Neural Processing Letters manuscript No.
(will be inserted by the editor)

Bayesian robust PCA of incomplete data

Jaakko Luttinen - Alexander Ilin - Juha
Karhunen

Received: date / Accepted: date

Abstract We present a probabilistic model for robust factor analysis (FA) and
principal component analysis (PCA) in which the observation noise is modeled
by Student-t distributions in order to reduce the negative effect of outliers. The
Student-t distributions are modeled independently for each data dimensions, which
is different from previous works using multivariate Student-t distributions. We give
a unifying comparison on using the proposed noise distribution, the multivariate
Student-t and the Laplace distribution. Intractability of evaluating the posterior
probability density is solved using variational Bayesian approximation methods.
We demonstrate that the assumed noise model can yield accurate reconstructions
because corrupted dimensions of a bad quality sample can be reconstructed using
the other dimensions of the same data vector. Experiments on an artificial dataset
and a weather dataset show that the dimensional independency and the flexibility
of the proposed Student-t noise model can make it superior in some applications.

Keywords Variational Bayesian methods - Principal component analysis - Factor
analysis - Robustness - Outliers - Missing values

1 Introduction

Principal component analysis (PCA) [4, 7, 10, 12| is a classical data analysis
method which is optimal for compressing data in the mean squared error sense.
Dropping the dimensionality of the data using PCA is useful in many cases for
avoiding overlearning, suppressing noise, and decreasing the computational load
of subsequent processing.

PCA can be derived as an optimal solution to the quadratic criteria of variance
maximization and minimization of mean squared error, therefore it can be sensitive
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to outliers in the data. Robust PCA techniques have been introduced to cope with
this problem, see, for example, [7] and the references therein. The basic idea in
these robust PCA methods is to replace quadratic criteria of standard PCA by
more slowly growing criteria. In [5, 6, 19], the data matrix is decomposed into a sum
of a low-rank and a sparse matrix, which are computed using convex optimization
methods.

PCA can be interpreted probabilistically as a latent variable model [3, 17, 18].
While it is a rather simplistic model based on Gaussian assumptions, it can be used
as a basis for building probabilistic extensions of classical PCA. The popularity
of probabilistic models is due to their principled way to cope with overfitting
problems, to do model comparison and to handle missing values and uncertainty.

Probabilistic models for robust PCA have been introduced recently [1, 9, 13,
20]. They treat possible outliers by using heavy-tailed distributions (instead of
the Gaussian distribution) for describing the noise. The Laplace distribution was
used in [9], while the multivariate Student-¢ distribution was used in [1, 13, 20].
Instead of heavy-tailed distributions, [8] models outliers as a sparse matrix with
the non-zero elements from a Gaussian distribution with a large variance.

This paper presents a new robust PCA and factor analysis (FA) model using the
Student-t distribution for describing the noise. One of the important assumptions
of our model is that the outliers can arise independently in each sensor, that is,
for each component of a data vector. This is different to the previously introduced
Student-t models [1, 13, 20| which assume that all elements of an outlier data
vector are corrupted. The Student-t distribution also includes a parameter that
allows to vary the “degree of robustness”, which provides more flexibility compared
to the models based on the Laplace distribution [9].

The new model was motivated by our analysis of a Southern Finland weather
data set, which had a large amount of missing and corrupted data. The corrupted
measurements arise independently at each weather stations instead of all the sta-
tions being corrupted simultaneously, thus the existing models using Student-t
distribution were unrealistic for this application. The proposed method is able to
model the independency of the outliers between the stations, which improves the
results remarkably.

Fig. 1 illustrates the difference in the principal subspace estimation and sample
reconstruction assuming different noise models. There we use a two-dimensional
dataset with a single principal direction and a few outliers. The principal sub-
space found by assuming Gaussian noise is affected by outliers (Fig. 1a), whereas
robust techniques are able to find the correct principal subspace. However, the
reconstructions are quite different depending on the noise distribution. The mul-
tivariate Student-t model (Fig. 1c) assumes fully corrupted outliers, which give
no information about the true values of the vectors, thus the outliers are recon-
structed close to the mean. The independent Student-¢ (Fig. 1d) and Laplace
models (Fig. 1b) assume partially corrupted data vectors, which makes it possible
to ignore the corrupted dimension and reconstruct it based on the uncorrupted
dimension. However, because the Laplace distribution has only one parameter to
control the general noise level and the noise level of the outliers, the outliers cause
the reconstruction of non-corrupted samples to be regularized too much.

