
Bayesian Robust PCA for Inomplete DataJaakko Luttinen, Alexander Ilin, and Juha KarhunenHelsinki University of Tehnology TKKDepartment of Information and Computer SieneP.O. Box 5400, FI-02015 TKK, Espoo, FinlandAbstrat. We present a probabilisti model for robust prinipal om-ponent analysis (PCA) in whih the observation noise is modelled byStudent-t distributions that are independent for di�erent data dimen-sions. A heavy-tailed noise distribution is used to redue the negativee�et of outliers. Intratability of posterior evaluation is solved usingvariational Bayesian approximation methods. We show experimentallythat the proposed model an be a useful tool for PCA preproessingfor inomplete noisy data. We also demonstrate that the assumed noisemodel an yield more aurate reonstrutions of missing values: Cor-rupted dimensions of a �bad� sample may be reonstruted well fromother dimensions of the same data vetor. The model was motivatedby a real-world weather dataset whih was used for omparison of theproposed tehnique to relevant probabilisti PCA models.1 IntrodutionPrinipal omponent analysis (PCA) is a widely used method for data prepro-essing (see, e.g., [1�3℄). In independent omponent analysis (ICA) and soureseparation problems, PCA is used for reduing the dimensionality of the datato avoid overlearning, to suppress additive noise, and for prewhitening neededin several ICA algorithms [2, 4℄. PCA is based on the quadrati riteria of vari-ane maximisation and minimisation of the mean-square representation error,and therefore it an be sensitive to outliers in the data. Robust PCA tehniqueshave been introdued to ope this problem, see, for example, [4℄ and the ref-erenes therein. The basi idea in robust PCA methods is to replae quadratiriteria leading to standard PCA by more slowly growing riteria.PCA has a probabilisti interpretation as maximum likelihood estimation ofa latent variable model alled probabilisti PCA (PPCA) [5℄. While PPCA isa rather simplisti model based on Gaussion assumptions, it an be used as abasis for building probabilisti extensions of lassial PCA. Probabilisti modelsprovide a prinipled way to ope with the overi�tting problem, to do modelomparison and to handle missing values. Probabilisti models for robust PCAhave been introdued reently [6�8℄. They treat possible outliers by using heavy-tailed distributions, suh as Student-t or Laplaian, for desribing the noise.In this paper, we present a new robust PCA model based on the Student-
t distribution and show how it an be identi�ed for inomplete data, that is,



(a) PPCA (b) Fully orrupted () Partially orruptedFig. 1: Prinipal subspae estimation using (a) probabilisti PCA [5℄, (b) robust PCAassuming fully orrupted outliers [7℄ and () robust PCA assuming partially orruptedoutliers. The rosses represent data points and the irles show their projetions ontothe found prinipal subspae.datasets with missing values. We assume that the outliers an arise indepen-dently in eah sensor (i.e. for eah dimension of a data vetor). This is di�erentto the previously introdued tehniques [6, 7℄ whih assume that all elements ofan outlier data vetor are orrupted. This work was inspired by our intentionto apply a semi-blind soure separation tehnique, alled denoising soure sepa-ration (DSS) to a weather dataset whih is too muh orrupted by outliers andmissing values. We have earlier suessfully applied DSS to exploratory analysisof global limate data [9℄.Our modelling assumption an be more realisti for some datasets and there-fore they an improve the quality of the prinipal subspae estimation andahieve better reonstrutions of the missing values. The model an also beused to remove outliers by estimating the true values of their orrupted ompo-nents from the unorrupted ones. This is illustrated in Fig. 1 using an arti�ialtwo-dimensional data with a prominent prinipal diretion and a few outliers.The subspae found by the simplest PCA model is a�eted by outliers, whereasrobust tehniques are able to �nd the right prinipal subspae. However, thereonstrution of the data is quite di�erent depending on whether one assumesfully orrupted or partially orrupted outliers: Fully orrupted outliers an bereonstruted by projeting orthogonally onto the subspae, while improbablevalues of partially orrupted samples an be ignored and reonstruted based onthe unorrupted dimensions.2 ModelLet us denote by {yn}N
n=1

a set ofM -dimensional observations yn. The data areassumed to be generated from hidden D-dimensional states {xn}N
n=1 using thetransformation:

