the same reason, we will not explicitly show the conditioning on the inducing
inputs L̂ and T̂.

Assuming that the auxiliary variables Â and Ŝ summarize the data well,
it holds that p(A,S|Â, Ŝ,Y) ≈ p(A,S|Â, Ŝ). This motivates an approximate
distribution of the form

q(A,S, Â, Ŝ) = p(A|Â)p(S|Ŝ)q(Â)q(Ŝ),

where p(A|Â), p(S|Ŝ) can be easily computed from the GP priors by applying
the conditional Gaussian distribution (A.6).

Optimal q(Ŝ) can be found by maximizing the variational lower bound of
the log marginal likelihood. In order to optimize q(Ŝ), we take similar steps
as in (4.18), and write the log marginal likelihood as

L
(

q(Ŝ), T̂,Θ
)

=

∫

q(Ŝ) log
p̃(Y|Ŝ)p(Ŝ)

q(Ŝ)
dŜ, (5.18)

where

log p̃(Y|Ŝ) =

∫

p(A|Â)p(S|Ŝ)q(Â) log
p(Y|A,S)p(Â)

q(Â)
dAdSdÂ

= 〈log p(Y|A,S)〉 + const

= logN
(

U−1z:

∣

∣Ks:,ŝ:K
−1

ŝ:
ŝ:,U

−1
)

−
1

2
tr
(

cov
(

s:|Ŝ
)

U
)

+ const,

and const is constant with respect to Ŝ, T̂ and Θ. The vector z: and matrix U

are defined in (5.10) and (5.11), respectively. The covariance term cov
(

s:|Ŝ
)

is defined similarly as in (4.20).
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The optimal q(Ŝ) can be found by interpreting the lower bound (5.18)
as the Kullback-Leibler divergence between q(Ŝ) and p̃(Y|Ŝ)p(Ŝ). Thus, the
optimal q(Ŝ) is proportional to p̃(Y|Ŝ)p(Ŝ), resulting in

q(Ŝ) = N
(

ŝ:

∣

∣VK−1

ŝ:
Kŝ:,s:z:,V

)

, where (5.19)

V =
(

K−1

ŝ:
+ K−1

ŝ:
Kŝ:,s:UKs:,ŝ:K

−1

ŝ:

)−1
,

which can be interpreted as the posterior in a model with a likelihood p̃(Y|Ŝ)
and a prior p(Ŝ). Again, the relation to the previously derived posterior distri-
butions is clearly visible. It is identical to the sparse posterior in regular GP
in equation (4.21), except the observations are U−1z: with a noise covariance
U−1. Compared to the variational approximate posterior (5.12) in GPFA, the
observations and noise covariance are projected to the lower dimensional space
of the auxiliary variables Ŝ.

5.3.2 Component-wise factorization

In order to further reduce the computational cost, the components can be
factorized similarly as in Section 5.2.2:

q(Ŝ) =
D
∏

d=1

q(ŝd:).

This results in the following approximate posterior distributions:

q(ŝd:) = N
(

ŝd:

∣

∣VdK
−1

ŝ:
Kŝ:,s:zd,Vd

)

, where (5.20)

Vd =
(

K−1

ŝd:
+ K−1

ŝd:
Kŝd:,sd:

UdKsd:,ŝd:
K−1

ŝd:

)−1
.

The vector zd and the diagonal matrix Ud are defined in (5.13) and (5.14),
respectively. Note that the sparse approximation can be done independently to
each component. For instance, if some of the components have a long length
scale but the others have very short length scale, one can apply the sparse
approximation to the slow components and compactly supported covariance
functions to the fast components, thus enabling efficient inference on both
types of components.

5.3.3 Learning the hyperparameters

The maximum likelihood estimates for the hyperparameters θd can be found by
maximizing the lower bound of the log marginal likelihood. The lower bound
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is obtained by inserting the normalized q(Ŝ) = p̃(Y|Ŝ)p(Ŝ)/
∫

p̃(Y|Ŝ)p(Ŝ)dŜ
to the lower bound (5.18), yielding

L
(

T̂,Θ
)

= log

∫

p̃(Y|Ŝ)p(Ŝ)dŜ,

= logN
(

U−1z:

∣

∣0,U−1 + Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

)

−
1

2
tr
(

cov
(

s:|Ŝ
)

U
)

+ const.
(5.21)

The lower bound for the approximation using component-wise factorization is
similarly

L
(

T̂d,θd

)

= logN
(

U−1

d zd

∣

∣0,U−1

d + Ksd:,ŝd:
K−1

ŝd:
Kŝd:,sd:

)

−
1

2
tr (cov (sd:|ŝd:)Ud) + const.

(5.22)

These bounds can be used for optimizing the inducing inputs T̂ and the hyper-
parameters θd of the covariance functions ksd

. Evaluation of the lower bounds
and their gradients are discussed in Appendix B.2.

5.4 Variational approximations for A and τ

The update rules for q(A) and q(τ) are evaluated as follows. Due to sym-
metry in the model, the optimal q(A) can be computed similarly as q(S) in
Sections 5.2 and 5.3 by exchanging A and S appropriately. The update rule
of the factor q(τ) equals

q(τ) =
∏

mn∈O

G
(

τmn

∣

∣āτmn
, b̄τmn

)

,

āτmn
= aτ +

1

2
,

b̄τmn
= bτ +

1

2

〈

(

ymn − aT

m:s:n

)2
〉

,

where O is the set of indices (m,n) for which the corresponding observation
ymn is not missing. If a common noise level is used for several observations, the
formulas are changed by adding summations over the corresponding indices.
For instance, if isotropic noise is used (τmn = τ), the update rule equals

q(τ) = G
(

τ
∣

∣āτ , b̄τ
)

),

āτ = aτ +
1

2

∑

mn∈O

1,

b̄τ = bτ +
1

2

∑

mn∈O

〈

(

ymn − aT

m:s:n

)2
〉

.
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Method Approximation Complexity

GP to Y O(N3M3)
GPFA q(S) (5.12) O(D3N3 + D3M3)
GPFA q(sd:) (5.15) O(DN3 + DM3)

GPFA q(Ŝ) (5.19) O((
∑D

d=1
N̂d)

2N + (
∑D

d=1
M̂d)

2M)

GPFA q(ŝd:) (5.20) O(
∑D

d=1
N̂2

dN +
∑D

d=1
M̂2

dM)

Table 5.1: The computational complexity of different algorithms. In addi-
tion, the evaluation of the distribution q(τ) costs O(MND2), or O(MND) if
component-wise factorization is used.