We apply the proposed model to an artificial dataset and a badly corrupted
real-world weather dataset. A comparison to other related models shows that both
the element-wise independency of the outliers and the flexibility of the Student-t
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Fig. 1: Principal subspace estimation using PCA with different assumptions about
outliers in the data: (a) no outliers, (b) partially (or fully) corrupted outliers, (c)
fully corrupted outliers, and (d) partially corrupted outliers. The crosses repre-
sent data points and the circles show their projections onto the found principal
subspace.

distribution may be necessary properties for the model in order to achieve good
performance. We show how to learn the proposed model from datasets with missing
values and illustrate that the proposed model gives reasonable reconstructions of
both missing values and outliers. This work extends our previous works [11] by
handling both outliers and missing values simultaneously.

The paper is organized as follows. Section 2 presents the existing probabilistic
model for factor analysis and principal component analysis. The novel noise model
is presented in Section 3 along with the existing noise models. Section 4 shows the
equations for the variational Bayesian inference. Section 5 compares the models
using an artificial dataset and a badly corrupted real-world weather dataset. The
paper ends with conclusions in Section 6.
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2 Factor analysis

Denote by {yn}A_; the set of M-dimensional data vectors (observations) y,. We
assume that the data vectors are generated from N hidden D-dimensional latent
variable vectors {x, }A_; using the transformation

Yn = Wx, + n+ ey

where W is an M x D loading matrix, p is a bias term and €,, is a noise vector.
Usually, the dimensions fulfil D < M < N.

The noise is modeled with independent Gaussian distributions for each element
of €,. Assuming that some of the elements of y,, are missing, this can be written
as

p(Y'W,X, u, T) = H N(ymn|w;£7,xn + ,Ufm:T’;Ll) )
mneO

where N (y|u,o?) denotes the Gaussian probability density function (pdf) with
mean y and (co)variance o2, O is the set of indices mn for which ym,, are observed
and w, is the m-th row of W. Here we denote by Y = {ymn|mn € O} all observed
data, X = [X1,...,xx] is the matrix containing the latent variables x,,, and T, p
are vectors with elements 7, pm respectively.

The prior models for X, W and p are similar to the extension of probabilistic
PCA from [3]:

i~

¥
I

=

N(x,]0,1),

3
Il
-

M D
pPWt, o) = [] JIN(wmal0, 7 ag?h),
m=1d=1
M
p(ult,8) = [ N(uml0, 7" 87).
m=1
Having &« = [a1,...,ap] in the hierarchical prior of W diminishes overfitting

and helps finding automatically the dimensionality of the principal subspace [11].
Parameters 7, are used in the prior of W and p as discussed in [21]. It would
be possible to use more structured and complex priors for W and X (see, e.g.,
[2, 15]), but because the focus of this paper is in the noise distribution and not in
W nor X, we settle for this simple factor analysis model.

The noise parameter T and the hyperparameters « and 3 are assigned conjugate
priors

M
p(t) = [[ G(rmlax,br).

D

p(ex) = H G(adlax, ba),
d=1

p(B) = G(Blas, bg),
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Fig. 2: A graphical model of the robust probabilistic PCA.

where G(7|a,b) is the gamma pdf with shape a and inverse scale b. One can use,
for instance, ar = bx = ax = ba = ag = bg = 107" in order to obtain broad
distributions. In addition, it is possible to use a common noise level 7,,, = 7 in
order to obtain PCA model with isotropic noise.

3 Robust factor analysis

In order to make the factor analysis model robust to outliers, one can use heavy-
tailed distributions to model the noise. Previous works include using the multivari-
ate Student-t and the Laplace distributions [1, 9, 13, 20]. We propose to model the
noise €, with independent Student-¢ distributions for each element of the vector.
This can be written as

p(Y|W7 X7 Fh T? V) = H S(ymn|W%Xn + /J'Wh 7_1:7,17 l/m) I (1)
mneQ

where S(y|p, o2, v) denotes the Student-t pdf with location parameter p, scale
parameter o and degrees of freedom v. The vector v contains the elements vy,.
The assumption of independently corrupting dimensions is realistic if the elements
of y, are observed independently, for instance, each element is a measurement
from a different sensor.

