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ISBN 978-952-60-3173-6 (Print)

ISBN 978-952-60-3174-3 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://lib.tkk.fi/Reports/2010/isbn9789526031743.pdf

AALTO ICS

Espoo 2010



ABSTRACT: Randomization methods can be used to assess statistical signif-
icance of data mining results. A randomization method typically consists of
a sampler which draws data sets from a null distribution, and a test statistic.
If the value of the test statistic on the original data set is more extreme than
the test statistic on randomized data sets we can reject the null hypothesis.
It is often not immediately clear why the null hypothesis is rejected. For ex-
ample, the cost of clustering can be significantly lower in the original data
than in the randomized data, but usually we would also like to know why the
cost is small. We introduce a methodology for finding the smallest possible
set of constraints, or patterns, that explains the data. In principle any type
of patterns can be used as long as there exists an appropriate randomization
method. We show that the problem is, in its general form, NP-hard, but
that in a special case an exact solution can be computed fast, and propose a
greedy algorithm that solves the problem. The proposed approach is demon-
strated on time series data as well as on frequent itemsets in 0–1 matrices,
and validated theoretically and experimentally.

KEYWORDS: Hypothesis testing, randomization, significant patterns, time
series, frequent patterns.
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1 INTRODUCTION

A fundamental problem in data mining is how to identify significant and
meaningful features from noisy data. We consider the novel approach of
finding a minimal description of the data using randomization and statistical
significance testing.

The key idea behind randomization methods is, given the original data
set, to draw sample data sets from a null hypothesis, and then compute some
predefined test statistic. If the test statistic in the original data set is more
extreme than in the randomized samples, then we can claim that we have
found a significant property of the data. However, this does not necessarily
fully explain the data.

For example, suppose we are performing k-means clustering. A natural
choice would be to use the k-means cost function as the test statistic. Non-
random data is expected to have some structure, resulting in a lower clus-
tering cost, as opposed to random data. Hence, it is highly likely to identify
the clustering solution as significant (see, e.g., [22]). Therefore, the signif-
icance of the clustering solution does not really tell us anything new about
the data—it would in fact be much more surprising, if the null hypothesis
would not be rejected!

A better approach is to discover a set of patterns in the data, and then
test for the significance of each individual pattern. For example, if we are
dealing with 0–1 data and frequent itemsets, we can use the frequencies of
the itemsets as the test statistic and compute the p-values for each itemset
separately. Nonetheless, there are at least two problems in this approach:
first is that of multiple hypothesis testing (see the discussion in [4, 12]), and
second is that we may end up with a huge number of correlated patterns. We
propose a solution for the latter problem.

The main contributions of this paper include:

• a framework that uses a global objective function to find a minimal set
of constraints,

• a simple and efficient greedy algorithm to find the smallest set of con-
straints that explains the data statistically,

• a theoretical validation of the proposed framework and algorithm by
the analysis and proof of non-trivial theoretical properties, such as NP-
hardness and independence of constraints, and

• an experimental evaluation in two different domains using real data:
time series analysis and frequent itemset mining.

The objective function is a p-value for the whole data set. The goal is to
identify a minimal set of constraints to the null hypothesis such that the data
is no longer significant. We can argue that this minimal set of constraints
suffices to assess the statistical significance of data, since we can no longer
reject the final constrained null hypothesis. The constraints correspond to
interesting patterns. A constraint in 0–1 data can, for example, be that the
frequency of a given itemset is fixed.
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Figure 1: Five time series with monthly mean temperatures (in ◦F) from
years 1972 to 1976. The first four time series are sampled from the null
model and the one at the very bottom is the test sample, which is signifi-
cantly different from the null model. This deviation can best be explained by
looking at the following set of months: {February, May, November}.

