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ien
eP.O. Box 5400, FI-02015 TKK, Espoo, FinlandAbstra
t. We present a probabilisti
 model for robust prin
ipal 
om-ponent analysis (PCA) in whi
h the observation noise is modelled byStudent-t distributions that are independent for di�erent data dimen-sions. A heavy-tailed noise distribution is used to redu
e the negativee�e
t of outliers. Intra
tability of posterior evaluation is solved usingvariational Bayesian approximation methods. We show experimentallythat the proposed model 
an be a useful tool for PCA prepro
essingfor in
omplete noisy data. We also demonstrate that the assumed noisemodel 
an yield more a

urate re
onstru
tions of missing values: Cor-rupted dimensions of a �bad� sample may be re
onstru
ted well fromother dimensions of the same data ve
tor. The model was motivatedby a real-world weather dataset whi
h was used for 
omparison of theproposed te
hnique to relevant probabilisti
 PCA models.1 Introdu
tionPrin
ipal 
omponent analysis (PCA) is a widely used method for data prepro-
essing (see, e.g., [1�3℄). In independent 
omponent analysis (ICA) and sour
eseparation problems, PCA is used for redu
ing the dimensionality of the datato avoid overlearning, to suppress additive noise, and for prewhitening neededin several ICA algorithms [2, 4℄. PCA is based on the quadrati
 
riteria of vari-an
e maximisation and minimisation of the mean-square representation error,and therefore it 
an be sensitive to outliers in the data. Robust PCA te
hniqueshave been introdu
ed to 
ope this problem, see, for example, [4℄ and the ref-eren
es therein. The basi
 idea in robust PCA methods is to repla
e quadrati

riteria leading to standard PCA by more slowly growing 
riteria.PCA has a probabilisti
 interpretation as maximum likelihood estimation ofa latent variable model 
alled probabilisti
 PCA (PPCA) [5℄. While PPCA isa rather simplisti
 model based on Gaussion assumptions, it 
an be used as abasis for building probabilisti
 extensions of 
lassi
al PCA. Probabilisti
 modelsprovide a prin
ipled way to 
ope with the overi�tting problem, to do model
omparison and to handle missing values. Probabilisti
 models for robust PCAhave been introdu
ed re
ently [6�8℄. They treat possible outliers by using heavy-tailed distributions, su
h as Student-t or Lapla
ian, for des
ribing the noise.In this paper, we present a new robust PCA model based on the Student-
t distribution and show how it 
an be identi�ed for in
omplete data, that is,



(a) PPCA (b) Fully 
orrupted (
) Partially 
orruptedFig. 1: Prin
ipal subspa
e estimation using (a) probabilisti
 PCA [5℄, (b) robust PCAassuming fully 
orrupted outliers [7℄ and (
) robust PCA assuming partially 
orruptedoutliers. The 
rosses represent data points and the 
ir
les show their proje
tions ontothe found prin
ipal subspa
e.datasets with missing values. We assume that the outliers 
an arise indepen-dently in ea
h sensor (i.e. for ea
h dimension of a data ve
tor). This is di�erentto the previously introdu
ed te
hniques [6, 7℄ whi
h assume that all elements ofan outlier data ve
tor are 
orrupted. This work was inspired by our intentionto apply a semi-blind sour
e separation te
hnique, 
alled denoising sour
e sepa-ration (DSS) to a weather dataset whi
h is too mu
h 
orrupted by outliers andmissing values. We have earlier su