The evaluation of the parameter b̄τ costs O(MND2), which can be reduced
to O(MND) by using component-wise factorization. The variational learning
algorithm consists of alternate updates of the factors q(A), q(S) and q(τ) until
convergence.

5.5 Comments on implementation

The presented variational approximations differ in their computational cost.
Using sparse approximations and component-wise factorizations helps in im-
proving the speed of learning, as shown in Table 5.1. However, there is always
a trade-off when improving the speed with further approximations and fac-
torizations: the accuracy of the approximation decreases and the posterior
dependencies between the variables are lost because they are restricted to be
independent. If the posterior dependencies are important to the application,
the component-wise factorization should be avoided unless the computational
cost is too high without the factorization. On the other hand, one may be
interested in finding decoupled components, and thus the component-wise fac-
torization may actually help because the approximation favors independent
components. The effect of these approximations are not further examined in
this thesis, but for more detailed discussion on the effect of factorial approxi-
mations in the variational framework, refer to, for instance, the paper by Ilin
and Valpola (2005).

Appendix B gives detailed derivations and formulas for evaluating the lower
bounds, gradients and approximate posterior distributions efficiently. In the
following paragraphs, we will discuss some of the main issues without going to
the details of the evaluations.

The presented learning algorithms, and Gaussian processes in general, re-
quire inverting covariance matrices, which can be implemented efficiently and
in a numerically stable way by utilizing the Cholesky decomposition. It de-
composes a symmetric positive-definite matrix Σ as LLT = Σ, where L is a
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lower-triangular matrix. The computational cost of finding the decomposition
scales cubically with respect to the dimensionality of the matrix, that is, the
number of columns and rows. For sparse covariance matrices produced by
compactly supported covariance functions, the decomposition can be evalu-
ated more efficiently because the sparsity is preserved in the decomposition.
After decomposing a matrix Σ, the lower triangular matrix L can be used for
efficiently evaluating particular terms such as zTΣ−1y and log |Σ|.

The different lower bounds of the log marginal likelihood and their gradi-
ents contain trace terms, which can be evaluated quite efficiently. The trace
of the product of two matrices A and B can be evaluated as a dot product of
their elements, that is, tr(AB) = [A]T

:

[

BT
]

:
. If some elements are zero in one

of the matrices, there is no need to evaluate the corresponding elements of the
other matrix. This property makes it feasible to optimize the hyperparameters
in sparse approximations or compactly supported covariance functions.

In the case of the sparse approximation, the latter term in the lower bounds
(5.21) and (5.22) simplifies as

tr
(

cov
(

s:|Ŝ
)

U
)

= tr

(

N
∑

n=1

cov
(

s:n|Ŝ
)

Un

)

=

N
∑

n=1

D
∑

d=1

var(sdn|ŝd:) [Un]dd ,

which follows from the sparse structure of U and a priori independence of
components. This can also be seen directly by recalling that Ks: and U have
overlapping nonzero elements only on the main diagonal.

When using compactly supported covariance functions, the term with the
most concern is tr((Ks: +U−1)−1 ∂Ks:

∂θd

) in the gradient, as shown in (B.1). The
inverse of a sparse matrix is not sparse in general, thus evaluating the full
inverse has a high computational cost. However, because ∂Ks:

∂θ
is sparse by

construction, only a small number of the elements from the inverse matrix
(Ks: + U−1)−1 are needed in order to evaluate the trace. For evaluating only
some elements of the inverse of a sparse matrix, we utilized an efficient im-
plementation by Vanhatalo and Vehtari (2008). The implementation is based
on an algorithm introduced by Takahashi et al. (1973) and discussed in more
detail by Niessner and Reichert (1983).

Since the model is nonlinear, learning can be sensitive to initial conditions.
If the hyperparameters are initialized poorly, or they are updated too early or
too late, the algorithm might find inferior ML estimates potentially resulting in
pruning out of relevant components or otherwise poor hyperparameter values
for the GPs. For instance, a badly initialized period of a periodic component
can be hard to infer from the data if several other components were also
learned. Regularization of the hyperparameters could help in improving the
learning, and it also seemed that the hyperparameters should not be updated
before a few iterations of the learning algorithm is completed. However, this



CHAPTER 5. GAUSSIAN-PROCESS FACTOR ANALYSIS 45

thesis did not study the effects of the initialization exhaustively. In order
to reduce the effect of the initialization, it is possible to use several random
initializations and choose the best solution based on the VB lower bound of
the marginal likelihood.

5.6 Related work

Gaussian processes offer a flexible and sophisticated way of setting priors for
the loadings or states in the FA model. Teh et al. (2005) and Yu et al. (2009)
set Gaussian process priors over the states S and use a maximum likelihood
estimate for the loadings A. However, spatio-temporal models should not ig-
nore the spatial structure. Typically, spatial structure has been modeled with
Gaussian processes, also known as kriging in the context of spatial interpola-
tion (Cressie, 1993). Lopes et al. (2008) use GPs as the spatial prior but resort
to AR models as the temporal prior.

