Dynamically Stubborn Sets
and the Sleep Set Method

Kimmo Varpaaniemi

Helsinki University of Technology
Digital Systems Laboratory
Otakaari 1, SF-02150 Espoo, Finland
Kimmo.Varpaaniemi@hut.fi

Abstract. Reachability analysis is
a powerful formal method for anal-
ysis of concurrent and distributed
finite state systems. It suffers from
the state space explosion problem,
however: the state space of a sys-
tem can be far too large to be
completely generated. This paper
considers two promising methods,
Valmari’s stubborn set method and
Godefroid’s sleep set method, to
avoid generating all of the state
space when searching for undesir-
able reachable terminal states, also
called deadlocks. What makes dead-
locks especially interesting is the
fact that the verification of a safety
property can often be reduced to
deadlock detection. The considered
methods utilize the independence of
transitionsto cut down on the num-
ber of states inspected during the
search. These methods have been
combined by Godefroid, Pirottin,
and Wolper to further reduce the
number of inspected states.

Petri nets are a widely used model
for concurrent and distributed sys-
tems. This paper shows that the
stubborn set method and the sleep
set method can be combined with-
out any of the assumptions previ-
ously placed on the stubborn sets
as far as the detection of reachable
terminal states in place/transition
nets, a class of Petri nets, is con-
cerned. The obtained result is ac-
tually more general and gives a suf-

ficient condition for a method to
be compatible with the sleep set
method in the detection of reach-
able terminal states in place/trans-
ition nets.

This paper emphasizes the value
of dynamically stubborn sets as a
useful generalization of stubborn
sets and presents some results that
improve the understanding of the
stubborn set method.

1 Introduction

A classic way to detect errors in a system 1s
testing. However, it is often difficult to test
the system sufficiently even if the system 1is
sequential. If the system is concurrent or dis-
tributed, there can be errors that depend on
the order of execution of actions in the sys-
tem. When a test is executed twice in exactly
the same circumstances, such errors may re-
main undetected or occur only in one of the
executions.

Reachability analysis inspects the states of
a formal abstract model of the system, aiming
to find even such elusive errors. The complete
state space can be seen as a graph having the
states that are reachable from a given initial
state of the model as vertices, and all the state
transitions between the states as edges. Many
properties can easily be checked from such
graph if it is finite. If the complete state space
is infinite, it is still possible to detect errors
by inspecting some finite set of states. On the
other hand, a finite complete state space can



be far too large with respect to the time and
other resources needed to inspect all states in
the space. The number of states in the com-
plete state space may grow exponentially or
superexponentially with respect to some pa-
rameter of the model. We thus have the so
called state space explosion problem.
Fortunately, many properties can be veri-
fied without inspecting all reachable states.
For example, reachable terminal states can
sometimes be found by inspecting only some
of the paths from the initial state to the termi-
nal states. A terminal state can be acceptable
or undesirable. Undesirable reachable terminal
states are often called deadlocks. Godefroid
and Wolper [5] among others have shown how
the verification of a safety property can often
be reduced to the detection of deadlocks. In-
tuitively, a safety property states what should
not happen whereas a liveness property states
what should happen in the modelled system.
A detected error such as a deadlock may be
caused by an improper design of the modelled
system but it 1s also possible that the model
is improper. The problem whether the model
corresponds to the modelled system properly
is a challenging area of research. We shall not
pursue it further in this paper, however.
Valmari’s stubborn set method [9, 10, 11, 12]
and Godefroid’s sleep set method [1, 3,4, 5, 2,
14, 15] utilize the independence of state tran-
sitions of the model to eliminate such paths
of the complete state space that are redun-
dant with respect to the verification of a given
property. These two methods have been com-
bined by Wolper and Godefroid [14], Gode-
froid and Pirottin [3], and Wolper, Godefroid,
and Pirottin [15] to further reduce the num-
ber of states inspected during the search. We
shall study the stubborn set method, the sleep
set method, and their combination in this pa-
per. We are mainly interested in finding all
reachable terminal states by inspecting as few
states as possible. All of these methods guar-
antee that all reachable terminal states are
found if the complete state space is finite. It
is possible to extend the methods to verify

more sophisticated properties, even properties
expressed as linear temporal logic formulae
[4, 11], but the more properties of the com-
plete state space are preserved, the greater is
the number of states inspected during verifica-
tion. The state space explosion problem often
appears even if we limit ourselves to detecting
of reachable terminal states.