essfully applied DSS to exploratory analysisof global 
limate data [9℄.Our modelling assumption 
an be more realisti
 for some datasets and there-fore they 
an improve the quality of the prin
ipal subspa
e estimation anda
hieve better re
onstru
tions of the missing values. The model 
an also beused to remove outliers by estimating the true values of their 
orrupted 
ompo-nents from the un
orrupted ones. This is illustrated in Fig. 1 using an arti�
ialtwo-dimensional data with a prominent prin
ipal dire
tion and a few outliers.The subspa
e found by the simplest PCA model is a�e
ted by outliers, whereasrobust te
hniques are able to �nd the right prin
ipal subspa
e. However, there
onstru
tion of the data is quite di�erent depending on whether one assumesfully 
orrupted or partially 
orrupted outliers: Fully 
orrupted outliers 
an bere
onstru
ted by proje
ting orthogonally onto the subspa
e, while improbablevalues of partially 
orrupted samples 
an be ignored and re
onstru
ted based onthe un
orrupted dimensions.2 ModelLet us denote by {yn}N
n=1

a set ofM -dimensional observations yn. The data areassumed to be generated from hidden D-dimensional states {xn}N
n=1 using thetransformation:

yn = Wxn + µ + ǫn ,



where W is a M ×D loading matrix, µ is a bias term and ǫn is noise. Usuallythe dimensions ful�l D < M < N . The prior models for the latent variables arethe same as in PPCA and we use 
onjugate prior for µ and hierar
hi
al priorfor W as in [10℄ to diminish over�tting [11℄:
p(X) =

M∏

m=1

N∏

n=1

N (xmn|0, 1) ,

p(W |α) =
M∏

m=1

D∏

d=1

N (wmd|0, α
−1

d
) ,

p(µ) =

M∏

m=1

N (µm|0, β−1) ,

p(α) =

D∏

d=1

G(αd|aα, bα) .Hyperparameters aα, bα, and β are �xed to some proper values.The noise term ǫn is modelled using independent Student-t distributions forits elements. This is a
hieved by using a hierar
hi
al model with extra variables
umn:
p(Y ,U |W ,X,µ, τ ,ν) =

∏

mn|Omn

N
(
ymn|w

T

mxn + µm,
1

τmumn

)
G(umn|

νm

2
, νm

2
) ,whi
h yields a produ
t of Student-t distributions S(ymn|wT

m
xn + µm,

1

τm

, νm)with degrees of freedom νm when U is marginalised out [12℄. Here, Omn denotessu
h indi
es that the 
orresponding ymn is a
tually observed and wT

m is the m-throw of W . Pre
ision τm de�nes a s
aling variable whi
h is assigned a 
onjugateprior
p(τ ) =

M∏

m=1

G(τm|aτ , bτ ) ,with aτ and bτ set to proper values. Separate τm and νm are used for ea
hdimension but with simple modi�
ations the dimensions 
an have a 
ommonvalue. Espe
ially for the pre
ision τ , 
ommon modelling may prevent bad lo
alminima. For the degrees of freedom ν we set a uniform prior.3 Posterior ApproximationBayesian inferen
e is done by evaluating the posterior distribution of the un-known variables given the observations. We use variational Bayesian approa
hto 
ope with the problem of intra
tability of the joint posterior distribution (see,e.g., [3, 
h.10℄ for more details). The approximate distribution q is fa
torised with
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Fig. 2: The weather stations are shown as purple dots on the topographi
al map of thestudied area. The 
olour represents the altitude above sea level in meters.respe
t to the unknown variables as
N∏

n=1

q(xn)

M∏

m=1

q(wm)

M∏

m=1

q(µm)

M∏

m=1

q(τm)

M∏

m=1

N∏

n=1

q(umn)

