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Abstract

We organize a PASCAL EU Network of Excellence challenge for in-
ferring relevance from eye movements, beginning 1 March 2005. The aim
of this paper is to provide background material for the competitors: give
references to related articles on eye movement modelling, describe the
methods used for extracting the features used in the challenge, provide
results of basic reference methods and to discuss open questions in the
field.

1 Introduction

This technical report is written to complement the Inferring Relevance from Eye
Movements challenge1, one of the challenges partly funded by the EU network
of excellence PASCAL. The challenge is organized in the form of a competition,
where the contestants try to infer the relevance of a read document from the
associated eye movement trajectory. We expect that the challenge will bring
contributions to four different areas:

• Advances in machine learning methodology

• Establishing common practices for feature extraction in eye movements
1The Challenge has a web site at http://www.cis.hut.fi/eyechallenge2005/.

1



• Further the development of proactive user interfaces

• To learn of the psychology underlying eye movements in search tasks

The eye movement data is promising for advancing machine learning meth-
ods since it is very rich but noisy, and it is rather easy to collect in large quan-
tities. The data is in the form of a time series which will pose challenges for
optimal selection of features. For a simple case (Competition number 1), we will
provide a comprehensive 22-dimensional set of eye movement features derived
from the ones generally used in eye movement research (previously analysed
in [31, 32]).

In psychological research of reading, it is common to segment the eye move-
ment trajectory into fixations and saccades, and then compute summary mea-
sures of these modalities. The features used in Competition 1 are such summary
measures. The controlled experimental setup used in the challenge makes it pos-
sible to test whether the established common practice is optimal for inferring
relevance. In Competition 2 we give the full eye movement trajectory and the
competitors can model it in any unorthodox way.

In information retrieval, relevance generally depends on the context, task,
and individual competence and preferences of the user. Therefore relevance
of articles suggested by a search engine could be improved by filtering them
through an algorithm which models the interests of the user. This algorithm
would be proactive [41]; it predicts the needs of the user and adapts its own be-
havior accordingly. Individual relevance can be learned from feedback given by
the user. The usual way would be to ask after every document whether the user
found it relevant, and to learn the user’s preferences from the answers. However,
giving this kind of explicit feedback is laborious, and people outside of research
laboratories rarely bother. Alternatively, relevance can be inferred from implicit
feedback derived traditionally from document reading time, or by monitoring
other behavior of the user (such as saving, printing, or selecting of documents).
The problem with the traditional sources is that the number of feedback events
is relatively small. One of the motivations of the PASCAL challenge is to ex-
plore whether the traditional sources of implicit relevance information could be
complemented with eye movements, and to find best methods for doing it.

In a typical information retrieval setup the user types in keywords to a search
engine and is then given a list of titles of documents that possibly contain the
information the user is looking for. Some of the documents suggested by the
search engine will be totally irrelevant, some will handle the correct topic, and
only few will be links to documents that the user actually will bother to read.
Our experimental setting for collecting eye movement data was designed to sim-
ulate this natural situation, with the difference that in our case the relevance
is known. By gathering data in a controlled setup we ensure that we know the
ground truth, that is, the relevance associated with each eye movement trajec-
tory. Machine learning methods can then be used for selecting a good set of
features of eye movements, and for learning time series models to predict rel-
evance of new measurements. If the eye movements contain any information
about the relevance of a text, prediction should be possible. The modeling as-
sumption behind our analysis is that attention patterns correlate with relevance;
at the simplest, people tend to pay more attention to objects they find relevant
or interesting.
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2 Physiology of the Eye

Gaze direction is a good indicator of the focus of attention, since accurate view-
ing is possible only in the central fovea area (only 1–2 degrees of visual angle)
where the density of photoreceptive cells is highly concentrated. For this reason,
detailed inspection of a scene is carried out in a sequence of saccades (rapid eye
movements) and fixations (the eye is fairly motionless). The trajectory is often
referred to as a scanpath.

Information on the environment is mostly gathered during fixations, and
the duration of a fixation is correlated with the complexity of the object under
inspection. A simple physiological reason for this is that the amount of infor-
mation the visual system is capable of processing is limited. During reading this
complexity is associated with the frequency of occurrence of the words in gen-
eral, and with how predictable the word is based on its context [29]. Naturally
there are other factors affecting the reading pattern as well, such as different
reading strategies and the mental state of the reader.

2.1 Eye movement details

Actually the eye does not lie completely still during fixations. In general we
expect that the small movements during fixations will not play an important
role in this challenge, since with the sampling rate of 50 Hz the average amount
of samples from a fixation is around twelve. However, some basic knowledge on
the fixations and saccades will be required if the competitors want to construct
algorithms for fixation identification for Competition 2.