Petri nets [8] are a widely used model for
concurrent and distributed systems. This pa-
per concentrates on the detection of reachable
terminal states in place/iransition nets [8], a
class of Petri nets.

In Section 2, we introduce place/transit-
ion nets. The presentation does not go be-
yond what is necessary for the remaining sec-
tions. In Section 3, dynamically stubborn sets
[7, 12] are shown to be a useful generaliza-
tion of stubborn sets. Section 4 considers the
sleep set method and its combination with the
stubborn set method. We conclude in Section
5 by summarizing the results obtained and
briefly discussing possible directions for future
research.

2 Place/Transition Nets

In this section we give definitions of pla-
ce/transition nets [8] that will be used in later
sections.

We shall use “iff” to denote “if and only if”.
The power set (the set of subsets) of a set A
is denoted by 24. The set of (total) functions
from a set A to a set B is denoted by
(A — B). The set of natural numbers, includ-
ing 0, is denoted by N. We shall use w to de-
note a formal infinite number, and N, to de-
note N U {w}. Relation < over N is extended
to N, by defining

Vn € N, n<w.

Addition and subtraction are extended simi-
larly by defining

VneENw+n=wAw—n=uw.



Clearly, w € N since no natural number can
be substituted for w in these conditions in such
a way that the conditions would hold.

Definition1. A place/transition net is a 6-
tuple (S, T, F, K, W, My) such that

— S is the set of places,

— T is the set of transitions, SNT = (),

— Fis the set of arcs,
FC(SxT)u(T xS),

— K is the capacity function,
K e (S— N,),

— W is the arc weight function,
W e (F—(N\{0})), and

— My is the indtial marking (initial state),
My € M where M is the set of markings
(states),
M={Mec(S—=N)|V¥seS

M(s) < K(s)}.

If 2 € SUT, then the set of input elements of
z is
‘z={yl(yz)erl},

the set of output elements of x is
z* ={y | (z,y) € F'},

and the set of adjacent elements of x is
z*U*z. The function W is extended to a func-
tion in (((S x TYU(T x S)) — N) by defining
W(z,y) = 0iff (z,y) ¢ F. The net is finite iff
S UT is finite.

Unlike Reisig [8], we do not accept
M (s) = w. Such markings would be redundant
in finite place/transition nets.

Definition2. Let (S,T,F, K, W, My) be a
place/transition net. A transition ¢ is enabled
at a marking M iff

Vs €t M(s) > W(s,t)
and

Vs et® M(s)—W(s,t)+ W(t,s) < K(s).

A transition t leads (can be fired) from a mark-
ing M to a marking M' (M[t)M' for short) iff
t is enabled at M and

Vs €S M'(s) = M(s)— W(s,t)+ W(t,s).

A transition t is disabled at a marking M iff ¢
is not enabled at M. A marking M is terminal
iff no transition is enabled at M. A marking
M is nonterminal iff M is not terminal.

Our enabledness condition is weaker than
Reisig’s enabledness condition [8] that re-
quires M(s) + W(t,s) < K(s) instead of
M(s) — W(s,t) + W(t,s) < K(s).

Finite transition sequences and reachability
are introduced in Definition 3. We shall use ¢
to denote the empty sequence.

Definition3. Let (S,T,F, K,W, M) be a
place/transition net. For any T; C T,

T.S‘O = {6}7
(Yne N TPt = {gt | 0 € TPA
t €Ts}), and
T ={oc|dne N oceTl}.

T is called the set of finite sequences of tran-
sitions in Ts, and T™ is called the set of fi-
nite transition sequences of the net. A finite
transition sequence ¢’ is a prefiz of a finite
transition sequence o iff there exists a finite
transition sequence ¢’ such that ¢ = o'c”.
A finite transition sequence o leads (can be
fired) from a marking M to a marking M’ iff
Mo)M' where

VM e M M[e)M, and

VM e MVM e MYéeT*VteT
M[ét)M’ =4
(HJM“ e M 1‘/1[5)]\4” AW f“[t)f\J/).