D∏

d=1

q(αd)and ea
h fa
tor q(θi) is updated assuming the other fa
tors are �xed. This is doneby minimising the Kullba
k-Leibler divergen
e 
ost fun
tion. Using 
onjugatepriors yields simple update rules presented in the appendix.4 Experiments with real-world dataThe proposed model was largely motivated by the analysis of real-world weatherdata from the Helsinki Testbed resear
h proje
t of mesos
ale meteorology. Thedata 
onsists of temperature measurements in Southern Finland over a periodof almost two years with an interval of ten minutes, resulting in 89 000 timeinstan
es. Some parts of the data were dis
arded: Stations with no observationswere removed and we used only the measurements taken in the lowest altitudein ea
h lo
ation. The lo
ations of the remaining 79 stations are shown in Fig. 2.The quality of the dataset was partly poor. Approximately 35% of the datawas missing and a large number of measurements were 
orrupted. Fig. 3 showsrepresentative examples of measurements from four stations. The quality of thedataset 
an be summarised as follows: Half of the stations were relatively good,having no outstanding outliers and only short periods missing. More than 10stations had a few outliers, similarly to the �rst signal from Fig. 3. Five stationshad a large number of outliers, see the se
ond signal in Fig. 3. The quality ofthe data from the rest of the stations was somewhat poor: The signals 
ontaineda small number of measurements and were 
orrupted by outliers, see the twosignals at the bottom of Fig. 3.Although the outliers may sometimes be easily distinguished from the data,removing them by hand requires a tedious pro
edure whi
h turned out to be non-trivial in some 
ases. Therefore, we used the proposed robust PCA method as a
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essing step whi
h automati
ally solves the problems of outlier removal,dimensionality redu
tion and in�lling missing values. To keep the prepro
essingstep simple, we did not take into a

ount the temporal stru
ture of the data.In the presented experiment, we estimated the four-dimensional prin
ipalsubspa
e of the data using the following models: probabilisti
 PCA [5℄, robustPPCA (RPCA-s) [7℄ and the robust model presented in this paper (RPCA-d).For RPCA-d, the degrees of freedom {νm}M

m=1
were modelled separately for ea
hstation whereas the pre
ision τm = τ was set to be 
ommon. Broad priors wereobtained by setting aα = bα = β = aτ = bτ = 10−3.Fig. 4 presents the re
onstru
tion of the missing data for the four signalsfrom Fig. 3 using the 
ompared te
hniques. The re
onstru
tions obtained byPPCA and RPCA-s are 
learly bad. Both models are over-�tted to outliers andto spontaneous 
orrelations observed in s
ar
e measurements from problemati
stations. The methods reprodu
e a

urately some outliers and generate newoutliers in the pla
e of missing values. In 
ontrast, the results by RPCA-d are
learly mu
h better: The outliers are removed and reasonable re
onstru
tionsof the missing values are obtained. Although the signals look rather similar inFig. 4
 (the analysed spatial area is small and the annual 
y
le is obviously thedominant pattern), the re
onstru
ted signals look very plausible.The loading matrix W obtained with the di�erent te
hniques is also visu-alised in Fig. 4. Ea
h 
olumn of W is a 
olle
tion of weights showing the 
on-tribution of one prin
ipal 
omponent in re
onstru
ting data in di�erent spatiallo
ations. The patterns shown in Fig. 4 are interpolations of the weights over themap of Southern Finland. The patterns produ
ed by PPCA and RPCA-s 
learly
ontain lots of artefa
ts: the 
omponents are over-�tted to the outliers registeredin some weather stations. On the 
ontrary, the 
omponents found by RPCA-dare mu
h more meaningful (though they 
ontain some artefa
ts due to problem-ati
 stations in the 
entral area): The �rst 
omponent explains the dominantyearly and daily os
illations and the patterns asso
iated with the rest of theprin
ipal 
omponents are very typi
al for PCA applied to spatially distributeddata. Sin
e the investigated area is rather small, the �rst prin
ipal 
omponenthas similar loading for all weather stations. Note a 
lear 
oast line pattern inthe se
ond and the third 
omponents.
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) RPCA-dFig. 4: Experimental results obtained for the Helsinki Testbed dataset with di�erentmodels. Left: The re
onstru
tions of the signals shown in Fig. 3. Right: The prin
ipal
omponent loadings interpolated over the map of Southern Finland.5 Con
lusionsIn this paper, we presented a probabilisti
 model for robust PCA whi
h 
anbe a useful tool for prepro
essing in
omplete data with outliers. The e�e
t ofoutliers is diminished by using the Student-t distribution for modelling the ob-servation noise. We showed that using a model with independent elements of thenoise ve
tor 
an be more appropriate for some real-world datasets. We testedthe proposed method on a real-world weather dataset and 
ompared our ap-proa
h with the probabilisti
 PCA model [5℄ and robust PPCA assuming fully