Clinical physiology text books [17] report that during fixation, the eye moves
in an area which usually is less than 0.25 degrees of visual angle, meaning of the
order of ten pixels in our experiment2 (one should however also remember to take
into account the measurement noise). During fixation, three different modes of
movement can be separated: tremor, which is small amplitude (5–30 sec arc)
and high frequency (30–100 Hz) oscillations, drift, which is slow velocity move-
ment (1–8 min arc per second) and low frequency (<0.5 Hz), and microsaccades,
low frequency (1–2 Hz) and small amplitude (1–8 min arc), saccade-like move-
ments. Tremor and drift are commonly associated with the physiology of the
eye, microsaccades on the other hand seem to have some cognitive basis [5, 19].

The saccades are ballistic, meaning that the target of the saccade will be
decided before its initiation. The speed during a saccade depends on its length;
for example during 5◦ saccade the peak velocity is around 260◦ per second, while
during 20◦ saccade the peak velocity is around 660◦ per second. These charac-
teristics are common to all people to the extent that one can use quantitative
measurements of saccades to assess the function of the oculomotor system, to
investigate the effects of drugs or lesions, and in some cases to aid diagnosis of
disease or locating of lesions (see [10], for example).

The computation of a saccade requires some (latency) time in the fixation,
meaning that fixations under 60 ms are not generally possible. However, it is
possible to pre-program a sequence of saccades where the fixation duration will
be shorter.

2with a subject distance of 60 cm from the 17” screen with a resolution of 1024x1280.
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2.2 Pupillometry

In addition to eye movement features, the challenge also contains features com-
puted from the pupil. There was some evidence in our experiments that the
features correlated with relevance of the text [31]; the effect was very small at
best, but it led us to discover the works reported in [16] or [2], where pupil
diameter has been reported to increase as a sign of increased cognitive load.

The main function of pupil is to control the amount of light falling onto
the retina. However, in addition to reflexive control of pupillary size there
also seem to be tiny, cognitively related fluctuations of pupillary diameter ([2]
reports interesting results that are discussed below). The so called task-evoked
pupillary response (TERP) amplitudes appear to provide a good measure of the
cognitive demands [2] for a wide variety of tasks (see Appendix for a brief note
on TERPs).

Besides being a measure of cognitive demands of the task, the pupil width
is also reported to vary due to different emotions. In [25], affective stimuli has
been reported to cause systematical effects in subjects’ physiological reactions
and subjective experiences. The pupil size variation could therefore be used as
implicit feedback signal for example in an affective computing interface [25].

3 Some literature

In this Section we give a brief introduction to literature on eye movements. The
emphasis is on the areas which are relevant to the challenge: eye movements
during reading and eye movements used as an implicit feedback channel.

3.1 Eye movements and reading

In a typical reading situation, the reader fixates on each word sequentially.
Some of the words are skipped, some fixated twice and some trigger a regression
to preceding words (approx. 15 % of the saccades). The reader is often not
conscious of these regressions. The typical duration of fixations varies between
60–500 ms, being 250 ms on the average [21].

Research on eye movements during reading is a well-established field (see [29]
for a good overview). In psychological literature, several models for reading have
been proposed (most recent [6, 20, 30]). Models of eye movement control during
reading differ mainly by the extent to which eye movements are assumed to be
governed by lexical (high-level) processes over a simple default (low-level) con-
trol system assuming certain mean saccade lengths and fixation durations [39].

Currently the most popular model, so called E-Z Reader [30], concentrates
on modeling reading at the basic level, as a series of sequential fixations occur-
ring from left to right without regressions which are assumed to be associated
with higher order cognitive processes. The durations of the fixations are corre-
lated with word occurrence frequency, that is, the access time for the concepts
concerning more rarely occurring words is longer than the access time for more
frequently occurring words (however, similar correlations with word predictabil-
ity and word length have also been reported). In a more recent publication [6]
this correlation is extended to explain also regressions as occurring to those
words which did not receive enough processing time during the first pass read-
ing.
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3.2 Eye movements and implicit feedback

Eye movements have earlier been utilized as alternative input devices for either
pointing at icons or typing text in human-computer interfaces (see [15, 44]).

Use of eye movements as a source of implicit feedback is a relatively new
concept. The first application where user interest was inferred from eye move-
ments was an interactive story teller [38]. The story told by the application
concentrated more on items that the user was gazing at on a display. Rudimen-
tary relevance determination is needed also in [13], where a proactive translator
is activated if the reader encounters a word which she has difficulties (these are
inferred from eye movements) in understanding. A prototype attentive agent
application (Simple User Interest Tracker, Suitor) is introduced in [22, 23]. The
application monitors eye movements during browsing of web pages in order to
determine whether the user is reading or just browsing. If reading is detected,
the document is defined relevant, and more information on the topic is sought
and displayed. Regretfully the performance of the application was not evalu-
ated in the papers in any way. The (heuristic) rules for inferring whether the
user is reading are presented in [4]. The eye movements have also been used
as one feedback channel to identify critical driving events in intelligent driver
assistance systems [24, 42].

The first analysis of eye movements in an information retrieval situation was
published in [31, 32], where the experimental setup is quite similar to the Chal-
lenge. In [8] the goal was different: to investigate with quantitative measures
how users behave in a real, less-controlled information retrieval task.