Although GPs have been applied to the states and the loadings separately
in different models, using GP priors for both of the variables at the same time
is quite a recent approach. Schmidt and Laurberg (2008) assigned Gaussian
process priors for both variables in a bit more general context of nonnega-
tive matrix factorization. However, they use MAP estimates for both of the
variables, thus ignoring all the uncertainty.

Recently, Schmidt (2009) presented a model which is similar to the GPFA
model presented in this thesis. Whereas GPFA divides the input space into
two subspaces (spatial and temporal), their model divides the input space X
into arbitrary number C of subspaces {Xc ⊂ X}C

c=1. Similarly, they use D
independent Gaussian processes over each of the subspaces:

y(x) =

D
∑

d=1

[s1d(x1)s2d(x2) · · · sCd(xC)] , (5.23)

where scd is a function over the subspace Xc, and the input xc ∈ Xc is the
value of the original input x ∈ X within the subspace Xc. They do inference
with MCMC, which does not usually scale well to large problems. There-
fore, the variational framework has significant computational advantages as
the sparse approximations and the component-wise factorizations can be done
in a principled way in order to reduce the computational burden.

5.7 Conclusions

This chapter introduced a novel model for spatio-temporal modeling. The
model can be seen as a mixture of factor analysis, temporal smoothing and
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kriging. Thus, the model is essentially a linear latent variable model with
spatially and temporally structured priors. The model has a significant ad-
vantage over standard GP regression over the spatio-temporal domain because
the computational cost is remarkably reduced by dividing the input space into
spatial and temporal subspaces. The computational cost was further reduced
by exploiting sparse approximations and component-wise factorizations. We
also briefly discussed how to efficiently implement the evaluations in the learn-
ing algorithm. The discussion on related work showed that the model extends
very recent previous works.



Chapter 6

Experiments

This chapter presents experimental results with the GPFA model introduced
in Chapter 5. Section 6.1 shows the results of learning the model based on a
dataset generated artificially with the same model. The results are evaluated
by comparing the extracted components to the real components and illustrat-
ing the accuracy of predictions. Section 6.2 presents a challenging real-world
problem of modeling a noisy global sea-surface temperature dataset. The per-
formance is compared to variational Bayesian PCA as a baseline.

6.1 Artificial example

An artificial dataset was generated by using the GPFA model. Four (D = 4)
latent spatial and temporal components a:d and sd: were generated by taking
samples from the GP priors. The priors of the four temporal components used
different covariance functions in order to have features with different character-
istics. A slowly changing component was generated by using the squared expo-
nential covariance function (4.12). An approximately periodic signal used the
quasi-periodic covariance function (4.15), which is the product of the squared
exponential (4.12) and the periodic covariance function (4.13). A smoothly
varying component was generated by using the squared exponential (4.12). A
fast changing component was generated with the compactly supported covari-
ance function (4.14) using a short length scale. The generated sources are
shown in Figure 6.1a. The spatial loadings a:d used the scaled squared expo-
nential covariance function (4.16) with different length scales. These loadings
are shown in Figure 6.2a.

The observations ymn were generated by using a relatively small amount
of isotropic noise. The standard deviation of the noise was 1.0, whereas the
observation signals before adding the noise had standard deviation of 7.6 on
average. The number of spatial locations and time instances was set toM = 30

47
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Figure 6.1: The latent time series sd(t) in the artificial experiment. (a) The
true latent signals used to generate the data. (b) The posteriors of the four
latent signals. The solid lines show the posterior mean and gray color shows
two standard deviations. The gap with no training observations is marked with
vertical lines.

and N = 200, respectively. The spatial locations were chosen randomly from
a uniform distribution over a two-dimensional rectangular area. The time
instances were deterministic and uniformly spaced.

Most of the data points ymn were marked as missing. Observations from
all locations were removed for a significant time period. This resulted in a gap
in the data. In addition, 90% of the remaining observations were randomly
removed. Therefore, only 452 noisy observations remained in total.

We trained the GPFA model on the generated noisy data. We used the
same covariance functions that were used to generate the data. The hyper-
parameters of the covariance functions were initialized randomly close to the
values used for data generation, assuming that a good guess about the hidden
signals can be obtained by exploratory analysis of data. For the approximate
posterior distribution, no component-wise factorization nor sparse approxima-
tions were used (see Section 5.2.1 for details).

Figure 6.1 shows the latent sources sd(t) which were used to generate the
data and recovered by the proposed algorithm. Note that the algorithm sep-
arated four latent signals with the different variability time scales. For the
slow and periodic components, the observation gap is recovered with high pre-
cision, whereas the two fast components have high uncertainty over the gap.
The fourth component has high uncertainty also outside the gap.

Figure 6.2 shows the spatial loading functions ad(l) used to generate the
data and recovered by the proposed algorithm. The loadings are recovered
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Figure 6.2: The spatial loading functions ad(l) in the artificial experiment:
(a) the true loadings used to generate the data; (b) the posterior means; (c)
the standard deviations computed from the posterior. The crosses show the
locations of the observations, and the circled ones are examples for predictive
evaluation in Figure 6.3.

accurately for the first three components, but the learned fourth component
differs from the original component in smoothness: the length scale is esti-
mated to be too large. This shows the disadvantage of using ML estimate
because the estimate does not identify the uncertainty, which can be quite
significant for the length scale of the fourth component.

Figure 6.3 shows the posterior predictive distributions for six sensors, lo-
cated as shown in Figure 6.2. The test values are noisy data points ymn which
were removed before training. Although some of the sensors contain so few
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Figure 6.3: Posterior predictive distribution for six randomly selected loca-
tions. The training observations are shown as blue crosses and the noisy test
data as solid red lines. The solid black lines and gray coloring show the mean and
two standard deviations computed from the approximate posterior distribution.
The gap with no training observations is marked with vertical lines.

observations that there is no evidence for complex temporal structure in those
observations alone, the model has captured the complex structure and recon-
structed the test values fairly well. This is a positive effect of the spatially
smooth priors. In addition to the found structure, the uncertainty explains the
errors in the predictions, which is an important property from the Bayesian
viewpoint.