orrupted outlier ve
tors [7℄. The experiment showed the superior performan
eof the presented model, whi
h found meaningful spatial patterns for the prin
i-pal 
omponents and provided reasonable re
onstru
tion in the pla
e of missingdata.The proposed algorithm is based on a probabilisti
 model and therefore itprovides information about the un
ertainty of the estimated parameters. Theun
ertainty information 
an be taken into a

ount, for example, when the prin-
ipal 
omponents are ordered a

ording to the amount of explained data varian
e[11℄. The model 
an easily be extended, for example, by taking into a

ount thetemporal stru
ture of the data. This would result in better performan
e in thetasks of missing value re
onstru
tion and outlier removal.In our work, we use the proposed te
hnique as a prepro
essing step for fur-ther exploratory analysis of data. For example, one 
an investigate a prin
ipalsubspa
e found for weather data in order to �nd meaningful weather patterns orto extra
t features whi
h might be useful for statisti
al weather fore
asts. This
an be done, for example, by using rotation te
hniques 
losely related to ICA.We have earlier used this approa
h for analysis of global 
limate data [9℄.Referen
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Appendix: Update rules
q(xn)=N (xn|xn,Σxn

), q(wm)=N (wm|wm,Σwm
) and q(µ)=N (µm|µm, µ̃m)are Gaussian density fun
tions updated as follows:

Σ−1

xn
= I +

∑

m|Omn

〈τm〉〈umn〉(wmwT

m
+ Σwm

)

xn = Σxn

∑

m|Omn

〈τm〉〈umn〉wm(ymn − µ
m

)

Σ−1

wm
= diag 〈α〉 + 〈τm〉

∑

n|Omn

〈umn〉(xnxT

n + Σxn
)

wm = Σwm
〈τm〉

∑

n|Omn

〈umn〉xn(ymn − µm)

µ̃−1

m
= β + 〈τm〉

∑

n|Omn

〈umn〉

µm = µ̃m〈τm〉
∑

n|Omn

〈umn〉
(
ymn − wT

mxn

)where 〈·〉 denotes expe
tations over the approximate distribution.Approximate q(τm) = G(τm|ăτm
, b̆τm

), q(umn) = G(umn|ăumn
, b̆umn

) and
q(αd) = G(αd|ăα, b̆αd

) are Gamma density fun
tions updated as follows:
ăτm

= aτ + Nm

2
b̆τm

= bτ + 1

2

∑

n|Omn

〈umn〉(e
2

mn
+ µ̃m + ξ̃mn)

ăumn
= νm

2
+ 1

2
b̆umn

= νm

2
+ 1

2
〈τm〉(e2

mn
+ µ̃m + ξ̃mn)

ăα = aα + M

2
b̆αd

= bα + 1

2

M∑

m=1

〈
w2

md

〉where ăumn
and b̆umn

are estimated only for observed ymn, Nm denotes thenumber of observed values in the set {ymn}N
n=1

, while emn and ξ̃mn are shorthandnotations for
emn = ymn − wT

m
xn − µm

ξ̃mn = wT

m
Σxn

wm + xT

n
Σwm

xn + tr(Σwm
Σxn

) .The degrees of freedom ν are point-estimated in order to keep the posteriorapproximation analyti
ally tra
table. The maximum likelihood estimate is foundby maximising the lower bound of the model loglikelihood. This yields
1 + log

(
νm

2

)
− ψ

(
νm

2

)
+ 1

Nm

∑

n|Omn

(〈log umn〉 − 〈umn〉) = 0 ,whi
h 
an be solved using line sear
h methods. One may try to start updatingthe hyperparameters α and ν after the iteration has already run for some timeif the algorithm seems to 
onverge to bad lo
al optimum.