Implicit feedback information is also evaluated in usability studies[14, 7],
where it is common to compute summary measures of eye movements on large
areas of interest, such as images or captions of text (see [27] for an example
study). The eye movements have also been used to give feedback of the subjec-
tive image quality [43].

4 Measurements

4.1 Experimental setup

(1) (2) (3)

Figure 1: An example of stimuli used in the experiments.

The structure of an assignment is as follows: a subject was first shown a
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question (image 1 in Figure 1), and then a list of ten sentences (image 2 in
Figure 1), one of which contained the correct answer (C). Five of the sentences
were known to be irrelevant (I), and four relevant for the question (R). The
subject was instructed to identify the correct answer and then press ’enter’
(which ended the eye movement measurement) and then type in the associated
number in the next screen (image 3 in Figure 1). The assignments were in
Finnish, the mother tongue of the subjects.

The measurements were made for 11 subjects.
The full training set consists of 50 assignments, shown to all subjects. The

lists were presented to the subjects in a randomized order. The measurements
were carried out in sets of ten assignments, followed by a short break and re-
calibration. Some of the assignments were excluded for technical reasons (e.g.
the subject gave a wrong answer), resulting in less than 50 assignments per
subject. In the challenge, the full training set is divided into a training and
validation data set. The distribution of the correct answers in the full training
data set is balanced, so that the correct answer appeared five times in the place
of the first sentence, and so on.

Of the 11 subjects, seven were randomly chosen to take part in test data
measurements. The test set consists of 180 assignments. To make cheating
harder, all assignments within the test set are unique, and each assignment was
shown to only one of the subjects. The locations of the relevant lines and correct
answers in the test stimuli was randomly chosen, without balancing. The test
data is constructed to be more real life-like, with less controlled questions and
candidate sentences. It can therefore be expected that the classification rate is
lower with the test data than with the training data.

4.2 Equipment

The device used for measuring eye movements was Tobii 1750 eye tracker3,
shown in Figure 2. The eye tracker is integrated into a 17” TFT monitor. The
tracker illuminates the user with two near infrared diodes (they can be seen
in Figure 2) to generate reflection patterns on the corneas of the user. A video
camera then gathers these reflection patters as well as the stance of the user.
Digital image processing is then carried out for extracting the pupils from the
video signal. The systems tracks pupil location and pupil width at the rate
of 50 Hz. The pupil locations can be mapped to gaze locations on the screen
by calibrating the system; during the process the user needs to gaze at sixteen
pre-defined locations on the screen.

The manufacturer reports the spatial resolution (frame-to-frame variation
of the measured gaze point) to be 0.25 degrees and the average accuracy (bias
error, deviation between the measured and actual gaze point of the user) of
approximately 0.5 degrees. Additionally, the calibration deteriorates over time
due to changes in the pupil size or if the eyes become dry. The associated drift
of calibration is less than 0.5 degrees. The system allows free head motion in
a cube of 30x15x20 cm at 60 cm from tracker. The resolution of the tracker is
1280x1024, and the recommended distance of the user from the display is 60
cm.

3Web pages at http://www.tobii.com. On 24 February 2005 a product description of the
Tobii 1750 was available at http://www.tobii.com/downloads/Tobii 50series PD Aug04.pdf

6



Figure 2: Eye movements of the subjects were measured with a Tobii 1750 eye
tracker.

5 Feature Extraction

There are not many publications on the initial preprocessing of eye movement
data (see [37] for an example). To our knowledge, the Tobii eyetracker does not
preprocess the data4.

5.1 Fixation Identification

Identifying fixations is still very much an open question within the eye track-
ing research, as there is no consensus of the method that best segments the
eye movement trajectory (see [35] for discussion on the subject). Most of the
eye movement measuring equipment manufacturers provide a window-based seg-
mentation algorithm as a standard software. Hidden Markov Model-based algo-
rithms have only recently gained some attention in the research area [33, 45].

5.1.1 Window-based Algorithms

In a window-based algorithm, a fixation is identified by drawing a square of x
pixels around the currently measured gaze location. If the next measured gaze
location falls within the block, it will be counted as a possible fixation. If in
n consecutive gaze locations each falls within the block drawn around the gaze
point preceding it, the n points will be counted as a fixation with a duration
of n times the sampling interval (in our case 20 ms). In a Tobii eye tracker
the standard setting is a 50-pixel window, with a time frame of 100 ms. For
reading studies the manual recommends smaller window sizes. For the PASCAL
challenge Competition 1, the fixations were computed using a 20 pixel window
with a 80 ms time frame.

5.1.2 HMM-based Algorithms

The first application of Hidden Markov models (HMMs) to segment eye move-
ment trajectories was [33], where a two-state HMM was applied. The model
parameters were set manually, and the model was merely used for finding the
most probable (Viterbi) path through the model for a given sequence in order to

4The Tobii however computes a validity code for each measurement, describing whether it
tracks reliably both eyes or only one eye.

7



segment the trajectory. A more realistic application of the HMMs was presented
in [45], where the parameters of a two-state HMM were learned from data.