The Student-¢ distribution can be constructed hierarchically by using a Gaus-
sian distribution with extra latent variables wmn

p(YlW, X’ U, Ta U) = H N (ymn|w;l;bxn + My Talur_nh) ) (2)
mneQO
and giving uy,, gamma prior

mneQ

uén , %) (3)

This construction is equivalent to (1) when U is marginalized out [14]. Thus,
the Student-t distribution can be interpreted as an infinite mixture of Gaussian
distributions, and %mn controls the noise level of each individual observation ¥mn.
The variable U denotes the set {umn|mn € O} and the model is reduced to factor
analysis with Gaussian noise if one fixes umn = 1 (i.e., vy = 00). Here, separate
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vm are used for each dimension but the dimensions can have a common value
Vm = v. The graphical model is shown in Fig. 2.

This robust model is closely related to the multivariate Student-¢ robust mod-
els [1, 13, 20]. Multivariate Student-¢ is obtained by setting umn = un and vy, = v.
This implies that if one element of y, is badly corrupted, all the elements of the
vector are considered unreliable as was shown in Fig. lc. The existing methods
[1, 13, 20] used uy also in the prior of x,, which causes the outliers to be pro-
jected orthogonally to the latent subspace, thus, the outliers are being reproduced.
However, our construction aims at removing the outliers and reconstructing them
closer to the data mean with high uncertainty. The former approach is better if
the outliers are interesting rare observations whereas the latter approach is better
if the outliers are noise. Compared to the independent Student-t distribution, the
multivariate Student-t distribution is realistic when the outliers are such that the
whole vector y,, is corrupted. For instance, if y,, are observed hand-written digits,
a digit 5 or a picture of pure noise would be multivariate outliers in a dataset of
digits 7.

In [9], noise is modeled by the Laplace distribution, that is,

_1
p(Y|W, Xa K, T) = H L (ymn )W;%Xn + Um, Tm 2 ) s
mneO

where L(z|u, o) is the Laplace pdf with location p and scale o. This can be obtained
by using the same likelihood as in (2) but changing the prior of U in (3) to

p(U) = gzg (umn 1, %) ,

where ZG(ula, 8) is the inverse-gamma pdf with shape o and scale 3. Note that
Laplace distribution has no parameter similar to the degrees of freedom v, which
would control the amount of probability mass in the tail areas. Thus, badly cor-
rupted observations may cause the noise scale parameter to increase so much that
non-corrupted observations are regularized too much by a very large noise level as
was shown in Fig. 1b. In addition, the 1-norm in the Laplace pdf implies that it is
equivalent to corrupt a single element by x units or N elements by /N units, thus,
a large error in one observation can be equivalently considered as small errors in
several observations. This might be undesirable if outliers are rare and they have
large errors.

We emphasize that the different robust models are based on slightly different
assumptions about the outliers, thus, they do not replace each other but they are
all useful in different problems. Thus, the choice on the noise distribution should
be made based on the application.

4 Posterior Approximation

Bayesian inference is done by evaluating the posterior distribution of the unknown
variables given the observations. We use variational Bayesian approach (see, e.g.,
[4]) to cope with the problem of intractability of the joint posterior distribution.
The key idea in variational Bayesian methods is to fit to the true posterior dis-
tribution p(®|Y) a simpler approximate distribution ¢(®) using a cost function
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derived from the Kullback-Leibler divergence KL(¢(®)||p(®]Y)), which measures
the difference between the two probability distributions.

In our case, an approximate posterior distribution ¢(X, W, u, T, U, «, ) is con-
structed by factorizing it with respect to the variables as

p(X,W,n,t,U, &, BY) = q(X)qg(W, 1, 1)q(U)q(ex)q(B)- (4)

We update each factor in its turn keeping the other factors fixed. This is done
by minimizing the relevant parts of the cost function, which results in simple
update rules when conjugate priors are used. However, we estimate the degrees
of freedom v using maximum likelihood methodology in order to keep the update
rules analytically tractable.

In the following update rules, we denote by (-) the expectations over the approx-
imate posterior g. Some useful expectations for a Gaussian variable x ~ N (X, X)
and a Gamma variable u ~ G(a,b) are given below:

(x) =X, <xxT> =XX' 4+ X, (uy = %.