This paper is structured as follows: in Section 2, we describe the frame-
work proposed in this paper, as well as summarize the central results. In
Section 3 we discuss the related work. Then, in Section 4, we present the
formalism as well as derive the theorems presented in this paper. Our ex-
perimental evaluation on two application domains, one involving time series
data and one involving binary matrices and frequent sets, is presented in Sec-
tion 5.

2 FRAMEWORK

We develop a general framework for identifying the shortest description of
a data set using a set of features. The proposed framework is general in the
sense that it only needs the data features (e.g., frequent patterns, etc.), an ap-
propriately defined test statistic, and a null hypothesis. We obtain a minimal
set of features that contains a minimal set of patterns that explain the data.

In this paper, we propose a new framework that directly optimizes the
global p-value of the data. This p-value corresponds to the test statistic com-
puted from the whole data. At each iteration, a new pattern is identified,
such that the global p-value is maximized. Notice that the global p-value is
not for the individual patterns, but for the whole data when the patterns are
used as constraints: the higher the p-value of the data the more important
the constraint. To get a better insight, let us first consider an example where
the data is represented by time series.
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Figure 1 shows a set of four time series that have been sampled from a null
model and one time series that is the test sample. Each time series contains
the mean monthly temperature values (in ◦F) for a year. Assume we have a
black box method to assess the p-value of a sample and let the significance
threshold be α = 0.05. Using the black box method, the p-value of the test
sample is initially 0.017, hence we can reject the null hypothesis. Next we
want to explain why the test sample (year) is significant.

Consider a set of constraints to the null hypothesis. There is a constraint
for each month which requires that the respective monthly mean tempera-
ture is of the same value as in the test sample. We compute a p-value using a
null hypothesis with each of these constraints. The highest p-value of 0.026 is
obtained when we constrain February. We therefore add February to the re-
sult. Then we identify the next month, that together with February, gives the
highest p-value when used as constraint. That month is May and in combina-
tion with February, it gives a p-value of 0.035. Finally, adding November to
the result, yields a p-value of p = 0.061 ≥ α. We have reached the minimal
set of months that, if used as constraints to the null model, render the test year
insignificant. Hence, the set of constraints {February, May, November}
form an explanation of all significantly non-random behavior of the test sam-
ple.

With the above example we illustrated the main methodology of the pro-
posed framework. The input of the framework therefore includes a null
model, as set of predefined constraints, and a test statistic and the respec-
tive p-value that serves as the objective function. We propose exhaustive and
approximate greedy algorithms to solve the optimization problem. In the ex-
haustive approach, all possible sets of given size are examined, and the one
with the highest p-value is reported. In the greedy approach, we iteratively
add constraints that cause the highest increase in the p-value of the test sam-
ple.

3 RELATED WORK

Several randomization methods exist in statistics [8, 25] that become handy
when it is easier to devise a way of sampling from a null hypothesis rather
than defining it analytically. Binary matrices have attracted great attention
in the data mining community and they have been used to represent knowl-
edge from various fields, e.g., ecology [29]. Several approaches have been
proposed to randomize binary matrices. A Markov chain with local swaps
that respect the marginal distribution is used by Gionis et al. [7], where the
problem of randomizing binary matrices of fixed size while preserving row
and column margins is studied. A similar idea has been discussed for graphs
[10, 28], and for real matrices [22].

Iterative knowledge discovery has been the focus of interest for several re-
searchers. Jensen et al. [14] proposes an iterative model selection approach
that tests if a candidate model is better than the current model via randomiza-
tion. Several approaches have been proposed (e.g., [20]) for ordering patterns
based on how informative they are with respect to the data they are model-
ing. Similar methods for itemset mining (e.g., [6, 16, 17, 2]) and association
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rules [1] have also been studied. However, all aforementioned approaches
are only applicable to certain classes of patterns. Other approaches for find-
ing significant patterns have been studied, including HMM-based methods
[13] and others [26, 27], but are not directly related to the scope of this pa-
per. Our approach and MDL [9] have similar objectives, but are based on
different principles.