A finite transition sequence o is enabled at a
marking M (M[c) for short) iff o leads from
M to some marking. A finite transition se-
quence o is disabled at a marking M iff o is
not enabled at M. A marking M’ is reachable
from a marking M iff some finite transition



sequence leads from M to M’'. A marking M’
is a reachable marking iff M' is reachable from
My. A marking M’ is globally unreachable iff
M' is not reachable from any other marking
in M than M'. The (full) reachability graph
of the net is the pair (V, A) such that the set
of vertices V' is the set of reachable markings,
and the set of edges A is

{Mt, M"Y| MeVAM € VA
teTANM[t)M'}.

A finite transition sequence is merely a
string. It can be thought of as occurring as
a path in the full reachability graph iff it is
enabled at some reachable marking.

Definition4. Let (S,T,F, K, W, My) be a
place/transition net. Let f be a function from
M to 2T, A finite transition sequence o f-
leads (can be f-fired) from a marking M to a
marking M' iff M[o);M', where

VM e M Mle); M, and

YVMeMVYM e MV§eT*VteT
M[6t>fM/<:>

(AM" € M M[8); M"A

te f(M)ANM"[tyM).

A finite transition sequence o is f-enabled at
a marking M (M]o); for short) iff o f-leads
from M to some marking. A marking M’ is
f-reachable from a marking M iff some finite
transition sequence f-leads from M to M'. A
marking M’ is an f-reachable markingiff M’ is
f-reachable from My. The f-reachability graph
of the net is the pair (V, A) such that the set of
vertices V is the set of f-reachable markings,
and the set of edges A is

{{M,t, M) | M eV AM' € VA
te f(M)ANM[)M'}.

Definition 4 is like a part of Definition 3
except that a transition selection function f
determines which transitions are fired. If f is
clear from the context or is implicitly assumed
to exist and be of a kind that is clear from

the context, then the f-reachability graph of
the net is called the reduced reachability graph
of the net. Note that the reduced reachability
graph of the net can even be the full reacha-
bility graph of the net, e.g. in the case where
f(M) =T for each M € M.

Definition5. Let (S,T,F, K,W, My) be a
place/transition net. The set of infinite transi-
tion sequences of the net is the set of functions
from N to T, (N — T). The function ¢ from
(N —T)x N to T* is defined by

(VYo € (N —T) ¢(0,0) =¢),
Moe(N—=T)VneN
s(o,n+ 1) = ¢(o,n)o(n)).

and

If o is an infinite transition sequence and
n € N, ¢(o,n) is called the prefiz of length n
of . An infinite transition sequence o is en-
abled at a marking M (M[c) for short) iff for
each n € N, the prefix of length n of ¢ is en-
abled at M. An infinite transition sequence o
is disabled at a marking M iff o is not enabled
at M. Let f be a function from M to 27. An
infinite transition sequence o is f-enabled at
a marking M (M[o); for short) iff for each
n € N, the prefix of length n of ¢ is f-enabled
at M.

An infinite transition sequence is merely a
function. It can be thought of as occurring as
a path in the full reachability graph iff it is
enabled at some reachable marking.

Definition6. Let (S, T, F, K,W, My) be a
place/transition net. A transition sequence 8
is an alternative sequence of a finite transition
sequence o at a marking M iff § is a finite tran-
sition sequence, o is enabled at M, and 6 leads
from M to the same marking as o. A transi-
tion sequence 6 is a length-secure alternative
sequence of a finite transition sequence o at a
marking M iff 6 is an alternative sequence of
o at M and not longer than ¢. The functions
n and 9 from T* x M to 2(T") are defined as
follows: for each finite transition sequence o
and marking M, n(o, M) is the set of alterna-
tive sequences of o at M, and 9(o, M) is the



set of length-secure alternative sequences of o
at M.

Clearly, for each finite transition sequence
o and marking M, ¥(o, M) C n(c, M). Also,
n(o, M) is empty iff ¢ is not enabled at M.

Definition7. Let (S,T,F, K, W, My) be a
place/transition net. A transition sequence 6
is a permutation of a finite transition sequence
o iff 6 is a finite transition sequence and for
each transition ¢, the number of #’s in § is
equal to the number of #’s in . A transition
sequence 8 is an enabled permutation of a fi-
nite transition sequence o at a marking M iff
6 is a permutation of o and enabled at M. The
function 7 from T* x M to 2(") is defined as
follows: for each finite transition sequence o
and marking M, w(o, M) is the set of enabled
permutations of o at M.