For comparison, Figure 6.4 shows the temporal components and the pre-
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Figure 6.4: Results for the artificial dataset with VB-PCA. (a) The posteriors
of the four latent signals. (b) Posterior predictive distribution for six randomly
selected locations. The training observations are shown as blue crosses and the
noisy test data as solid red lines. The solid black lines and gray coloring show
the mean and two standard deviations computed from the approximate posterior
distribution. The gap with no training observations is marked with vertical lines.
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dictive distributions obtained by using variational Bayesian PCA (VB-PCA)
(Bishop, 1999b). Clearly, VB-PCA is unable to learn the complex structure
from the sparse data: two of the latent temporal components are pruned out,
and the predictive distributions are extremely noisy.

6.2 Reconstruction of global sea surface temper-

ature

This section demonstrates how the presented model can be applied to an-
alyze and reconstruct global sea surface temperatures (SST) by using U.K.
Meteorological Office historical SST dataset (MOHSST5) (Bottomley et al.,
1990). The dataset contains monthly SST anomalies in the 1856-1991 period
for 5◦ × 5◦ longitude-latitude bins. Thus, the number of time instances and
spatial locations is approximately 1600 and 1700, respectively. The dataset
is sparse, especially during the 19th century and the World Wars, and near
the polar regions. The dataset consists of more than 106 observations in total,
thus having 55% of the values missing.

GPFA was used to estimate D = 80 components, which is the same num-
ber as used by Kaplan et al. (1998) for the same problem. We withdrew 20%
of the data from the training set and used this part for testing the reconstruc-
tion accuracy. Five time signals sd: used the squared exponential covariance
function (4.12) to describe climate trends. Another five components also used
the squared exponential function to model prominent interannual phenomena
such as El Niño. Five temporal components were modeled with the quasi-
periodic covariance function (4.15) to capture periodic signals (e.g., related
to the annual cycle). Finally, the piecewise polynomial functions (4.14) were
used to describe the remaining 65 time signals. These dimensionalities were
chosen ad hoc. The spatial patterns a:d were modeled with the scaled squared
exponential (4.16). The additional scale parameter θ2 in (4.16) helps in prun-
ing out unnecessary components. The distance r between the locations li and
lj was measured on the surface of the Earth using the spherical law of cosines
(see Appendix A.2 for details).

The posterior was approximated by using the component-wise factoriza-
tion. 500 inducing inputs were also introduced for each spatial function ad(l)
in order to use sparse variational approximations. Similar sparse approxi-
mations were used for the 15 temporal functions sd(t) which modeled slow
climate variability: the slowest, interannual and quasi-periodic components
had 80, 300 and 300 inducing inputs, respectively. The inducing inputs were
initialized by taking a random subset from the original inputs and then kept
fixed throughout learning because their optimization would have increased
the computational burden substantially. The rest of the temporal components
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allowed efficient computations by using the piecewise polynomial covariance
function (4.14), which produces sparse covariance matrices.

The dataset was preprocessed by weighting the data points by the square
root of the corresponding latitudes in order to diminish the effect of denser
sampling in the polar regions. The weight for the m-th row of Y was set to

ωm =
√

cos(φm),

where φm is the latitude of the corresponding location. The weighting can also
be seen as using a spatially varying noise level (i.e., τm = ω2

mτ).
The GP hyperparameters were initialized by taking into account the as-

sumed smoothness of the spatial patterns and the variability timescale of the
temporal factors. The length scales of the slow, interannual and fast compo-
nents were initialized randomly to 10–20 years, 2–10 years, and 0.5–1 year.
The periods of the periodic components were initialized randomly between 0.5
and 1.5 years. The factors S were initialized randomly by sampling from the
prior and the weights A were initialized to zero. The variational Bayesian
EM-algorithm of GPFA was run for 200 iterations. For comparison, VB-PCA
was applied to the same dataset.

The principal components can be found by rotating the latent subspace
such that the variables are orthogonal and account for the most variance in
descending order. This is achieved in two steps: (1) the latent states S are
zero meaned by subtracting the expectation of the row-wise mean, and (2) S

and A are rotated such that 1

N

〈

SST
〉

= I and
〈

ATA
〉

is diagonal.
Figure 6.5 shows the spatial and temporal patterns of the four most dom-

inant principal components for both models. Note that the principal compo-
nents of GPFA are mixtures of the latent GP components. The GPFA principal
components and the corresponding spatial patterns are generally smoother, es-
pecially in the data-sparse regions, for example, in the period before 1875. The
first and the second principal components of GPFA as well as the first and the
third components of VB-PCA are related to El Niño.

The importance of the latent GP components can be examined by com-
paring the amount of data variance explained by each component, as shown
in Figure 6.6. We estimate the amount of variance each component explains
by the corresponding diagonal element of

1

MN

〈

SST
〉 〈

ATA
〉

,

where the row-wise mean has been subtracted from S. The GPFA model
efficiently used only some of the 15 slow components: about three slow and
only one interannual components explained relatively large amounts of the
variance. Thus, unnecessary components were pruned out. Interestingly, the
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Figure 6.5: Experimental results for the MOHSST5 dataset. The spatial and
temporal patterns of the four most dominating principal components for GPFA
(above) and VB-PCA (below). The solid lines and gray color in the time series
show the mean and two standard deviations of the posterior distribution. The
uncertainty of the spatial patterns are not shown, and we saturated the visual-
izations of the VB-PCA components to reduce the effect of the uncertain pole
regions.

periodic components have very small contribution to the data variance. This
may relate to the fact that the yearly oscillation had been eliminated from
the dataset. Figure 6.7 shows the four GPFA components explaining the most
variance. The most dominating component is clearly a smoothed version of
the El Niño component.