yn = Wxn + µ + ǫn ,



where W is a M ×D loading matrix, µ is a bias term and ǫn is noise. Usuallythe dimensions ful�l D < M < N . The prior models for the latent variables arethe same as in PPCA and we use onjugate prior for µ and hierarhial priorfor W as in [10℄ to diminish over�tting [11℄:
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G(αd|aα, bα) .Hyperparameters aα, bα, and β are �xed to some proper values.The noise term ǫn is modelled using independent Student-t distributions forits elements. This is ahieved by using a hierarhial model with extra variables
umn:
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m is the m-throw of W . Preision τm de�nes a saling variable whih is assigned a onjugateprior
p(τ ) =
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G(τm|aτ , bτ ) ,with aτ and bτ set to proper values. Separate τm and νm are used for eahdimension but with simple modi�ations the dimensions an have a ommonvalue. Espeially for the preision τ , ommon modelling may prevent bad loalminima. For the degrees of freedom ν we set a uniform prior.3 Posterior ApproximationBayesian inferene is done by evaluating the posterior distribution of the un-known variables given the observations. We use variational Bayesian approahto ope with the problem of intratability of the joint posterior distribution (see,e.g., [3, h.10℄ for more details). The approximate distribution q is fatorised with
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Fig. 2: The weather stations are shown as purple dots on the topographial map of thestudied area. The olour represents the altitude above sea level in meters.respet to the unknown variables as
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q(αd)and eah fator q(θi) is updated assuming the other fators are �xed. This is doneby minimising the Kullbak-Leibler divergene ost funtion. Using onjugatepriors yields simple update rules presented in the appendix.4 Experiments with real-world dataThe proposed model was largely motivated by the analysis of real-world weatherdata from the Helsinki Testbed researh projet of mesosale meteorology. Thedata onsists of temperature measurements in Southern Finland over a periodof almost two years with an interval of ten minutes, resulting in 89 000 timeinstanes. Some parts of the data were disarded: Stations with no observationswere removed and we used only the measurements taken in the lowest altitudein eah loation. The loations of the remaining 79 stations are shown in Fig. 2.The quality of the dataset was partly poor. Approximately 35% of the datawas missing and a large number of measurements were orrupted. Fig. 3 showsrepresentative examples of measurements from four stations. The quality of thedataset an be summarised as follows: Half of the stations were relatively good,having no outstanding outliers and only short periods missing. More than 10stations had a few outliers, similarly to the �rst signal from Fig. 3. Five stationshad a large number of outliers, see the seond signal in Fig. 3. The quality ofthe data from the rest of the stations was somewhat poor: The signals ontaineda small number of measurements and were orrupted by outliers, see the twosignals at the bottom of Fig. 3.Although the outliers may sometimes be easily distinguished from the data,removing them by hand requires a tedious proedure whih turned out to be non-trivial in some ases. Therefore, we used the proposed robust PCA method as a
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50Fig. 3: Temperature data from four stations from the Helsinki Testbed dataset.preproessing step whih automatially solves the problems of outlier removal,dimensionality redution and in�lling missing values. To keep the preproessingstep simple, we did not take into aount the temporal struture of the data.In the presented experiment, we estimated the four-dimensional prinipalsubspae of the data using the following models: probabilisti PCA [5℄, robustPPCA (RPCA-s) [7℄ and the robust model presented in this paper (RPCA-d).For RPCA-d, the degrees of freedom {νm}M

m=1
were modelled separately for eahstation whereas the preision τm = τ was set to be ommon. Broad priors wereobtained by setting aα = bα = β = aτ = bτ = 10−3.Fig. 4 presents the reonstrution of the missing data for the four signalsfrom Fig. 3 using the ompared tehniques. The reonstrutions obtained byPPCA and RPCA-s are learly bad. Both models are over-�tted to outliers andto spontaneous orrelations observed in sare measurements from problematistations. The methods reprodue aurately some outliers and generate newoutliers in the plae of missing values. In ontrast, the results by RPCA-d arelearly muh better: The outliers are removed and reasonable reonstrutionsof the missing values are obtained. Although the signals look rather similar inFig. 4 (the analysed spatial area is small and the annual yle is obviously thedominant pattern), the reonstruted signals look very plausible.The loading matrix W obtained with the di�erent tehniques is also visu-alised in Fig. 4. Eah olumn of W is a olletion of weights showing the on-tribution of one prinipal omponent in reonstruting data in di�erent spatialloations. The patterns shown in Fig. 4 are interpolations of the weights over themap of Southern Finland. The patterns produed by PPCA and RPCA-s learlyontain lots of artefats: the omponents are over-�tted to the outliers registeredin some weather stations. On the ontrary, the omponents found by RPCA-dare muh more meaningful (though they ontain some artefats due to problem-ati stations in the entral area): The �rst omponent explains the dominantyearly and daily osillations and the patterns assoiated with the rest of theprinipal omponents are very typial for PCA applied to spatially distributeddata. Sine the investigated area is rather small, the �rst prinipal omponenthas similar loading for all weather stations. Note a lear oast line pattern inthe seond and the third omponents.
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4(b) RPCA-s
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1() RPCA-dFig. 4: Experimental results obtained for the Helsinki Testbed dataset with di�erentmodels. Left: The reonstrutions of the signals shown in Fig. 3. Right: The prinipalomponent loadings interpolated over the map of Southern Finland.5 ConlusionsIn this paper, we presented a probabilisti model for robust PCA whih anbe a useful tool for preproessing inomplete data with outliers. The e�et ofoutliers is diminished by using the Student-t distribution for modelling the ob-servation noise. We showed that using a model with independent elements of thenoise vetor an be more appropriate for some real-world datasets. We testedthe proposed method on a real-world weather dataset and ompared our ap-proah with the probabilisti PCA model [5℄ and robust PPCA assuming fully