Clearly, if finite transition sequences are en-
abled permutations of each other at a marking
M, they lead to the same marking from M. So,
if a finite transition sequence o is enabled at
a marking M, then w(o, M) C 9(o, M). The
set w(o, M) can be nonempty even if o is not
enabled at M since some permutation of o
can be enabled at M. The set of length-secure
alternative sequences, as well as the set of al-
ternative sequences, of an enabled finite tran-
sition sequence o at a marking can always be
partitioned into sets of enabled permutations
of sequences at the marking. Of course, only
one of those sets is the set of enabled permu-
tations of o.

Definition8. Let (S,T,F, K, W, My) be a
place/transition net. Transitions ¢t and ' com-
mute at a marking M iff M[tt') and M[t't).
Transitionst and ¢’ are independent at a mark-
g M iff

(M[tt"y A M[t't)) v (- M[t) A-M[t))V

(M[t) A=M[t"Yy A =M[tt'))V

(M[t'y AN =Mty A —=M[t't)).

Our definition of independence corresponds
to Godefroid’s and Pirottin’s [3] definition

of conditional independence which in turn is
based on Katz’s and Peled’s [6] corresponding
definition. Our definition of independence can
be obtained from Godefroid’s and Pirottin’s
definition of valid conditional dependency re-
lations, Definition 5 in [3], by taking the nec-
essary conditions for a triple of two transi-
tions and one state to be in the complement of
a valid dependency relation, and substituting
terms of place/transition nets for the terms of
the model of concurrency in [3] in an obvious
way.

The following can clearly be seen from the
above.

— Dafferent transitions are independent at a
marking iff neither of them can be fired at
the marking making the other transition
turn from enabled to disabled or from dis-
abled to enabled.

— A transition ¢ commutes with itself at a
marking iff ¢ is enabled at the marking.

— A transition ¢ is independent of itself at
a marking iff ¢£ is enabled or ¢ is disabled
at the marking.

— Transitions commute at a marking iff
they are enabled and independent at the
marking.

Definition9. Let (S,T,F, K,W, My) be a
place/transition net. A transition sequence 6
is a neighbour of a finite transition sequence
o iff there exist transitions ¢ and t/, and fi-
nite transition sequences ¢’ and ¢/’ such that
o = o'tt'c" and § = o't'te’. A transition se-
quence ¢ is an enabled neighbour of a finite
transition sequence o at a marking M iff 6 is a
neighbour of ¢ and enabled at M. Let M be a
marking and R the binary relation on 7™ such
that oRé iff ¢ and 6 are enabled neighbours
of each other at M. The conditional trace of
a finite transition sequence o at M is the set
of finite transition sequences such that a se-
quence ¢ is in the conditional trace of o at
M iff o is enabled at M and cR*6 where R*
is the reflexive-transitive closure of R. A set
is a conditional trace at M iff the set is the



conditional trace of some finite transition se-
quence at M. The function ¢ from T* x M to
2(T") is defined as follows: for each finite tran-
sition sequence o, and marking M, «(o, M) is
the conditional trace of o at M.

In other words, a conditional trace is a set of
enabled finite transition sequences at a mark-
ing that can be obtained from each other
by repeatedly interchanging adjacent indepen-
dent transitions. We did not have to mention
independence in Definition 9 since transitions
commute at a marking iff they are enabled and
independent at the marking. The reflexive-
transitive closure of R in Definition 9 is clearly
an equivalence relation, and the conditional
trace of an enabled finite transition sequence
is the equivalence class of the sequence with
respect to the equivalence relation. Our def-
inition of a conditional trace corresponds to
Godefroid’s and Pirottin’s [3] definition which
in turn is based on Katz’s and Peled’s [6] cor-
responding definition. The conditional trace
of an enabled finite transition sequence at a
marking is naturally a subset of the enabled
permutations of the sequence at the marking.
Thus (o, M) C w(o, M) holds for each ¢ and
M. Moreover, the set of enabled permutations
of an enabled finite transition sequence at a
marking can always be partitioned into condi-
tional traces at the marking. Of course, only
one of those conditional traces is the condi-
tional trace of the sequence. Note that if a
finite transition sequence o is disabled at a
marking M, then the conditional trace of o at
M is empty.

Figure 1 presents the functions 5, ¥, 7, and
¢ in a nutshell.