4.1 Posterior approximation of X, W, u, T, &, B

The factors in (4) are updated in turn using the following formulas. The optimal
q(W,u, ) is

Hm

oW, ) = ,ﬁN( el [T ).

M
q(v) = [ 9(rmlér,., br,.),
m=1

and its parameters are updated as

271 = diag Kgﬂ + 3 (tmn) [t‘;:;@ <x1">}

n€O,,.

Wi - Z (tmn)y (xn)

ﬁm m mn mn 1 )

n€O0 .
drm :CLT+%NM7 (5)
__ 1T __
br, =bet3 > (Umn)¥in — 3 [v_"m} =0 [v_"m}, (6)
neO,,. Hom Hm

where N, is the number of observed Y, for given m and O,,. is the set of indices
n for which ymn is observed, that is, Om: = {n|mn € O}. This distribution has
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the following expectations:

)
<Tm//'$n> = (T T Ton, + Som (s fm),

<memﬂm> = <Tm>Wmﬁm +Xn (me /me)v

where X, (x,y) is that part of X,, which corresponds to the covariance of x and
y. Isotropic noise (7,n, = 7) can be obtained by summing over m appropriately in
the update rules (5) and (6). The distribution ¢(X) is updated as:

a(X) = J] N (xal%n, Bx,),

n=1
EQS:IJF Z (umn)<7'mwmw3,;>,
meO.,
R = B, 3 (i) W (P W) — (FinWonfin),
meQO.,,

where O., is the set of indices m for which Y, is observed, that is, O., = {m|mn €
O}. The update rule for factor ¢(«) is

D
a(e) = [] G(aualia, bo,).

d=1
(vloc = ax + %,
M
boy = b + % Z <mefnd>,
m=1

and for factor ¢(f)

a(B) = G(Blag, bg),

ig =ap+ 4,
M

bg =bg —I—% Z <7‘m,u$n>.
m=1

In order to speed up the learning, it is possible to move the bias from X to p and
rotate the latent subspace such that

1 N

T>7
—E <xnxn =1,
Nn:l

as discussed in [16]. The update rules presented above are the same for the different
robust noise distributions.

M=

<Tmew,?1> = diagonal,
1

m
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4.2 Independent Student-t noise model

For the independent Student-t noise model, the distribution ¢(U) is updated as
follows:

q(U): H g(umn|dumn75umn)y

mneO
Gupn = 2 + 1,
Bupn = 4+ + 3¥mn
where
Ymn = <7'm(ymn - W;l;an - Mm)2> (7)

= <Tm)y,%m + tr (<memw%><xnxz>) 4 <Tm:u'%1>_

2Ymn <TmWM>T<xn> — 2ymn(Tmftm) + 2<TmWMNM>T<xn>-

The hyperparameters {vm,}M_, can be updated before ¢(U) by maximizing the
following term with respect to vp,:

Z log S1 (\/m, Vm) , (8)
nEO,,.

where

log Snr(x|v) =log I'((v + M) /2) —log I'(v/2) — & log(nv) — “EM log (1 + iux)

is the log pdf of the M-dimensional Student-t distribution with location parameter
zero, unit scale and degrees of freedom v. In order to obtain common degrees of
freedom vy, = v, one should also sum over m in (8).

4.3 Multivariate Student-t noise model

In order to study the effect of the noise model more carefully, in this paper we also
present a model with Gaussian variables x,, and multivariate Student-t distribution
for the noise €,. This model is obtained by using wmn = uy, and vy, = v. Then,
q(U) is updated as

N
qU) = H G (tnldu,,bu,),
v 1/_ 1
aun b + §M
Bun:%‘F% Z ¢mn7
meO.,

where 1y, is given in (7). The hyperparameter v is found by maximizing

N
ZlogSM" / Z Vmn|V |,
n=1 meO.,

where M,, is the number of observed Yy, for given n.
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Table 1: RMSE of reconstruction shown separately for those function values which
were corrupted by outliers. The values were averaged over 10 artificial datasets.