Competitors taking part in the PASCAL Challenge Competition 2 may try
to find the optimal segmentation method giving the best classification accuracy.
Alternatively, they can of course decide to skip the segmentation part altogether.

5.2 Features for Competition 1

After segmenting the eye movement trajectory into fixations and saccades, they
were assigned to the nearest word. After that, features for each word can be
computed. All the features for the Competition 1 are listed in Table 1. We will
next discuss the psychological justification behind the features.

The eye movement features used in psychological studies are often catego-
rized into first-pass and second-pass measures, according to the order the region
of text is encountered during reading. First-pass reading features are generally
used as the primary measure of interest or as the measures of initial processing,
whereas second-pass measures reflect the processes associated with re-analysis
or “late processing” of the text region [29]. We expect the latter measures to
play an important role in the challenge setup, for example in a case when the
subject is choosing between two candidates of correct answers.

The eye movement features used in the challenge can additionally be divided
into measures that are obtained from eye fixations, regressions, saccades, or
pupil dilation data. In addition to the 22 features provided in the Competition 1,
we will also briefly list some measures used in psychological studies for analysing
the time series nature of the data, such as re-fixations and word skipping. These
measures can be easily computed from the Competition 1 data.

Any single measure of processing would be an inadequate reflection of the
reality of cognitive processing. To obtain a good description about the cognitive
processes occurring during our task, a large number of different features need to
be analysed. Features used in this paper and the challenge are listed in Table 1.

5.2.1 Fixation features

Typical measures of initial processing are first fixation duration (firstFixDur)
and first-pass reading time or gaze duration (firstPassFixDur), which is the sum
of all fixation durations on a region prior to moving to another region [3]. Ad-
ditional measures for exploring early processes are the probability of fixating
the target word (P1stFixation) when the region is initially encountered and
the number of fixations received during first pass reading (FirstPassCnt). The
duration of the fixation preceding the first fixation onto the current word (pre-
vFixDur) and the duration of the next fixation after which the eyes moved to
the next word (nextFixDur) were included in our analysis. In this paper, one
measure of re-analysis or “late processing” was the probability that the word
was fixated during second-pass reading (P2ndFixation). Measures covering all
the fixations that landed on each word were also analysed. Mean fixation dura-
tions (meanFixDur), sums of all fixation durations on a word (totalFixDur) and
the total number of fixations per word (fixCount) were computed, as well as the
ratio between the total fixation duration and the total duration of fixations on
the display (timePrctg).
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5.2.2 Fixation position features

Landing position of first fixation on the word is used for exploring the early
processing, whereas the launch site or the last location of the eyes before landing
on the target word is used as a “control” for “parafoveal” preprocessing of the
target word [3]. There is variability in where the eyes land on a word, but usually
people tend to make their first fixation on a word about halfway between the
beginning and the middle of a word [29]. This prototypical location is labelled
as the optimal viewing position, where the word recognition time is minimized.
Extensive research effort has been made to examine the consequences of making
fixations at locations other than the optimal viewing position. It has been shown
that the further the eyes land from the optimal position on a word the more
likely there will be a refixation onto that word. We computed three measures
that take the fixation position into account. The distance (in pixels) between
the fixation preceding the first fixation on a word and the beginning of the word
(prevFixPos), the distance of the first fixation on a word from the beginning of
the word, and the launch site of the last fixation on the word from the beginning
of the word (leavingPosition) were included.

5.2.3 Regressions

Approximately 10–15 % of fixations are regressions to previously read words. A
common hypothesis is that eye movements during reading are mainly controlled
by reasonably low-level processes in the brain, and higher level processes only
interfere when something needs to be clarified. The second-pass measures such
as regressions are therefore commonly accepted as indicators of higher-order
cognitive processes. This may occur with a delay, since the transmission and
processing of neural signals takes time.

In studies of reading it has been noted that the text difficulty has a strong
influence on the number of regressions the readers make. Studies have also
demonstrated that a regression was triggered when readers encountered a word
indicating that their prior interpretation of a sentence was in error. Therefore
it is likely that some of the regressions are due to comprehension failures [29].

Four regression measures were included in our set of features. We computed
the number of regressions leaving from a word (nRegressionsFrom), the sum of
durations of all regressions leaving from a word (regressDurFrom) and the sum
of the fixation durations on a word during a regression (regressDurOn). It has
been noted that sometimes the processing of a word “spills” on to reading the
next word. Data analysis in [28] showed that most regressions originated from
positions that were relatively close to a target word. In their dataset, of all the
regressive saccades made within one line of text, 26 % came from within the
same word (regressive refixations), 49.4 % came from the immediately following
word, and 24.6 % came from more distant locations. We therefore included a
binary feature (nextWordRegress) indicating whether the regression initiated
from the following word.

5.2.4 Saccade features

Two saccade measures were included in the present paper. We computed the
distance (in pixels) between the launch site of a saccade and its landing position,
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when the fixation following the saccade was the first fixation onto a word (first-
SaccLen) and when the fixation was the last fixation on a word (lastSaccLen).