Definition10. Let (S,T,F, K, W, My) be a
place/transition net. Let f be a function from
M to 27, Then we say that f represents all
sets of alternative sequences to terminal mark-
ings iff

Yo eT* VM e M

(M[o) AVt € T =M]ot))

n(o, M)|the set of alternative
sequences of a finite
transition sequence o at M
¥(o, M)|the set of length-secure
alternative sequences

of a finite transition
sequence o at M

w(o, M)|the set of enabled
permutations of a finite
transition sequence o at M

t(o, M) |the conditional trace
of a finite transition

sequence o at M

Fig. 1. The functions 7, ¥, 7, and .

Correspondingly, f represents all sets of
length-secure alternative sequences to termi-
nal markings iff

VoeT*VM e M
(M[o) AVt €T —M|at))
= (36 € (o, M) M[6)s).

Respectively, f represents all sets of enabled
permutations to terminal markings iff

Yo e T* VM e M
(M[o) AVt € T =M[ot))
= (36 € w(o0, M) M[8);).

Finally, f represents all conditional traces to
terminal markings iff

VYo e T* VM e M
(Mlo) AVt € T =M]ot))
= (Elé S L(O’, M) 17\/1[(5>f)

The following can clearly be seen from the
above.

— A function reperesenting all conditional
traces to terminal markings represents all
sets of enabled permutations to terminal
markings.

— A function representing all sets of enabled
permutations to terminal markings repre-
sents all sets of length-secure alternative
sequences to terminal markings.



— A function representing all sets of length-
secure alternative sequences to terminal
markings represents all sets of alternative
sequences to terminal markings.

3 Dynamically Stubborn Sets

This section is concentrated on dynamically
stubborn sets [7, 12]. All the stubborn sets
that have been defined in the literature are
known to be dynamically stubborn. Dynami-
cally stubborn sets seem to have all the nice
properties of (statically) stubborn sets except
that the definition of dynamic stubbornness
does not seem to imply a practical algorithm
for computing dynamically stubborn sets.

In Subsection 3.1, we define different lev-
els of dynamic stubbornness and present some
small but interesting results concerning dy-
namically stubborn sets. We base the defini-
tions on Rauhamaa’s principles [7]. We also
present Godefroid’s and Pirottin’s definitions
of persistent and conditionally stubborn sets
[3] in the context of place/transition nets.

In Subsection 3.2, we show that dynami-
cally stubborn sets are really useful. We con-
sider how reachable terminal markings are
preserved by a dynamically stubborn set se-
lective reachability graph generation, that is,
reachability graph generation that at each en-
countered marking selects a dynamically stub-
born set and fires the enabled transitions in
the set, without firing other transitions. All
reachable terminal markings are shown to oc-
cur in the reduced reachability graph. Also, if
there is an infinite path in the full reachability
graph, then the reduced reachability graph is
shown to have an infinite path, too. We end
Subsection 3.2 by presenting a property which
is the basis for Valmari’s algorithms for de-
tecting ignored transitions and eliminating the
ignoring phenomenon [10]. A transition is ig-
nored at a marking iff the transition is enabled
at the marking but not fired at any marking
that is reachable from the marking. The ex-
istence of ignored transitions is called the ig-
noring phenomenon.

3.1 Dynamic Stubbornness

We define dynamic stubbornness on the basis
of Rauhamaa’s principles [7].

Definition11. Let (S,T,F, K, W, My} be a
place/transition net. Let M be a marking of
the net. A set Ty C T fulfils the first principle
of dynamic stubbornness (D1 for short) at M
iff

Vo e (T'\T,)" Yt €T, M[ot) = M[to).

A transition t is a key transition of a set Ty C
T at M iff t €T, and

VYo € (T \Ts)" M[o) = M|ot).

A set Ty, C T fulfils the second principle of
dynamic stubbornness (D2 for short) at M iff
Ts has a key transition at M. A set Ty, C T
fulfils the principle of conventional dynamic
stubbornness (CD for short) at M iff

Vo e (T\Ts)* Vé e (T\T,)* Yt €T,
M[oét) = M(oté).

A set Ty C T fulfils the first principle of strong
dynamic stubbornness (SD1 for short) at M iff

Yo € (T\T,)* Vt € T, M[ot) = MIL).