An iterative pattern selection approach by Hanhijärvi et al. [11] consid-
ers the problem of randomizing data by taking into account previously dis-
covered patterns. The p-values are first computed for all patterns (e.g., all
frequent itemsets of a certain size) using some null hypothesis that is then
constrained by requiring that the test statistics related to the patterns with the
smallest p-values are preserved. Next, the p-values for the patterns are com-
puted using this constrained null hypothesis. This process is continued in
an iterative fashion until some termination criterion is met, e.g., no patterns
are significant, or when there are enough constraints; this can however take
several iterations. We end up with a set of patterns that constrain the null
hypothesis and explain some features of the data. There is however no global
objective function. The major drawback of this approach is that we may end
up with a larger than necessary set of patterns. Our framework differs from
this approach in that we define and use an objective function for finding the
set of significant patterns. Our objective function is chosen so that the min-
imal set of significant patterns is extracted. Notice this does not mean that
we simply set a significance threshold, because the patterns or constraints
often have interactions that are taken into account by our approach, while
Hanhijärvi et al. looks only at the p-values of individual patterns.

Randomizing time series is a challenging task and several approaches have
been proposed [3, 18, 23, 24]—any of these approaches can be used in our
framework. There is naturally a huge literature of pattern finding methods,
like SAX [15] for time series. We do not however consider them in this paper,
because they are not based on statistical significance and randomization.

4 THEORY

In this section, we first provide the necessary definitions and formulations
(Section 4.1), illustrate them with a simple example (Section 4.2), and present
the theoretical results.

4.1 Formal Definitions

Let Ω denote the set of all possible data samples (i.e., our sample space)
and ω0 ∈ Ω denote our original test sample for which the p-values will be
computed. The null hypothesis is defined by a probability function Pr over
the sample space Ω. We use Pr(ω), where ω ∈ Ω, to denote the probability of
a single data sample ω, and Pr(Q), where Q ⊆ Ω, to denote the probability
mass in Q. Pr(Q) satisfies Pr(Q) =

∑
ω∈Q Pr(ω).

Let nC be the number of predefined constraints (or patterns). Each con-
straint is indexed in [nC ] 1. Also, let Ci ⊆ Ω (with i ∈ [nC ]) denote the set

1Notice the shorthand notation [t] = {1, . . . , t}, where t ∈ N.
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of samples in Ω that satisfy constraint i. We require that ω0 is also in Ci, i.e.,
ω0 ∈ Ci ⊆ Ω. A set of constraint indices will be denoted by I ⊆ [nC ]. Since
the proposed framework and formulation is general and can be used in differ-
ent application areas and for various types of constraints, for the remainder
of this section, we will only use I to refer to the indices of the constraints.
We are going to actually describe these constraints in Section 5, where we
demonstrate our framework for two different applications.

We assume that each data sample ω ∈ Ω has a test statistic, denoted by
T (ω) ∈ R. The test statistic can either be independent of the set of con-
straints, or it can change each time a new constraint is added.

Further, we define

Ω− = {ω ∈ Ω | T (ω)− T (ω0) < 0} ,

Ω+ = {ω ∈ Ω | T (ω)− T (ω0) ≥ 0} .

Given a set of constraints, indexed by I , and based on the conventional
definition of the p-value, the p-value p(I) is defined as

p(I) = Pr (Ω+ | ΩI) =
Pr (Ω+ ∩ ΩI)

Pr(ΩI)
, (1)

where we have used the definition of conditional probability, and ΩI =
∩i∈ICi, with Ω∅ = Ω.

4.2 Example

Consider the problem of randomizing m×n binary matrices while preserving
some of the statistics of the original matrix, such as row and column margins
(see, e.g., [7]). The sample space Ω would now contain the set of all m×n bi-
nary matrices. Assuming that the null distribution is the uniform distribution
of binary matrices, the probability measure that describes the null hypothesis
is defined as Pr(ω) = 1/|Ω| = 2−mn,∀ω ∈ Ω. Several types of constraints
can be considered here, e.g., row and column margins, itemset frequencies,
etc.