5.2.5 Pupil features

There is evidence that the processing of complex sentences not only takes longer
but it also produces a larger change in pupil diameter [2, 16]. Therefore two
measures of pupil diameter were included in our analysis.

The mean horizontal pupil diameter during fixations on the current word
was computed (pupilDiam1), as well as the maximum of pupil dilation within
0.5 – 1.5 seconds after encountering the word (pupilDiam2). The latter was the
measure used in [16]. The measures were calibrated by subtracting the mean
pupil diameter of the subject during the measurement.

5.2.6 Refixations

Refixation is a fixation to the currently processed word or text region. Some
refixations occur because the gaze falls initially in a suboptimal place for pro-
cessing the word, and a refixation takes the eyes to a more optimal viewing
location [29]. The most frequent pattern is to first fixate near the beginning
of the word followed by a fixation near the end of the word. Also contextual
variables and incomplete lexical processing have been shown to have an effect
on whether readers refixate on a current word. In [11] refixations were mea-
sured with sentences as the units of analysis. They computed the frequency and
duration of reinspective fixations during the first reading of a sentence (rein-
spections). Hyönä [11] measured also the frequency and duration of looks back
to a sentence that had already been read (look backs), and the frequency and
duration of looks from a sentence back to an already read sentence (look froms).
Reinspective and look-back fixations presented in [11] differ from regressions in
that the saccadic direction is not decisive; rather, fixations that land on a pre-
viously fixated text region are defined either as reinspections (when reading
parts of the currently fixated sentence) or look backs (when reading parts of a
previously read sentence). All measures in [11] were computed as a ratio per
character to provide adjustment for differences in length across sentences.

5.2.7 Skipping

There is experimental evidence that context has a strong effect on word skip-
ping [29]. When the following words can be easily predicted from the context,
they are more frequently skipped. Also high-frequency and short words are
more easily skipped.

Note on the selected units of measures In psychology the most common
unit of saccade lengths has been visual angle, which has the benefit of being
independent of distance from stimuli. In studies of reading, saccade lengths
have also been reported to scale with respect to font size. Both of these mea-
sures naturally demand that the subject’s head is kept fixed throughout the
measurements. Since the subject is allowed to move quite freely in our exper-
iment (without losing too much accuracy), we will report saccade lengths in
pixels, because converting them to angles or letter sizes would only add noise
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to the measures due to movement of the subjects. The pixel measures with
respect to each subject are comparable, since the stimuli were the same for all
subjects, as was the the average distance of the subject to the display. Finally,
the fixation identification algorithms provided by manufacturers of measuring
equipment use the same units.

5.3 Features for Competition 2

In the challenge Competition 2, the raw eye movement data will be provided.
The competitors are free to compute their own features from the x- and y-
coordinates of gaze location and the pupil diameter. The given values are aver-
ages of the left and right eye.

6 Baseline Methods

6.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is one of the simplest means of classifica-
tion, and it is discussed in most textbooks on applied statistics or multivariate
techniques. The presentation here follows the one in [36].

The idea in LDA is to find new variables which are linear combinations of the
original ones, such that different classes are discriminated as well as possible.
Discrimination is measured by SSbetween/SSwithin, where SSbetween is the sum
of squares between classes and SSwithin the sum of squares inside a single class,
defined by

SSwithin =
G∑

g=1

ng∑
i=1

x2
gi , (1)

SSbetween =
G∑

g=1

ng(x̄g − x̄)2 , (2)

where xgi is the observation number i in class g, ng is the number of observations
in class g = 1, · · · , G, x̄g the mean of the observables in class g, and x̄ the mean
over all observations. In [36], the calculations needed to find optimal new axes
are covered. We will next discuss how new observations are classified.

Let pj be the prior probability and fj(x) the density function for class πj .
The observation x is allocated to the class πj for which the probability of mis-
classification,

G∑
i=1,i 6=j

pifi(x) , (3)

is minimal. Clearly, this is the same as maximizing

ln[pjfj(x)] . (4)

Assuming that x comes from a normal distribution, we get the classification rule
(ignoring constants)

argmaxj [ln pj − 1/2 ln |Σj | − 1/2(x − µj)Σ−1
j (x − µj)], (5)

11



where Σj is the covariance matrix and µj the mean vector for class πj in the
training set.

6.2 Hidden Markov Models

In order to explain user behavior, the sequential nature of the reading process
has to be modelled. Hidden Markov models are the most common methods for
modeling sequential data. In eye movement research, hidden Markov models
have earlier been used for segmenting the low-level eye movement signal to detect
focus of attention (see [45]) and for implementing (fixed) models of cognitive
processing [34], such as pilot attention patterns [9].

Hidden Markov models optimize the log-likelihood of the data Y given the
model and its parameters Θ, that is, log p(Y |Θ). The goal is to optimize the
parameters of the model so that the distribution of the data is expressed as
accurately as possible. HMMs are generative models; they attempt to describe
the process of how the data is being generated. Therefore they can be said to
emit (produce) observations.