A set Ty, C T fulfils the second principle of
strong dynamic stubbornness (SD2 for short)
at M iff

Vo € (T\T.)* Vt € T,
(M[t) A Mo)) = (M[ot) A M]to)).

A set Ty C T 1s dynamically stubborn at M iff
T, fulfils D1 and D2 at M. A set Ts C T'is con-
ventionally dynamically stubborn at M iff T
fulfils CD and D2 at M. A set Ty C T'1s uncon-
ventionally dynamically stubborn at M iff T 1s
dynamically stubborn but not conventionally
dynamically stubborn at M. A set Ty, C T is
strongly dynamically stubborn at M iff T ful-
fils SD1 and SD2 at M and 3t € Ty M|t).



The principles D1, D2, CD, SD1, and SD2
are illustrated in Figure 2. The principles D1,
D2, SD1, and SD2 are Rauhamaa’s Principles
1*, 2%, 1, and 2, respectively [7]. Clearly, a key
transition of a set at a marking is enabled at
the marking. Our key transitions are similar
to Valmari’s key transitions [10]. The differ-
ence is that Valmari’s key transitions satisfy
a condition that can be checked easily and is
sufficient but not necessary for a transition to
be a key transition in the sense of our defini-
tion.

We shall see in Subsection 3.2 that dy-
namic stubbornness alone is sufficient as far
as the detection of reachable terminal mark-
ings is concerned, conventional dynamic stub-
bornness is related to conditional traces, and
strongly dynamically stubborn sets are useful
when one wants to eliminate the ignoring phe-
nomenon. The term “conventional” refers to
the often used heuristic that every sequence of
such transitions that are not in a given stub-
born set should leave the set stubborn. Val-
mari has shown that the heuristic has some
advantages when the so called candidate list
algorithm is used for computing stubborn sets
[9]. Valmari has also defined dynamically stub-
born sets [12]. Valmari’s dynamically stub-
born sets are considered later in this subsec-
tion.

Lemma 12. If a set is conventionally dynam-
ically stubborn at a marking, the set is dynam-
ically stubborn set at the marking. A set is
strongly dynamacally stubborn at @ marking iff
the set is dynamically stubborn at the marking
and each enabled transition in the set is a key
transition of the set at the marking.

Proof. See the proof of Lemma 3.2 in [13]. O

Lemma 13. Let (S,T,F, K,W, My) be a pla-
ce/transition net. Let M be a marking of the
net. A set Ty C T fulfils SD2 at M iff

Vo e (T'\T,)* V6 € (T\T,)* Vt €T,
(M[t) A M[ob)) = M[oté).

M—2% M M—2 M1
; Dy t
M2 M3 M2
o} g
M —M1 D2 M M1
=>
t (key)
M2
M M
o o
CD t
M1 => M1 —=M4
o) ) )
t
M2 M3 M2 M3
M o M1 M o M1
t S=D>1 t t
M2 M3 M2
M—2 - M2 M—2 M
SD2
t ot t
(o}
M1 M1—>M3

Fig. 2. The principles of dynamic, conventional
dynamic, and strong dynamic stubbornness.

Proof. See the proof of Lemma 3.3 in [13]. O
Lemma 14. If a set is strongly dynamically
stubborn at a marking, the set is convention-
ally dynamically stubborn at the marking.

Proof. See the proof of Lemma 3.4 in [13]. O

Lemma 15. Let (S,T,F, K, W, My) be a pla-
ce/lransition net. Let M € M. A set T, CT



is strongly dynamically stubborn at M iff

Voe (T\T,)* VM' e M
M[U)iMI =
(T is strongly dynamically stubborn at M').

Proof. See the proof of Lemma 3.5 in [13]. O

The result in Lemma 15 is new though in-
spired by Valmari [10]. Lemma 15 states that
every sequence of such transitions that are not
in a given strongly dynamically stubborn set
leaves the set strongly dynamically stubborn.
Lemma 16 states the similar result for conven-
tionally dynamically stubborn sets.

Lemma 16. Let (S,T,F, K,W, My) be a pla-
ce/transition net. Let M € M. A set T, C T
is conventionally dynamically stubborn at M
if

Vo e (T\T:)* VM e M

1M[O'>1M/ =

(Ts is conventionally

dynamically stubborn at M').