For simplicity, let us consider row and columns margins to be the set of
constraints, thus introducing a total of nC = m + n constraints. Each of
the m row margin constraints corresponds to a subset Ci ⊆ Ω that include
all m × n binary matrices for which the margins of row i are equal to the
margin of row i in the test matrix ω0. The same holds for the set of n column
margin constraints. Each time a new constraint is recorded in I , the space of
available binary matrices shrinks.

4.3 Problem Definitions

Our problem can be formally defined in two equivalent ways:

Problem 1 Maximization Problem. For a given k, find a set I ⊆ [nC ] of size
k such that p(I) is maximized.

Problem 2 Minimal Set Problem. For a given α, find a minimal set I ⊆ [nC ]
such that p(I) is at least α.
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The above problem definitions correspond to the following decision prob-
lem:

Problem 3 Decision Problem. For a given k and α, does there exist a set
I ⊆ [nC ] of size of at most k such that p(I) is at least α?

4.4 NP-hardness

In this section we show that our problem is NP-hard.

Theorem 4 The Maximization Problem (Problem 1), the Minimal Set Prob-
lem (Problem 2), as well as the Decision Problem (Problem 3) are NP-hard.

Proof It is sufficient to show that the decision problem is NP-hard. A special
case of the decision problem considered here is the following: for a finite Ω
and a probability measure that satisfies Pr(ω) > 0 for all ω ∈ Ω, does there
exist a set I ⊆ [nC ] of size of at most k, such that p(I) ≥ 1? We can have
such a solution only if there exists a set of k constraints I ⊆ [nC ], such that
the intersection of Ci, for each i ∈ I , with Ω− is the empty set. Formally, we
require that

Ω− ∩ (∩i∈ICi) = ∅.

Taking the complement on both sides of the equation with respect to Ω,
results to

Ωc
− ∪ (∪i∈IC

c
i ) = ∅c = Ω.

We take the intersection of both sides of this equation with Ω−, resulting to

Ω− ∩ (∪i∈IC
c
i ) = ∪i∈I (Ω− ∩ (Ω \ Ci)) = Ω−.

Denoting Ti = Ω− ∩ (Ω \ Ci) we finally obtain ∪i∈ITi = Ω−. Our problem
is therefore equivalent to the set cover problem over Ti where the universe is
Ω−: does there exist a set of k sets Ti such that their union is Ω−. Problem 3
is therefore NP-hard.

4.5 Algorithms to Solve Problems 1 and 2

We propose two algorithms to solve the Maximization Problem (Problem 1)
and the Minimal Set Problem (Problem 2). The first two implement a
straightforward exhaustive search for Problems 1 and 2, respectively, which
always outputs the optimal solution. The running time of these exhaustive
algorithms is O(n

|I|
C ), where I is the set of constraint indices output by the

algorithm. Algorithms 1 and 2 are the respective greedy algorithms.
For a fixed size k, the exhaustive algorithm solves Problem 1 by perform-

ing an exhaustive search over all sets of constraints (for which |I| = k) and se-
lecting the subset with the maximal global p-value. Problem 2 can be solved
similarly.

The greedy algorithm (Algorithm 1) solves Problem 1 in a greedy fashion.
At each iteration, the algorithm selects the next constraint that maximizes the
p-value and terminates when |I| = k. Finally, Algorithm 2 solves Problem 2
in a similar manner. At each iteration, the constraint that maximizes the
p-value is recorded in I , until a p-value of α is reached.
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Algorithm 1 The greedy algorithm for Problem 1.
GREEDY1(k) {Input: k, number of constraints. Output: I , the set of k
constraint indices.}
Let I ← ∅.
while |I| < k do

Find i ∈ [nC ] \ I such that p(I ∪ {i}) is maximal.
Let I ← I ∪ {i}.

end while
return I

Algorithm 2 The greedy algorithm for Problem 2.
GREEDY2(α) {Input: α, significance threshold. Output: I , the set of
constraint indices.}
Let I ← ∅.
while p(I) < α and |I| < nC do

Find i ∈ [nC ] \ I such that p(I ∪ {i}) is maximal.
Let I ← I ∪ {i}.

end while
return I

Notice that all algorithms use the global p-value p(I) (which is the ob-
jective function) that is defined appropriately depending on the application
area. Two specific applications are described in detail in Section 5.