Long-range time dependencies within the data are taken into account by
adding hidden states to the model. The changes in the distributions of the
emitted observations are associated with transitions between hidden states. The
transitions (as well as the observation distributions) are modelled probabilisti-
cally. There exists a well-known algorithm for learning the HMMs, namely the
Baum-Welch (BW) algorithm, if all the probabilities within the model are ex-
pressed using distributions which are within the exponential family [1]. Baum-
Welch is a special case of Expectation-Maximization (EM) algorithm, and it
can be proven to converge to a local optimum.

6.2.1 Simple Hidden Markov Model for Each Class

The simplest model that takes the sequential nature of data into account is a
two-state HMM. We optimized one model individually for each class. In a pre-
diction task the likelihood of each model is multiplied by the prior information
on the proportions of the different classes in the data. As an output we get the
maximum a posteriori prediction.

6.2.2 Discriminative Hidden Markov Models

In speech recognition, where HMMs have been extensively used for decades, the
current state-of-the-art HMMs are discriminative. Discriminative models aim
to predict the relevance B = {I,R, C} of a sentence, given the observed eye
movements Y . Formally, we optimize log p(B|Y,Θ). In discriminative HMMs,
a set of states or a certain sequence of states is associated with each class. This
specific state sequence then gives the probability of the class, and the likelihood
is maximized for the teaching data, versus all the other possible state sequences
in the model [26]. The parameters of the discriminative HMM can be optimized
with an extended Baum-Welch (EBW) algorithm, which is a modification of the
original BW algorithm.
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6.2.3 Discriminative Chain of Hidden Markov Models

A main difficulty in the information retrieval setup is that relevance is associated
with titles, not with words in a title. For example, there are words in titles which
are not needed in making the decision on whether the title is relevant or not.
There could be many such non-relevant words in a sentence, and possibly only
one word which is highly relevant. The situation thus resembles the setup in
reinforcement learning: the reward (classification result) is only known in the
end, and there are several ways to end in the correct classification.

In order to take into account the whole eye movement trajectory during
a task, we model eye movements with a two-level discriminative HMM (see
Figure 3). The first level models transitions between sentences, and the second
level transitions between words within a sentence. Viterbi approximation is
used to find the most likely path through the second level model (transitions
between words in a sentence), and then the discriminative Extended Baum-
Welch optimizes the full model (cf. [18, 40] for similar approaches).

R

C I

Figure 3: The topology of the discriminative chain of hidden Markov models.

In our implementation, the first level Markov model has three states, each
state corresponding to one class of titles. Each of the three states in the first
level have the following exponential family distributions:

1. A multinomial distribution emitting the relevance of the line, B. The
parameters of this distribution were fixed, resulting in a discriminative
Markov chain model in which each state corresponds to a known classifi-
cation.

2. A Viterbi distribution emitting the probability of the sequence of words in
a title.

The Viterbi distribution is defined by the probability of a Viterbi path trough a
two-state Markov model forming the second level in our model. The two states
of the second level model emit the observed word-specific distributions. The
second level Viterbi distributions are further parameterized by the probabili-
ties of beginning the sequence from that state (for example ΠR = πR

1 , πR
2 ), and

transition probabilities between states (e.g., aR
ij , i, j = 1, 2). The second level

Markov model is called a Viterbi distribution because when evaluating the emis-
sion probability only the most likely path over the two-state model is taken into
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account (the Viterbi path). After fixing the path the resulting Viterbi distri-
bution is (a fairly complex) exponential family distribution that can be trained
with the EBW algorithm.

6.2.4 Voting

The Markov models produce probabilities for the relevance classes (I, R, C) for
each viewed sentence. However, the users may look at a sentence several times,
and the resulting probabilities need be combined in a process we call voting.

We constructed a log-linear model for combining the predictions. Assume
that the sentence-specific probability distribution, p(B|Y1...K), can be constructed
from the probability distributions of the kth viewings of the sentence, P (B|Yk),
(obtained as an output from a Markov model) as a weighted geometric average,
p(B|Y1...K , α) = Z−1

∏
k p(B|Yk)αBk , where Z is a sentence-specific normaliza-

tion factor and the parameters αBk are non-negative real numbers, found by
optimizing the prediction for the training data. The predicted relevance of a
sentence is then the largest of p(I), p(R), and p(C).

It is also possible to derive a simple heuristic rule for classification by assum-
ing that the decision of relevance is made only once while reading the sentence.
We will call this rule maxClass, since for each sequence we will select the maxi-
mum of the predicted relevance classes. A simple baseline for the voting schemes
is provided by classifying all the sequences separately (i.e., no voting).

7 Data analysis

Below we will carry out an example analysis of the challenge data. We apply
Linear Discriminant Analysis to the eye movement data to obtain a first classi-
fication result, to get first visualizations of the data, and to select features that
will be used in time series modeling, with HMMs and discriminative HMMs.

7.1 Linear Discriminant Analysis

Linear Discriminant Analysis is a simple linear method for analyzing data. Be-
sides classification, the method can be used for visualization and feature set
selection. It has not been developed for time series, however, and we apply it
on feature vectors averaged over each sentence.