Noise model Non-outliers  Outliers
Gaussian (GPCA) 0.996 10.560
Laplace (LPCA) 0.894 1.205
Multivariate Student-t (SPCA-m) 0.829 1.970
Independent Student-t (SPCA-i) 0.687 0.815

4.4 Laplace noise model

For completeness, we show the update formula for the Laplace noise model [9].
The approximate posterior of the latent variable U is

qU)= [] IV <umn

mneO

1
—71 )
V’lpmn )

where ZN (u|u, M) is the inverse Gaussian distribution with mean p and shape A,
and Y,y is given in (7). The mean with respect to this distribution is

(thmn) = —
mn _\/m7

which is needed for updating the other variables. For this noise model, (log tmn) is
intractable, thus, it is not possible to analytically compute the log-likelihood lower
bound, which could be used for model comparison or monitoring the convergence
of the algorithm.

5 Experiments
5.1 Artificial dataset

We generated ten artificial datasets to compare the different noise models. Each
dataset consisted of N = 100 noisy vector samples with M = 10 dimensions from
a Gaussian distribution and some added outliers. The true values were generated
from a Gaussian distribution using a 4-dimensional subspace with standard devi-
ations 4, 3,2, 1. These values were first corrupted by isotropic noise with standard
deviation 1 and then outliers were generated by replacing each y,,, with proba-
bility 0.02 by a draw from a uniform distribution over [—30, 30].

The datasets were used to learn the PCA model with different noise distribu-
tions: Gaussian (GPCA), Laplace (LPCA), multivariate Student-t (SPCA-m) and
dimensionally independent Student-t (SPCA-i). The models used 9-dimensional
latent space and isotropic noise 7, = 7. SPCA-i used a pooled degrees-of-freedom
parameter v,,, = v. The estimated posterior means of the variables were used for
reconstructing the noiseless true values.

Table 1 shows the root-mean-square error (RMSE) of the reconstructions com-
puted separately for values that were corrupted by Gaussian noise and outliers, av-
eraged over the ten datasets. Obviously, each method reconstructs the non-outliers
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Fig. 3: The weather stations are shown as purple dots on the topographical map
of Southern Finland. The color represents the altitude above sea level in meters.

better than the badly corrupted outliers. The novel model SPCA-i reconstructs
both sets better than the others. Interestingly, SPCA-i reconstructs even the out-
liers more accurately than the other models reconstruct the non-outliers. This
happens because the other models are not able to identify the outliers well, thus
the estimation of the principal subspace and the reconstructions are corrupted.
LPCA reconstructs outliers better than SPCA-m because it correctly assumes in-
dependently corrupted dimensions. However, SPCA-m is better than LPCA in
reconstructing the non-outliers because the distribution resembles more the Gaus-
sian distribution which was used for generating the noise. GPCA, on the other
hand, has severe problems with the outliers as expected. The total CPU time for
each method was approximately 10 seconds.

5.2 Meteorological recordings from weather stations

The proposed model was largely motivated by an analysis of a real-world weather
data set from the Helsinki Testbed research project of mesoscale meteorology (see
http://testbed.fmi.fi/). A straightforward analysis was impossible because of the
large amount of missing and corrupted data, thus we needed a principled way
to preprocess the data in order to reconstruct the missing values and to remove
the outliers for further analysis. The data consists of temperature measurements
in Southern Finland over a period of almost two years with an interval of ten
minutes, resulting in N = 89202 samples for each weather station. Some parts of
the data were discarded: stations with no observations were removed, and we used
only the measurements taken in the lowest altitude in each location. The locations
of the remaining M = 79 weather stations are shown in Fig. 3.

The quality of the dataset was partly poor. Approximately 35% of the data
were missing and a large number of measurements were corrupted by outliers.
Fig. 4 shows representative examples of measurements from five stations. The
quality of the dataset can be summarized with the six example signals in Figure 4
as follows: Half of the stations were relatively good, having no outstanding outliers
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Fig. 4: Temperature data from five stations from the Helsinki Testbed dataset.
The scale is from —50°C to 50°C.

Table 2: The predictive log-densities for the weather dataset using different noise
distributions.

Noise distribution PLD

Gaussian (GPCA) —10.26 - 10°
Laplace (LPCA) —~1.63-10°
Multivariate Student-t (SPCA-m)  —2.82-10°
Independent Student-t (SPCA-i) —1.12-10°

and only short periods missing (similarly to the first signal). More than 10 stations
had a few outliers (similarly to the second signal). More than 20 stations had large
amount of data missing (similarly to the third signal). Five stations had a large
number of outliers compared to the number of uncorrupted observations (similarly
to the last three signals).