4.6 Independence of Constraints

In this section we define the independence of constraints, and show that both
greedy algorithms produce optimal results when this independence holds. If
the constraints are independent, it is actually sufficient to compute the p-
values p({i}) for each constraint and pick those k constraints with the highest
p-values. This is in fact a very interesting finding, as it shows that if for some
application area of interest, we can define a test statistic such that indepen-
dence of constraints holds, then the greedy approach is not just a heuristic,
but it can produce optimal results. Even if there is only a weak dependence
between the constraints, we expect the greedy approach to produce good re-
sults.

Given Ω+, constraints i and j are conditionally independent, if

Pr(Ci | Ω+)Pr(Cj | Ω+) = Pr(Ci ∩ Cj | Ω+). (2)

Now, assuming that constraints i and j are independent also if Ω+ = Ω,
i.e., Pr(Ci ∩ Cj) = Pr(Ci)Pr(Cj), and by using Bayes rule, Equation (2)
can be written as follows:

Pr(Ω+ | Ci ∩ Cj) =
Pr(Ω+ | Ci)Pr(Ω+ | Cj)

Pr(Ω+)
. (3)

Expressing the result as p-values using Equation (1), we can rewrite Equa-
tion (3) as

p({i, j}) = p(∅)−1p({i})p({j}). (4)

4 THEORY 13



Finally, we have arrived to the following definition:

Definition 5 We call constraints i and j independent if the p-values satisfy
p({i, j}) = p(∅)−1p({i})p({j}), or equivalently, if Pr(Ci ∩ Cj | Ω+) =
Pr(Ci | Ω+)Pr(Cj | Ω+), for all choices of ω0 ∈ Ω. We call a set of con-
straints independent if all pairs of constraints in that set are independent.

Lemma 6 If the constraint indices in [nC ] are independent, the p-values sat-
isfy p(I ∪ J) = p(∅)−1p(I)p(J), for all sets I ⊆ [nC ] and J ⊆ [nC ], such that
I ∩ J = ∅.

Proof Follows directly from Definition 5 and Equation (1).

Theorem 7 If the constraints are independent the greedy algorithms (Algo-
rithms 1 and 2) give an optimal solution.

Proof Consider the Minimal Set Problem (Problem 2), with k given as in-
put, and the respective greedy algorithm (Algorithm 1) and assume that the
constraints are independent. It follows from Lemma 6 that

p(I) = p(∅)−|I|+1
∏
i∈I

p({i}). (5)

To get a maximal p(I) we must therefore pick k constraints that have maximal
p-values p({i}). Lemma 6 can be re-written as

p(I ∪ {i}) = p(∅)−1p(I)p({i}). (6)

Consider an iteration of the greedy algorithm (Algorithm 1), where we have
l entries in I , with l < k. At the next iteration, we will add to I the constraint
with index i ∈ [nC ] \ I that maximizes p(I ∪ {i}). We notice from Equa-
tion (6) that the algorithm always picks the constraint index i with the largest
p({i}). Hence, during the k iterations of adding constraints to I Algorithm 1
selects those k constraints that have the largest p-values, which is the optimal
solution. The generalization to Algorithm 2 is straightforward.

4.7 Relation to Sampling

A randomization method produces samples from the possibly constrained
null distribution. Typically, the p-value in Equation (1) cannot be solved
analytically.