Averaged Features

Simple averaging of features presented in Table 1 would be against their spirit.
The probabilities {3,4,18} are obtained by diving the sum of the features by the
number of words in the sentence. Features {1,2,14,16,17,19,22} are commonly
used as summary measures for larger areas of interest, and hence were merely
added up. Features {5, 6, 7, 8, 9, 10, 11, 12, 13, 15} were computed as means,
and for the pupil measures {20, 21} a maximum was taken (since in [16] the
best effect was reported in the maximum of pupil dilation). Before analysing
the data with LDA, the data was standardized.
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Visualizing the Data with LDA

The data can be visualized by projecting them to the eigenvectors of the LDA
(see Figure 4). The two eigenvectors define a hyperplane in the original feature
space that best discriminates the classes. The visualization makes it possible
to evaluate which classes will be harder to separate. Judging from the plot in
Figure 4, it seems that relevant and irrelevant sentences will be hard to separate.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.1

−0.05

0

0.05

0.1

0.15
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0.25

0.3
non−relevant
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answer

Figure 4: A visualization of the data using LDA.

Feature Set Selection with LDA

We may also plot the eigenvectors of the LDA in order to evaluate which compo-
nents contribute most to the discriminating plane. Notice that if classification is
not possible with LDA5, the eigenvectors will be arbitrary. In our case, however,
classification is possible as reported in Table 2. Judging from the eigenvectors
plotted in Figure 5, it seems that less than ten features are sufficient.

7.2 Features for Time Series Analysis

Feature selection for the HMMs was carried out with the methods that use
averaged data (LDA). In other words, we chose to model a representative set
of features which can be used to construct the best discriminating averaged
measures.

The resulting set of features were modeled with the following exponential
family distributions: (1) One or many fixations within the word (binomial).
(2) Logarithm of total fixation duration on the word (assumed Gaussian). (3)

5that is, the classification rate does not differ from a dumb classifier classifying all to the
largest class
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Figure 5: Eigenvectors of LDA. The histogram bars are loadings of the features,
ordered according to Table 1.

Reading behavior (multinomial): skip next word, go back to already read words,
read next word, jump to an unread line, or last fixation in an assignment.

7.3 Classification results

The prediction accuracy was assessed with 50-fold cross validation, in which
each of the assignments was in turn used as a test data set. In order to test
how the method would generalize to new subjects, we also ran an 11-fold cross
validation where each of the subjects was in turn left out. The ultimate baseline
is given by the “dumb model,” which classifies all sentences to the largest class
I. Table 2 lists the classification accuracies, that is, the fraction of the viewed
sentences in the test data sets for which the prediction was correct. The methods
generalize roughly equally well both to new assignments and to new subjects.
The performance of the two different voting methods (log-linear and maxClass)
seems to be nearly equal, with log-linear voting having a slight advantage.

Table 3 shows the confusion matrix of the discriminative HMMs. Correct
answers (C) are separated rather efficiently. Most errors result from misclas-
sifying relevant sentences (R) as irrelevant (I). It is also possible to compute
precision and recall measures common in IR, if the correct answers are treated
as the relevant documents. The resulting precision rate is 90.1 % and recall rate
92.2 %.

8 Discussion

The physiology and psychology of eye movements has been studied quite exten-
sively. However, the improved multimodal interfaces, combined with proactive
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information retrieval, provide us with a whole new setup. The eye movements
are a rich, complex, and potentially very useful time series signal. Efficient
extraction of relevance information from it is not trivial, however, and requires
development and application of advanced machine learning methods.

The features used in eye movement research have been based mostly on the
segmentation of the eye movement trajectory to fixations and saccades. This
segmentation, though useful, is neither unique nor always optimal. The optimal
set of features is likely to depend on the task at hand. One of the goals of
Competition 2 of this Challenge is to find and propose a new set eye movement
features, not necessarily based on the division to fixations and saccades, for use
in eye movement studies and proactive applications.

In the study of eye movements in psychology the basic goal is to understand
the underlying psychological processes. Our objective is different and more
application-oriented: we want to extract maximal amount of useful information
from the real-world eye movement signal, to be used in proactive information
retrieval. Our approach also differs from usability studies, another common
application of eye movement analysis, where the objective has been to analyze
qualitatively and quantitatively the behavior of a user when she for instance
visits a web site. The quantitative measures have been mostly based on fixation
durations and eye scan patterns. This Challenge differs from much of the prior
work in its application and experimental setup (information retrieval task where
the ground truth is known) and in the use of advanced probabilistic methods
optimized for the task at hand (relevance extraction).

The Challenge will hopefully result in a toolbox of new machine learning
methods and a set of features, optimal for extracting relevance information
from the real world eye movement signals.

We are looking forward to an interesting competition and wish all partici-
pants the best of success!
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nen. Can eye movements be quantitatively applied to image quality stud-
ies? In Proceedings of the third Nordic conference on Human-computer
interaction, pages 335–338, 2004.

[44] David J. Ward and David J.C. MacKay. Fast hands-free writing by gaze
direction. Nature, 418:838, 2002.