Although the outliers may sometimes be easily distinguished from the data,
removing them by hand requires a tedious procedure which turned out to be
non-trivial in some cases. Therefore, we used the proposed robust PCA method to
automatically solve the problems of outlier removal, dimensionality reduction, and
filling in the missing values. Because the weather stations may corrupt measure-
ments independently of each other, the robust noise distribution using independent
Student-t distributions seems reasonable.

In the presented experiment, we estimated a 30-dimensional principal subspace
of the data using models with Gaussian components x,, and different noise models.
We used the same noise models as in the artificial experiment: GPCA, LPCA,
SPCA-m and SPCA-i. Note that the hierarchical prior on the loadings W should
eliminate irrelevant components. We used a pooled precision parameter 7, = 7.
For SPCA-i, the degrees of freedom {Vm}%[zl were modeled separately for each
station. The bias term p was ignored because the temperature mean is close to zero
in the research area. Although the data are spatio-temporal, none of the models
utilized the timestamps or spatial coordinates of the observations, that is, the rows
and columns of the data matrix Y are exchangeable.

The four models were trained using 80% of the data by discarding elements
randomly from the M x N data matrix. The remaining 20% was used as a test set
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Fig. 5: Reconstructions of the corrupted signals using different noise models.

for computing predictive log-densities. The predictive log-densities (PLDs)
log p(Yiest| Yirain) = log / P(Yiest| W, X, T,U)q(X)q(W, T)q(U)dXdWdtdU

were computed by integrating over ¢(U) analytically and using samples from
q¢(X)q(W,T) to compute the required integral. Table 2 shows that using at least
some robust noise distribution improves the predictive performance significantly.
In this case, the dimensionally independent robust noise distributions LPCA and
SPCA-i are clearly better than multivariate SPCA-m because the outliers arise in-
dependently at each station. SPCA-i models the noise better than LPCA probably
because it can adjust the degrees of freedom for each station. However, in addition
to this quantitative measure, it is important to compare the results qualitatively.

Fig. 5 presents the reconstructions for the five signals from Fig. 4 using the
compared techniques. The reconstructions obtained by GPCA (Fig. 5a), LPCA
(Fig. 5b) and SPCA-m (Fig. 5c) are clearly bad. These models are overfitted to
outliers and to spontaneous correlations observed in scarce measurements from
problematic stations. The methods reproduce accurately some outliers and gener-
ate new outliers in the place of missing values. In contrast, the results by SPCA-i
are clearly much better: the outliers are removed and reasonable reconstructions of
the missing values are obtained. Although the signals look rather similar in Fig. 5d
because the analyzed spatial area is small and the annual cycle is obviously the
dominant pattern, the reconstructed signals look very plausible. The CPU time
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for the methods on a regular desktop computer varied between 90-150 seconds
per iteration step and they required approximately 100 steps to converge, thus
each algorithm ran for 2-4 CPU hours, where GPCA was the fastest, SPCA-i the
slowest, and LPCA and SPCA-m in between.

6 Conclusions and remarks

This paper presented a probabilistic model for robust FA and PCA which can
be a useful tool for preprocessing, analyzing or modeling incomplete data with
outliers. The effect of outliers is diminished by using the Student-t distribution for
modeling the observation noise. Existing approaches have used the multivariate
Student-t [1, 13, 20], but we showed that modeling the elements of the noise
vector independently can be more appropriate for some datasets. In addition, the
Student-t distribution provides more flexibility than the existing method using the
Laplace distribution [9]. We gave a unifying comparison of the different robust noise
distributions by showing the minor differences in the model details and providing
the equations for the variational Bayesian learning algorithms.

The proposed method was tested on an artificial dataset and a real-world
weather dataset by comparing it with PCA model using Gaussian noise and robust
PCA models using the multivariate Student-¢t and the Laplace distribution. Our
experiments demonstrated the superior performance of the presented model, which
provided good predictive measures and reasonable reconstructions of missing data
and outliers.

It is straightforward to extend the presented robust FA model in different di-
rections. For instance, the temporal structure could be modeled with linear Gaus-
sian state-space models [2] or the spatio-temporal structure by Gaussian-process
FA [15], which might improve further the experimental results with the tested
real-world weather dataset. In addition, the modularity of probabilistic modeling
enables one to use the proposed noise distribution with other models than the
factor analysis model.
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