Finally, we compared the two models by computing the weighted root mean
square reconstruction error on the test set:

ERMSE =

√

√

√

√

∑

mn∈Õ

ω2
m

(

ỹmn − 〈am:〉
T 〈s:n〉

)2
/

∑

mn∈Õ

ω2
m,
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with respect to the explained variance.

 

 

−0.4 −0.2 0 0.2 0.4

 

 

−1 −0.5 0 0.5 1

 

 

−0.4 −0.2 0 0.2 0.4

 

 

−0.5 0 0.5

1875 1900 1925 1950 1975

Figure 6.7: The four GPFA components explaining the most data variance.

where ỹmn are the observations in the test set, and the set Õ contains the
indices of those observations. The prediction errors were 0.5714 for GPFA and
0.6180 for VB-PCA. The improvement obtained by GPFA can be considered
quite significant taking into account the substantial amount of noise in the
data. However, the results might be improved by selecting more realistic
covariance functions or using problem-specific prior knowledge to regularize
the hyperparameters.
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6.3 Conclusions

This chapter presented two experiments with the GPFA model. The artificial
experiment illustrated how the model can find latent spatial and temporal
structure. In the real-world experiment, GPFA was compared to VB-PCA
in the reconstruction of sea surface temperatures. The results showed that
the spatio-temporal structure in the priors can improve the modeling and
extraction of latent sources.



Chapter 7

Conclusions

This thesis presented a novel spatio-temporal factor analysis model using Gaus-
sian process priors over the spatial and temporal components. The model en-
ables modeling and exploratory analysis of large spatio-temporal systems by
utilizing efficient variational Bayesian approximations. The model was suc-
cessfully applied to artificial and real-world datasets in the experimental sec-
tion showing some benefits of using spatially and temporally structured priors.
This chapter discusses some issues related to the model and future directions.

Although the sparse approximations make inference with Gaussian pro-
cesses more feasible, they do not solve the computational issues completely. If
the size of the dataset increases, it is likely that the number of inducing in-
puts must be increased with the same rate, that is, keeping the density of the
inducing inputs fixed. Thus, the effective computational cost remains cubic
with respect to the number of data points, because the sparse approximation
only multiplies the computational cost with some small constant but does not
change the asymptotic behavior. This makes the sparse approximations an
infeasible solution for very large-scale problems unless extremely sparse ap-
proximations are used.

The presented model has an interesting special case, as it can be used
for modeling local and global phenomena in univariate GP regression. An
unknown function y(t) can be decomposed as

y(t) = s1(t) + s2(t) + noise,

where s1 and s2 correspond to slowly and fast varying components of the func-
tion y, respectively. Using the VB component-wise factorization, the com-
ponents can be learned efficiently by using sparse approximations for s1 and
compactly supported covariance function for s2. Vanhatalo and Vehtari (2008)
presented similar idea using MCMC for inference. However, MCMC methods
can be slow, and their model used approximate prior and likelihood function
which are not guaranteed to bound the true marginal likelihood in any way.

57
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The variational approach could potentially solve both of these problems, and
the approximation might be extremely accurate because the assumption of
independence between the slow and fast components sounds reasonable.

The model could possibly be improved by using separate modeling of global
and local features. In order to capture short-scale local phenomena accurately,
the GPFA model requires a large number of latent components. Instead of us-
ing a large number of components, it might be more reasonable to model these
phenomena with some localized short-scale spatio-temporal Gaussian process.
The local GP could use a covariance function that exploits the coupling of the
spatial and temporal domains. Mathematically, such a model could be defined
as

y(l, t) = r(l, t) +

D
∑

d=1

ad(l)sd(t) + noise,

where the new function r(l, t) is a very short-scale spatio-temporal function.
The global features could probably be modeled reasonably well with a small
number D of components and by using very sparse approximations. A relevant
question is how to model the short-scale function r(l, t) efficiently.

In addition to compactly supported covariance functions, there exist other
approaches for modeling short-scale phenomena in large datasets. For in-
stance, Rasmussen and Ghahramani (2002) and Yuan and Neubauer (2009)
have introduced mixtures of Gaussian process experts, and Snelson (2007)
has suggested dividing the input space into clusters and modeling indepen-
dent Gaussian processes over these small clusters. Although both the mixture
modeling and the clustering approach may outperform compactly supported
covariance functions and sparse approximations for some type of functions,
it is not straightforward to apply them to the presented model within the
variational Bayesian framework. Thus, the feasibility and benefits of those
approaches remain an interesting open question.

The spatio-temporal climate modeling might be improved by taking into
account the prior physical knowledge. Although the dynamics are usually very
complex, utilizing even some simplified equations could make a remarkable
difference. On the other hand, physical modeling could exploit the Bayesian
modeling to handle uncertainty in order to learn properties which are not
described well by physical models. Thus, combining physical and statistical
modeling could benefit both frameworks opening a fascinating line of further
research.

The model could be extended to have a robust noise model. This can be
achieved by using Student-t as the noise distribution for each data dimension.
We have successfully applied such a robust noise model to VBPCA in a real-
world application with badly corrupted temperature measurements (Luttinen
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et al., 2009a). Combining the spatio-temporal GPFA model with the robust
noise model could improve the modeling of very noisy spatio-temporal datasets.

The noise model could also be extended hierarchically. The hierarchical
noise model would allow the locations to have different noise levels while still
being able to predict the noise level at new locations. In addition, temporally
varying noise level might be reasonable when the dataset covers a very long
time period, as measurements made one hundred years ago can be considered
less accurate as the measurements made today using high-quality technology.