Proof. See the proof of Lemma 3.6 in [13]. O

The result in Lemma 16 is new though in-
spired by Valmari [10]. There is no lemma
analogous to Lemmas 15 and 16 for all dynam-
ically stubborn sets. Lemma 17 states that a
set 1s conventionally dynamically stubborn iff
the set is dynamically stubborn and every se-
quence of such transitions that are not in the
set leaves the set dynamically stubborn.

Lemma 17. Let (S,T,F, K,W, My) be a pla-
ce/transition net. Let M € M. A set T, C T
is conventionally dynamically stubborn at M
iff

Vo e (T\T:)* VM' e M

Mo)M' =

(Ts is dynamically stubborn at M').

Proof. See the proof of Lemma 3.7 in [13]. O

The result in Lemma 17 is new though in-
spired by Valmari [9].

Lemma 18. Let (S,T,F, K, W, My) be a pla-
ce/transition net. Let M be a marking of the
net, and Ty and T, subsets of T' such that

{teT, | Mt)} CT., and T, C T;.

If Ts 1s dynamically stubborn at M, T, is dy-
namically stubborn at M. If Ty is convention-
ally dynamically stubborn at M, T, is con-
ventionally dynamically stubborn at M. If T,
1s strongly dynamically stubborn at M, T, 1s
strongly dynamically stubborn at M.

Proof. See the proof of Lemma 3.8 in [13]. O

The result in Lemma 18 is new though in-
spired by Godefroid and Pirottin [3]. Lemma
18 states that if we remove disabled transi-
tions from a dynamically stubborn (conven-
tionally dynamically stubborn, strongly dy-
namically stubborn) set, the remaining set is
dynamically stubborn (conventionally dynam-
ically stubborn, strongly dynamically stub-
born). For example, if a dynamically stubborn
set 1s minimal with respect to set inclusion, by
Lemma 18 the set consists of enabled transi-
tions only.

We define persistence and conditional stub-
bornness in such a way that the definitions
correspond to the definitions given by Gode-
froid and Pirottin [3]. Our definitions can be
obtained from Godefroid’s and Pirottin’s Def-
initions 7 and 8 in [3] by substituting terms
of place/transition nets for the terms of the
model of concurrency in [3] in an obvious way.

Definition19. Let (S,T,F, K, W, My) be a
place/transition net. Let M € M. A set
Ts C T fulfils the principle of persistence and
conditional stubbornness (PE for short) at M
iff

Vo e (T\Ts)* Vte T,

Vi e T\'T, YM' € M

(Mt) N Mo)M' A M'[t")) =

(t and ¢’ are

independent at M').

A set T, C T is persistent at M iff T fulfils
PE at M and Vt € T, M[t). A set T; C T is



conditionally stubborn at M iff T, fulfils SD1
and PE at M and 3t € Ty M|t).

Clearly, the “M[t)A” in PE is redundant in
the definition of persistence since all transi-
tions in persistent sets are enabled. Looking at
PE and proceeding inductively with respect to
the length of o, one observes that “commute”
could be substituted for “are independent” in
PE. Combining this observation with Lemma
13, one concludes that PE is nothing but SD2.
Consequently, we rid ourselves of the concepts
of persistence and conditional stubbornness

Lemma 20. A set fulfils PE at a marking iff
the set fulfils SD2 at the marking. A set is con-
ditionally stubborn at a marking iff the set is
strongly dynamically stubborn at the marking.

Proof. See the proof of Lemma 3.10 in [13]. O
The result in Lemma 20 is new.

Lemma 21. A set is a nonempty persistent
set at a marking iff the set is a condition-
ally stubborn set at the marking and does not
contain any transition that is disabled at the
marking. The set of enabled transitions of any
conditionally stubborn set is a nonempty per-
sistent set.

Proof. See the proof of Lemma 3.11 in [13]. O

The result in Lemma 21 is due to Godefroid
and Pirottin [3] but the proof is new.

Lemma 22. A set is a nonempty persistent
set at a marking iff the set is a strongly dy-
namically stubborn set at the marking and
does not contain any transition that is disabled
at the marking. The set of enabled transitions
of any strongly dynamically stubborn set is a
nonempty persistent set.

Proof. See the proof of Lemma 3.12 in [13]. O

We now turn to Valmari’s dynamically
stubborn sets [12]. The prefix AV used in the
sequel comes from the name Antti Valmari.