In such case, the p-value of Equation (1) can be approximated with the
empirical p-value [21]

p̂(I) =
1 +

∑n
i=1 H(T (ωi)− T (ω0))

1 + n
, (7)

where ωi, i ∈ [n], denotes a sample drawn from Pr(ω | Ω ∩i∈I Ci), and H is
a step function defined by H(t) = 1 if t ≥ 0, H(t) = 0 otherwise.
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5 APPLICATIONS AND EXPERIMENTS

The framework proposed in this paper is studied and experimentally evalu-
ated in two different application areas. The first concerns real valued obser-
vations modeled by time series and the second consists of transactional data
modeled by binary matrices.

5.1 Time Series

The samples are sequences of mean monthly temperatures, each sample cov-
ering exactly one year. Our goal is to identify years that are significantly dif-
ferent from others and find the smallest set of months that explains this.

Experimental Setup
We study the USHCN Monthly Temperature Data [19] containing temper-
ature measurements of 1,218 base stations all over the U.S. over the period
1895 until 2008. The maximum number of years covered by any base station
is 114 and the minimum is 105, with an average of 113.9. We use only the
data of the 1,139 base stations with no missing values. The mean monthly
temperatures are used without any preprocessing.

Problem Setting
We are given a test sample S0 ∈ Ω containing the monthly mean temper-
atures for one year and a station, and we want to assess how surprising this
sample is. We have to specify a null model, a test statistic and a type of con-
straints. We define the test statistic as

T (Si) =
m∑

j=1

|Si(j)− µ(j)|, (8)

where µ(j) is the mean temperature of the jth month of all years for the
station. The test statistic is simply the L1-norm distance to the expectation.

We are interested in finding the smallest set of mean monthly tempera-
tures that explains the deviation from the null model. Therefore, our con-
straints correspond to months. The jth constraint defines Cj to be set of
samples for which the temperature of the jth month is S0(j), i.e., Cj ⊆ Ω
contains all samples with the jth month fixed to the value of the test sam-
ple. The effect of this constraint is to essentially remove the influence of that
month on the test statistic.

We interpret the historical data as samples from some unknown null dis-
tribution, because it would be difficult to come up with a reasonable null
model. We obtain empirical p-values by comparing one year to all others. In
principle, we could obtain an empirical sample from the constrained null hy-
pothesis by considering only those samples that satisfy the constraints. This
would however be too restrictive, since the data is real valued. To remedy
this, we further assume that the months in the null model are independent.
To obtain samples from the constrained sample space we simply fix the tem-
peratures of the constrained months to the respective values in the test sam-
ple. This is equivalent to assuming that all monthly temperature measure-
ments in the null model are independent.

5 APPLICATIONS AND EXPERIMENTS 15
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Figure 2: For each year, the number of times the year is reported as signifi-
cant, as well as the number of months reported as significant, aggregated over
all 1,139 base stations.

We assess the results for each base station separately and present aggre-
gated results. We use leave-one-out for each year and try finding significant
years and months in comparison to all other data of the same base station. We
use both greedy and exhaustive algorithms with a fixed confidence threshold
of α = 0.05, and repeat this for each base station. We should keep in mind
that, because we repeat this for all years, we expect to find approximately 5%
of the years significant for each base station, even if the data is all random.

Results
We study which years and months in the USHCN data set are significantly
different from normal. We also present a comparison between the greedy
and exhaustive algorithm to solve this problem.

An overview of the results is given in Figure 2 which shows the number
of times a year is reported as significant, aggregated over all 1,139 base sta-
tions. For each significant year and base station, we computed the smallest
set of months that explains the significance. Table 1 contains the frequency
distribution of the number of months needed to explain a significant year.
We notice that there can often be more than one significant month, but
rarely more than seven. The difference between the greedy algorithm and
the exhaustive algorithm is small, because the constraints are approximately
independent.

Table 1: The percentage of samples for a given number of significant months.