In the experimental section, we applied the presented model to the recon-
struction of a historical sea surface temperature dataset. The current state-of-
the-art reconstruction methods (Kaplan et al., 1998) are based on empirical
orthogonal function (EOF) analysis and temporal smoothing. They are close
to applying probabilistic PCA (Tipping and Bishop, 1999) to the data and
fitting an autoregressive model to the posterior means of the latent tempo-
ral components. The presented GPFA model is based on similar modeling
assumptions. The advantages of GPFA include: (1) uncertainty is handled
properly by using the Bayesian framework; (2) the dimensionality reduction
and smoothing are combined into one estimation procedure; and (3) by choos-
ing the covariance functions properly, GP components can model spatial and
temporal phenomena on different scales.

Future research includes performing more experiments with real-world data.
These experiments could try using different covariance functions and regulariz-
ing the hyperparameters. In addition, GPFA should also be compared to other
similar models in more detail. For instance, the state-space models described
in Section 3.3 are relevant for such comparisons.

To summarize, the presented model gave promising results in the experi-
ments and offers interesting directions for further research. We are planning
to experiment with the model more exhaustively and study different ways to
extend the model in order to improve its performance.
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Appendix A

Mathematical formulas

A.1 Matrix algebra

The matrix inversion lemmas are defined as

(

A + BD−1C
)−1

= A−1 −A−1B
(

D + CA−1B
)−1

CA−1, (A.1)
(

A + BD−1C
)−1

BD−1 = A−1B
(

D + CA−1B
)−1

, (A.2)

where A and D are invertible square matrices, and B and C are matrices of
appropriate size. The matrix determinant lemma is defined as

|A + BC| =
∣

∣I + CA−1B
∣

∣ · |A| . (A.3)

Derivatives for an invertible matrix A are defined as

d log |A| = tr
(

A−1dA
)

, (A.4)

dA−1 = −A−1(dA)A−1. (A.5)

For more details on the derivatives of matrices, refer to the collection of matrix-
related formulas by Petersen and Pedersen (2008).

A.2 Distance measure on the Earth

Let two locations on Earth be denoted as l1 = (φ1, λ1) and l2 = (φ2, λ2), where
φi and λi are the latitudes and longitudes, respectively. The distance between
these locations can be evaluated by using the spherical law of cosines:

d(l1, l2) = R arccos(sinφ1 sinφ2 + cos φ1 cosφ2 cos(λ1 − λ2),

where R ≈ 6370km is the radius of the Earth. Note that the formula approx-
imates the Earth as a sphere instead of an ellipsoid.
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A.3 Conditional Gaussian distribution

Let two multivariate Gaussian variables y1 and y2 be distributed jointly as

[

y1

y2

]

∼ N

([

µ1

µ2

]

,

[

Σ11 Σ12

Σ21 Σ22

])

,

where Σ12 = ΣT
21 because of the symmetricity of covariance matrices. The

conditional distribution p(y1|y2) then equals

p(y1|y2) = N
(

y1

∣

∣µ1 + Σ12Σ
−1

22 (y2 − µ2),Σ11 − Σ12Σ
−1

22 Σ21

)

. (A.6)



Appendix B

Implementation of the model

B.1 Full approximation

This section explains how to implement the evaluation of the lower bounds,
their gradients, and the approximate posterior distribution q(S) for the varia-
tional approximation presented in Section 5.2.

The lower bounds (5.16) and (5.17) of the log marginal likelihood can be
decomposed as

L(Θ) = γ1 + γ2 + const

where we have denoted

γ1 = −
1

2
log |U−1 + Ks:|,

γ2 = −
1

2
zTU−1(U−1 + Ks:)

−1U−1z:.

The vector z: and matrix U are defined in (5.10) and (5.11), respectively. For
the component-wise factorization, change z: and U to zd and Ud, defined in
(5.13) and (5.14), respectively. For the regular GP regression explained in
Chapter 4, replace z: and U with Σ−1y and Σ−1, where y and Σ are the ob-
servations and the noise covariance matrix, respectively. Also, the covariance
matrix Ks: must be changed appropriately. Note that the inverse U−1 can be
evaluated efficiently because the matrix has block-diagonal structure and the
inverse preserves the same sparse structure.

We use the following definition:

L = chol
(

U−1 + Ks:

)

,

where chol(X) is the lower-triangular matrix in the Cholesky decomposition
of X. For a triangular matrix L, L−1z: can be evaluated by using forward
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or backward substitution, and the determinant |L| equals the product of the
diagonal elements. The computational cost of the Cholesky decomposition is,
in general, O(N3), where N is the dimensionality of the matrix X.

The terms γ1 and γ2 can be evaluated as

γ1 = −
1

2
log |U−1 + Ks: | = − log |L|

γ2 = −
1

2
zTU−1(U−1 + Ks:)

−1U−1z = −
1

2
zTU−1L−TL−1U−1z = −

1

2
bTb,

where b = L−1U−1z:. The gradient of γ1 equals

∂γ1

∂θdi

= −
1

2

∂

∂θdi

log |U−1 + Ks: |

= −
1

2
tr

(

(

Ks: + U−1
)−1 ∂Ks:

∂θdi

)

, (B.1)

where θdi is the i-th hyperparameter of the d-th latent component sd:. If com-
pactly supported covariance functions are used to produce a sparse covariance
matrix Ks: , one needs to evaluate only those elements of the inverse that cor-
respond to the nonzero elements of ∂Ks:

∂θdi

. For evaluating only some elements
of the inverse of a sparse matrix, one can utilize, for instance, an efficient
implementation by Vanhatalo and Vehtari (2008). The gradient of γ2 is

∂γ2

∂θdi

= −
1

2
zTU−1 ∂

∂θdi

(U−1 + Ks:)
−1U−1z

=
1

2
zTU−1(U−1 + Ks:)

−1∂Ks:

∂θdi

(U−1 + Ks:)
−1U−1z

=
1

2
bTL−1∂Ks:

∂θdi

L−Tb

=
1

2
cT∂Ks:

∂θdi

c,

where c = L−Tb.
The approximate posterior distributions (5.12) and (5.15) equal

q(S) = N (s: |s̄:,V) ,

where

V =
(

K−1

s:
+ U

)−1
= Ks: −Ks:

(

Ks: + U−1
)−1

Ks:

s̄: =
(

K−1

s:
+ U

)−1
z: = Ks:

(

Ks: + U−1
)−1

U−1z: = Ks:L
−Tb = Ks:c.