[45] Chen Yu and Dana H. Ballard. A multimodal learning interface for ground-
ing spoken language in sensory perceptions. In Proc. ICMI’03. ACM, 2003.
To appear.

A Notes on TERP

Because TERP amplitudes appear to be independent of baseline pupillary di-
ameter, it is possible to compare the amplitude of TERPs obtained in different
laboratories. Analysis of pupillometric data in memory storage and recall tasks
have shown that there is variation in peak pupillary dilation as a function of
the length of the target string to be stored or recalled. The item difficulty in
memory tasks has also been associated with greater pupillary dilations.

There is evidence of response and movement-related pupillary responses.
Results from experiments where immediate or delayed response selection and
preparation were studied indicated that the rate of pupil dilation was inversely
proportional to the length of the foreperiod preceding the imperative stimulus.
It was shown that the pupil dilations were greater in Go-trials than dilations to
No-Go stimuli in both immediate- and delayed-response conditions. Addition-
ally, both peak pupil diameter and peak latency have been found to vary with
the complexity of movements in motor tasks.

It has been reported that pupil dilations are elicited not only by external
stimuli but also by a stimulus mismatch or by an orientation to a task important
stimuli. An inverse relationship has been found between pupil amplitude and
probability. Pupil dilations were found to be larger in amplitude and longer in
latency for stimuli with low probability of occurrence.

TERP amplitude is also a sensitive and reliable reporter of differences in the
structure of cortical language processing and decision. In a letter matching task,
physically identical letter pairs evoked smaller TERPs than did pairs identical
only at the level of naming. [16] found that more complex sentence types
produced larger changes in pupil diameter. [12] reported, that increases in
semantic demands of sentence processing resulted in increases of the TERP.
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Table 1: Features
Feature Description

1 fixCount Total number of fixations to the word

2 FirstPassCnt Number of fixations to the word when the word is first encountered

3 P1stFixation
Did a fixation to a word occur when the sentence that the word was
in was read for the first time (’1’ or ’0’)

4 P2ndFixation
Did a fixation to a word occur when the sentence that the word was
in was read for the second time (’1’ or ’0’)

5 prevFixDur Duration of the previous fixation when the word is first encountered

6 firstFixDur Duration of the first fixation when the word is first encountered

7 firstPassFixDur Sum of durations of fixations to a word when it is first encountered

8 nextFixDur
Duration of the next fixation when the gaze initially moves on from
the word

9 firstSaccLen
Distance (in pixels) between the launching position of the previous
fixation and the landing position of the first fixation

10 lastSaccLen
Distance (in pixels) between the launching position of the last
fixation on the word and the landing point of the next fixation

11 prevFixPos
Distance (in pixels) between the fixation preceding the first fixation
on a word and the beginning of the word

12 landingPosition
Distance (in pixels) of the first fixation on the word from the
beginning of the word

13 leavingPosition
Distance (in pixels) between the last fixation before leaving the word
and the beginning of the word

14 totalFixDur Sum of all durations of fixations to the word

15 meanFixDur Mean duration of the fixations to the word

16 nRegressionsFrom Number of regressions leaving from the word

17 regressDurFrom
Sum of durations of fixations during regressions initiating from the
word

18 nextWordRegress Did a regression initiate from the following word (’1’ or ’0’)

19 regressDurOn Sum of the durations of the fixations on the word during a regression

20 pupilDiam1
Mean of pupil diameter during fixations on the word (minus mean
pupil diameter of the subject during the measurement)

21 pupilDiam2

Maximum of pupil dilation within 0.5 – 1.5 seconds after encounter-
ing the word (minus mean pupil diameter of the subject during the
measurement)

22 timePrctg
Total fixation duration on a word divided by the total duration of
fixations on the display
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Table 2: Performance of the different models in predicting relevance of the
sentences. Differences between LDA and dumb classifier, and HMM and LDA
tested significant (McNemar’s test), as well as difference between discriminative
HMM and simple HMMs (with leave-one-assignment-out cross validation) Left
column: obtained by 50-fold cross-validation where each of the assignments was
left out in turn as test data. Right column: Obtained by 11-fold cross-validation
where each of the subjects was left out in turn to be used as test data.

Method
Accuracy (%)
(leave-one-

assignment-out)

Accuracy (%)
(leave-one-subject-

out)

Dumb 47.8 47.8
LDA 59.8 57.9

simple HMMs(no vote) 55.6 55.7
simple HMMs(maxClass) 63.5 63.3

simple HMMs(loglin) 64.0 63.4
discriminative HMM(loglin) 65.8 64.1

Table 3: Confusion matrix showing the number of sentences classified by the dis-
criminative HMM, using loglinear voting, into the three classes (columns) versus
their true relevance (rows). Cross-validation was carried out over assignments.
The percentages (in parentheses) denote row- and column-wise classification
accuracies.

Prediction
I (62.4 %) R (61.8 %) C (90.1 %)

I (77.3 %) 1432 395 25
R (43.6 %) 845 672 24
C (92.2 %) 17 21 447
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