Number of significant months
Algorithm 1 2 3 4 5 6 7 8+
greedy 76.8 15.4 4.8 1.6 0.5 0.3 0.1 0.2
exhaustive 76.8 17.1 4.8 1.0 0.2 0.1 0.1 0.0

In Table 2 we find a frequency breakdown of all months in the 5 years
with distinctively high counts (see Fig. 2). We see that for some years (1918,
1936) one month is reported much more frequently than all others, and for
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each of the years many months are not very significant. The winter of 1917–
1918, preceding the Spanish Flu epidemic, is well known to be extremely
cold.

Table 2: Months reported as significant by the exhaustive algorithm for all
1,139 base stations and top 5 years.

Year
Month 1917 1918 1931 1936 1976
January 31 340 31 14 20
February 39 4 64 277 141
March 49 31 13 5 15
April 7 0 7 2 3
May 66 6 10 0 31
June 10 5 5 5 10
July 2 4 5 105 8
August 3 2 5 60 5
September 4 29 96 3 5
October 106 3 9 1 114
November 13 2 89 2 231
December 183 13 122 0 29
Total Months 513 439 456 474 612
Year Count 367 371 321 331 380

5.2 Binary Matrices

The second application area studied in this paper concerns binary matrices
used to model transactional data. Our sample space includes only those
binary matrices having the row and column margins fixed to those of the test
sample. The itemset frequencies are used as constraints.

Discovering the set of frequent itemsets in the test data sample can be
easily solved by traditional data mining methods. Our main target here is to
identify minimal set of itemsets that describes the test sample.

Preliminary Definitions
Let D be a 0–1 matrix with m rows, corresponding to transactions, and n
columns, corresponding to attributes. Drc refers to the element at row r and
column c of D. An itemset X ⊆ {1, . . . , n} indicates a set of attributes in
D. A row r covers an itemset X , if Drx = 1, for all x ∈ X . The frequency
fr(X, D) of an itemset X in D is the number of rows in D that cover X .
Finally, the row and column margins of D, are the row and column sums of
D, respectively. Given a binary matrix D, for each row i ∈ [m] and column
j ∈ [n] in D, the margins are fixed to M row

i and M col
j , i.e.:

∀i ∈ [m],
∑
j∈[n]

Dij = M row
i , ∀j ∈ [n],

∑
j∈[m]

Dij = M col
j .

Let F = {X1, . . . , X|F|} be the set of itemsets in D with frequency above
some predefined threshold, i.e., fr(Xi, D) ≥ min_sup, ∀Xi ∈ F .
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Problem Setting
Following the notation introduced in Section 4, the sample space Ω is the set
of all binary matrices of m rows and n columns with row and column margins
fixed to those of the test sample ω0, corresponding to the binary matrix D.

The constraints for this specific application area correspond to itemset
frequencies. Let F be the set of itemsets that are frequent in the test sample.
Based again on the formulation in Section 4, each itemset Xi ∈ F constrains
the original space to Ci ⊆ Ω that contains all binary matrices ω ∈ Ω in which
the frequency of itemset Xi equals the frequency of that itemset in the test
sample.

Finally, given a binary matrix D and a set of constraints (i.e., set of frequent
itemsets in F), how to obtain the test statistic used to obtain one global p-
value is explained next.

Global p-value from p-values of Patterns
We can easily compute empirical p-values for individual itemsets,

pi(D) =
1 +

∑n
j=1 H(fr(Xi, Dj)− fr(Xi, D))

1 + n
,

where Dj , j ∈ [n], denotes the jth sample from the null distribution.
The p-values of the individual itemsets can be used to construct a global

test statistic using
T (D) = − min

i∈[nC ]
pi(D). (9)

The global p-value can be computed by using Equations (9) and (7).

Experimental Setup
The PALEO data set [5] has been used for testing both greedy and exhaustive
algorithms. The data set contains paleontological information about pres-
ence of mammals in fossil sites, represented by a binary matrix D of m = 124
rows (fossil sites) and n = 139 columns (species of mammals). The density
of 1’s in D is 11.5%.