The covariance matrix V is, in general, a full matrix even if Ks: is sparse.
Therefore, one may want to avoid evaluating the full covariance matrix. Note
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that the VB-EM algorithm for GPFA does not need the full covariance matrix
as the algorithm only uses a small portion of the covariance matrix in the
terms

〈

s:ns
T
:n

〉

. The log determinant of the covariance matrix can be evaluated
as

log |V| =
∣

∣K−1

s:
+ U

∣

∣

= log
∣

∣

∣
Ks:

(

Ks: + U−1
)−1

U−1

∣

∣

∣

= 2 log |LK| − 2 log |L| − 2 log |LU|,

where LK = chol(Ks:) and LU = chol(U), which are efficient to evaluate
because Ks: is block-diagonal and U is sparse.

B.2 Sparse approximation

This section gives details on implementing the variational sparse approxi-
mation presented in Section 5.3. We give formulas for evaluating the lower
bounds, their gradients and the approximate posterior distribution q(Ŝ).

The lower bounds (5.21) and (5.22) of the log marginal likelihood can be
decomposed as

L
(

T̂,Θ
)

=γ1 + γ2 + γ3 + const,

where we have denoted

γ1 = −
1

2
log
∣

∣U−1 + Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

∣

∣ ,

γ2 = −
1

2
zT

: U−1
(

U−1 + Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

)−1
U−1z:,

γ3 = −
1

2
tr
[

(Ks: − Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:)U

]

.

The vector z: and matrix U are defined in (5.10) and (5.11), respectively. For
the component-wise factorization, change z: and U to zd and Ud, defined in
(5.13) and (5.14), respectively. For the regular GP regression explained in
Chapter 4, replace z: and U with Σ−1y and Σ−1, where y and Σ are the ob-
servations and the noise covariance matrix, respectively. Also, the covariance
matrices Ks: , Kŝ: , Kŝ:,s: and Ks:,ŝ: must be changed appropriately. Note that
the inverse U−1 can be evaluated efficiently because the matrix has block-
diagonal structure and the inverse preserves the same sparse structure.

In the formulas, we use the following definitions:

LK = chol(Kŝ:),

Λ = Kŝ: + Kŝ:,s:UKs:,ŝ: ,
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where chol(X) is the lower-triangular matrix in the Cholesky decomposition
of matrix X, as discussed in the previous section.

The terms γ1, γ2 and γ3 can be evaluated as follows. The first term γ1

equals

γ1 = −
1

2
log
∣

∣U−1 + Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

∣

∣

= −
1

2
log
∣

∣I + K−1

ŝ:
Kŝ:,s:UKs:,ŝ:

∣

∣+ const

=
1

2
log |Kŝ:| −

1

2
log |Kŝ: + Kŝ:,s:UKs:,ŝ: | + const

=
1

2
log |Kŝ:| −

1

2
log |Λ| + const,

where the second line is obtained by using the matrix determinant lemma
(A.3). The second term γ2 equals

γ2 = −
1

2
zT

: U−1
(

U−1 + Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

)−1
U−1z:

= −
1

2
zT

: U−1
(

U − UKs:,ŝ:Λ
−1Kŝ:,s:U

)

U−1z:

= −
1

2
zT

:

(

U−1 − Ks:,ŝ:Λ
−1Kŝ:,s:

)

z:,

where the second line is obtained by using the matrix inversion lemma (A.1).
The third term γ3 equals

γ3 = −
1

2
tr
[

(Ks: −Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:)U

]

= −
1

2

N
∑

n=1

D
∑

d=1

(ksdn
− kT

ŝd:,sdn
K−1

ŝ:
kŝd:,sdn

) [Un]dd ,

because U is block-diagonal with respect to n = 1, . . . , N and the GP covari-
ance matrices are block-diagonal with respect to d = 1, . . . , D. Thus, they
have overlapping nonzero elements on the main diagonal only.

The gradients can be evaluated by using the basic rules of matrix deriva-
tives, including the rules for derivatives of the logarithm of a determinant (A.4)
and the inverse of a matrix (A.5). The gradient of the first term γ1 can be
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derived as

∂γ1

∂θdi

= −
1

2

∂

∂θdi

log
∣

∣U−1 + Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

∣

∣

= −
1

2
tr

[

(

U−1 + Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

)−1 ∂

∂θdi

(

Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

)

]

=
1

2
tr

[

K−1

ŝ:
Kŝ:,s:

(

U−1 + Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

)−1
Ks:,ŝ:K

−1

ŝ:

∂Kŝ:

∂θdi

]

−

tr

[

(

U−1 + Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

)−1
Ks:,ŝ:K

−1

ŝ:

∂Kŝ:,s:

∂θdi

]

=
1

2
tr

[

(

K−1

ŝ:
− (Kŝ: + Kŝ:,s:UKs:,ŝ:)

−1
) ∂Kŝ:

∂θdi

]

−

tr

[

UKs:,ŝ: (Kŝ: + Kŝ:,s:UKs:,ŝ:)
−1 ∂Kŝ:,s:

∂θdi

]