orrupted outlier vetors [7℄. The experiment showed the superior performaneof the presented model, whih found meaningful spatial patterns for the prini-pal omponents and provided reasonable reonstrution in the plae of missingdata.The proposed algorithm is based on a probabilisti model and therefore itprovides information about the unertainty of the estimated parameters. Theunertainty information an be taken into aount, for example, when the prin-ipal omponents are ordered aording to the amount of explained data variane[11℄. The model an easily be extended, for example, by taking into aount thetemporal struture of the data. This would result in better performane in thetasks of missing value reonstrution and outlier removal.In our work, we use the proposed tehnique as a preproessing step for fur-ther exploratory analysis of data. For example, one an investigate a prinipalsubspae found for weather data in order to �nd meaningful weather patterns orto extrat features whih might be useful for statistial weather foreasts. Thisan be done, for example, by using rotation tehniques losely related to ICA.We have earlier used this approah for analysis of global limate data [9℄.Referenes1. Jolli�e, I.T.: Prinipal Component Analysis. 2nd edn. Springer, New York (2002)2. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. J. Wiley(2001)3. Bishop, C.M.: Pattern Reognition and Mahine Learning (Information Sieneand Statistis). Springer-Verlag New York, In., Seauus, NJ, USA (2006)4. Cihoki, A., Amari, S.: Adaptive Blind Signal and Image Proessing: LearningAlgorithms and Appliations. John Wiley & Sons, In., New York, NY, USA (2002)5. Tipping, M.E., Bishop, C.M.: Probabilisti prinipal omponent analysis. Journalof the Royal Statistial Soiety Series B 61(3) (1999) 611�6226. Zhao, J., Jiang, Q.: Probabilisti PCA for t distributions. Neuroomputing 69(Otober 2006) 2217�22267. Arhambeau, C., Delannay, N., Verleysen, M.: Robust probabilisti proje-tions. In: Proeedings of the 23rd International Conferene on Mahine Learning(ICML'2006), New York, NY, USA, ACM (2006) 33�408. Gao, J.: Robust L1 prinipal omponent analysis and its Bayesian variationalinferene. Neural Computation 20(2) (2008) 555�5729. Ilin, A., Valpola, H., Oja, E.: Exploratory analysis of limate data using soureseparation methods. Neural Networks 19(2) (2006) 155�16710. Bishop, C.M.: Variational prinipal omponents. In: Proeedings of the 9th Inter-national Conferene on Arti�ial Neural Networks (ICANN'99). Volume 1. (1999)509�51411. Ilin, A., Raiko, T.: Pratial approahes to prinipal omponent analysis in thepresene of missing values. Tehnial Report TKK-ICS-R6, Helsinki University ofTehnology, Espoo, Finland (2008) Available at http://www.is.hut.�/alexilin/.12. Liu, C., Rubin, D.B.: ML estimation of the t distribution using EM and its exten-sions, ECM and ECME. Statistia Sinia 5 (1995) 19�9



Appendix: Update rules
q(xn)=N (xn|xn,Σxn

), q(wm)=N (wm|wm,Σwm
) and q(µ)=N (µm|µm, µ̃m)are Gaussian density funtions updated as follows:
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) are Gamma density funtions updated as follows:
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) .The degrees of freedom ν are point-estimated in order to keep the posteriorapproximation analytially tratable. The maximum likelihood estimate is foundby maximising the lower bound of the model loglikelihood. This yields
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(〈log umn〉 − 〈umn〉) = 0 ,whih an be solved using line searh methods. One may try to start updatingthe hyperparameters α and ν after the iteration has already run for some timeif the algorithm seems to onverge to bad loal optimum.