The samples were generated via randomization of binary matrix D. As
our constraints are itemset frequencies, we used algorithm Itemset-Swap
described by Hanhijärvi et al. [11]. Itemset-Swap randomizes a binary
matrix while preserving the frequencies of a given set of itemsets. Parameter
w was set to 4 as suggested by [11]. The empirical p-values and test statistic T
were calculated as described in Section 5.2. We generated 1000 randomized
versions of D for each p-value calculation. The number of swaps K used
by the Itemset-Swap algorithm was not fixed. At each randomization we
computed the Frobenius norm [22] between the original and the swapped
version of D. This norm corresponds to the number of cells in which the two
matrix differ. If the difference between the randomized matrices produced
by two consecutive iterations was less than 1%, swapping was terminated, as
in [11].

For mining frequent itemsets, we varied the minimum support threshold
and chose 8%, because it gave a reasonable number of 439 frequent itemsets.
We only considered itemsets of size 2 and 3, as, in such data, it appears to be
fairly easy to understand the co-occurrence of 2 or 3 variables and increas-
ingly difficult to interpret itemsets of larger sizes.
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Results
In this section, we study the performance of the greedy algorithm (Algo-
rithm 2) and compare it with the competitor method described by Hanhijärvi
et al. [11]. For the purposes of this paper, we ran Hanhijärvi et al. for the PA-
LEO data and recorded the most significant constraint (itemset frequencies)
chosen at each iteration. We evaluated the results using the global p-value
used by our greedy algorithm.

Figure 3 shows a comparison of the two algorithms. The x axis corre-
sponds to the number of constraints, i.e., number of itemset frequencies that
are fixed, and the y axis shows the corresponding p-value for each set of con-
straints. For α = 0.05 the greedy algorithm halts after 31 constraints. The
performance for different values of α can be seen from Figure 3; notice that
the greedy algorithm always outperforms the competitor method. Hanhijärvi
et al. halts after 38 iterations, which means that it needs 7 more itemsets
to describe the data. This is expected since the objective function used in
this experiment is optimized for the greedy algorithm. Notice also that the
performance of the greedy algorithm differs significantly from the method by
Hanhijärvi et al. in terms of the set of constraints that are selected at each
iteration. In Figure 3 it can be seen that even when the second constraint
is selected, the greedy algorithm achieves a p-value of 0.0245 as opposed to
0.0113 of Hanhijärvi et al. This indicates that a different constraint has been
chosen by the two algorithms: the constraint chosen by the greedy algorithm
manages to increase the global p-value more than twice as much as Hanhi-
järvi et al. The running time of the greedy algorithm scales roughly linearly
with the size of the number of constraints nC .
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Figure 3: Global p-values for each set of constraints for a support threshold
of 8%. Our greedy algorithm and Hanhijärvi et al. are compared for the
PALEO data set. The greedy algorithm performs better as the p-value reaches
threshold α = 0.05 after only 31 iterations. Higher global p-value is better.

Similar results were obtained for different values of min_sup, but due to
space limitations we do not include them in this section.
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6 CONCLUSIONS AND FUTURE WORK

We have presented a generic framework that can be used to find a minimal
description of the data, if we have a null hypothesis and a global test statistic
for the full data set. We have shown that the problem is NP-hard, but that an
approximate solution can be found efficiently. We have applied our frame-
work to two distinct scenarios and have validated it experimentally, the first
scenario being finding significant values in time series data, and the second
finding itemsets in 0–1 data.

Our contribution is not specific to any type of data, constraints, or patterns.
Our framework can be applied to scenarios where a randomization method
exists but it is yet unclear how to utilize it. An interesting direction for future
work would be to extend our work on time series, and study existing random-
ization approaches, various test statistics, and classes of constraints that would
make sense in this domain.
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