=
1

2
tr

[

(

K−1

ŝ:
−Λ−1

) ∂Kŝ:

∂θdi

]

− tr

[

UKs:,ŝ:Λ
−1∂Kŝ:,s:

∂θdi

]

,

where the fourth line is obtained by using the matrix inversion lemmas (A.1)
and (A.2), and θdi is the i-th hyperparameter of the d-th latent component sd:.
By denoting Ψ = U−1 + Ks:,ŝ:K

−1

ŝ:
Kŝ:,s:, the gradient of the second term γ2 is

∂γ2

∂θdi

= −
1

2
zT

: U−1∂Ψ
−1

∂θdi

U−1z:

=
1

2
zT

: U−1Ψ−1 ∂

∂θdi

(

Ks:,ŝ:K
−1

ŝ:
Kŝ:,s:

)

Ψ−1U−1z:

= −
1

2
zT

: U−1Ψ−1Ks:,ŝ:K
−1

ŝ:

∂Kŝ:

∂θdi

K−1

ŝ:
Kŝ:,s:Ψ

−1U−1z:+

zT
: U−1Ψ−1Ks:,ŝ:K

−1

ŝ:

∂Kŝ:,s:

∂θdi

Ψ−1U−1z:

= −
1

2
zT

: Ks:,ŝ:Λ
−1
∂Kŝ:

∂θdi

Λ−1Kŝ:,s:z:+

zT

: Ks:,ŝ:Λ
−1∂Kŝ:,s:

∂θdi

(

I − UKs:,ŝ:Λ
−1Kŝ:,s:

)

z:,

where the last line is obtained by using the matrix inversion lemma (A.2). The
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gradient of the third term γ3 equals

∂γ3

∂θdi

= −
1

2

N
∑

n=1

D
∑

d=1

∂

∂θdi

(

ksdn
− kT

ŝd:,sdn
K−1

ŝ:
kŝd:,sdn

)

[Un]dd

= −
1

2

N
∑

n=1

D
∑

d=1

(

∂ksdn

∂θdi

+ kT

ŝd:,sdn
K−1

ŝ:

∂Kŝ:

∂θdi

K−1

ŝ:
kŝd:,sdn

−

2kT

ŝd:,sdn
K−1

ŝ:

∂kŝd:,sdn

∂θdi

)

[Un]dd .

In order to evaluate the terms, we need the following variables:

LK = chol(Kŝ:),

LΛ = chol(Λ),

LU = chol(U),

R = L−1

Λ Kŝ:,s:

ζ = L−1

Λ Kŝ:,s:z: = Rz:,

ν = Λ−1Kŝ:,s:z: = L−T

Λ ζ,

where R dominates the cost. Exploiting the block structure of Kŝ:,s:, the com-

putational cost is O

(

N
(

∑D
d=1

N̂d

)2
)

, where N̂d is the number of inducing

inputs for the d-th component and N is the number of inputs. Using the above
definitions, the terms can be evaluated as

γ1 = log |LK| − log |LΛ| + const,

γ2 = −
1

2
(L−1

U z:)
T(L−1

U z:) +
1

2
ζTζ,

γ3 = −
1

2

N
∑

n=1

D
∑

d=1

[

ksdn
− (L−1

K kŝd:,sdn
)T(L−1

K kŝd:,sdn
)
]

[Un]dd ,

∂γ1

∂θdi

=
1

2
tr

[

(

K−1

ŝ:
−Λ−1

) ∂Kŝ:

∂θdi

]

− tr

[

URTL−1

Λ

∂Kŝ:,s:

∂θdi

]

,

∂γ2

∂θdi

= −
1

2
νT∂Kŝ:

∂θdi

ν + νT∂Kŝ:,s:

∂θdi

(z: − UKs:,ŝ:ν) ,

∂γ3

∂θdi

= −
1

2

N
∑

n=1

D
∑

d=1

(

∂ksdn

∂θdi

+ kT

ŝd:,sdn
K−1

ŝ:

∂Kŝ:

∂θdi

K−1

ŝ:
kŝd:,sdn

−

2kT

ŝd:,sdn
K−1

ŝ:

∂kŝd:,sdn

∂θdi

)

[Un]dd .
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Note that in most terms one can utilize the block structure of Kŝ: , Kŝ:,s: and
their gradients in order to reduce the computational cost. For instance, the

latter trace term in ∂γ1

∂θdi

can be evaluated with a cost O

(

N
(

∑D

d=1
N̂d

)2
)

.

Using the above variable definitions, the approximate posterior distribu-
tions (5.19) and (5.20) can be evaluated as

q(Ŝ) = N
(

ŝ:

∣

∣¯̂s:,V
)

,

where the parameters are defined as

¯̂s: = Kŝ:L
−T

Λ Rz:

V = Kŝ:Λ
−1Kŝ: .

The posterior predictive distribution q(S) =
∫

p(S|Ŝ)q(Ŝ)dŜ equals

q(S) = N (s: |s̄:,Vs: )

where the mean is defined as

s̄: = Ks:,ŝ:K
−1

ŝ:
〈ŝ:〉 = Ks:,ŝ:L

−T

Λ Rz: = RTRz: = RTζ,

and the covariance as

Vs: = Ks: − Ks:,ŝ:K
−1

ŝ:
Kŝ:,s: + Ks:,ŝ:K

−1

ŝ:
VK−1

ŝ:
Kŝ:,s:

= Ks: − Ks:,ŝ:K
−1

ŝ:
Kŝ:,s: + Ks:,ŝ:Λ

−1Kŝ:,s:

= Ks: − (L−1

K Kŝ:,s:)
T(L−1

K Kŝ:,s:) + RTR.

Note that the learning algorithm does not need the full covariance matrix Vs:

but only small blocks of it for the terms
〈

s:ns
T
:n

〉

.