Definition23. Let (S,T,F, K, W, My) be a
place/transition net. Let M be a marking of
the net. A set Ty C T fulfils the principle of
AV-strong dynamic stubbornness (AVSD for
short) at M iff

VieT, YW e T\T; VM' e M
(M[t) A M'[t) A M'[t"))
= (M[tt'"y A M[t't)).

A set Ty C T is AV-strongly dynamically stub-
born at M iff T, fulfils SD1 and AVSD at M
and 3t € T, M[t).

Our AV-strong dynamic stubbornness is
equivalent to Valmari’s strong dynamic stub-
bornness [12], because of the obvious equiva-
lence between our Definition 23 and Valmari’s
Definition 2.2 in [12]. The principle AVSD is
illustrated in Figure 3.

Mr t’ = M3 M’ %t M3
tt tL AVSD tL t L
=>
v
M1 M2 M2 —=M4

Fig. 3. The principle of AV-strong dynamic stub-
bornness.

Lemma 24. If a set 1s AV-strongly dynam-
weally stubborn set at a marking, the set s
strongly dynamically stubborn at the marking.

Proof. See the proof of Lemma 3.14 in [13]. O

Figure 4 illustrates the classes of dynami-
cally, conventionally dynamically, strongly dy-
namically, and AV-strongly dynamically stub-
born sets at a marking M. The inclusions fol-
low from Lemmas 12, 14, and 24. Depending
on M, some or all of the inclusions can be
strict, as shown by the examples in [13].



dynamically stubborn sets at M

conventionally dynamically
stubborn sets at M

strongly dynamically
stubborn sets at M

AV-strongly dynamically
stubborn sets at M

>

Fig.4. Four classes of dynamically stubborn sets
at a marking.

3.2 Usefulness of Dynamically
Stubborn Sets

We now consider what is preserved by a dy-
namically stubborn set selective reachability
graph generation. The results presented in this
subsection show the usefulness of dynamically
stubborn sets.

Definition25. Let (S,T,F, K, W, My} be a
place/transition net. Let f be a function from
M to 27, Then we say that f is dynamically
stubborn iff for each nonterminal marking M,
f(M) is dynamically stubborn. Correspond-
ingly, f is conventionally dynamically stubborn
iff for each nonterminal marking M, f(M) is
conventionally dynamically stubborn. Respec-
tively, f is unconventionally dynamically stub-
born iff f 1s dynamically stubborn but not
conventionally dynamically stubborn. Corre-
spondingly, f is strongly dynamically stubborn
iff for each nonterminal marking M, f(M) is
strongly dynamically stubborn. Finally, f is
AV-strongly dynamically stubborn iff for each
nonterminal marking M, f(M) is AV-strongly
dynamically stubborn.

Theorem 26. Let (S,T,F, K, W, Mg)
place/transition net. Let f be a dynamically

be a

stubborn function from M to 27. Then f rep-
resents all sets of enabled permutations to ter-
minal markings.

Proof. See the proof of Theorem 3.16 in [13].
O

The result in Theorem 26 is due to Valmari
[9, 10] but has missed explicit treatment.

Theorem 26 has the consequence that if a
finite transition sequence leads from a mark-
ing M to a terminal marking, and M occurs
in the reduced reachability graph, then an en-
abled permutation of the sequence occurs in
the graph. A dynamically stubborn set selec-
tive search thus certainly finds all reachable
terminal markings if the net and the set of
reachable markings are finite. If the set of
reachable markings is infinite but the net is fi-
nite and a dynamically stubborn set selective
search is performed in a breadth-first order
for some time, then reachable terminal mark-
ings “near the initial marking” can be found.
As we shall see in Section 4, the permutation
preserving property makes the stubborn set
method compatible with the sleep set method
in the detection of reachable terminal mark-
ings though a weaker property would suffice.

Theorem 27. Let (S,T,F, K,W, My) be a
place/iransition nei. Let f be a convention-
ally dynamically stubborn function from M to
2T Then f represents all conditional traces to

terminal markings.

Proof. See the proof of Theorem 3.17 in [13].
O

The result in Theorem 27 is new though in-

spired by Wolper and Godefroid [14].

Theorem 28. Let (S,T,F, K,W, My) be a
place/iransition net. Let f be a dynamically
stubborn function from M to 27. Then for
each marking M and for each infinite tran-
sition sequence o, if o s enabled at M, there
erists an infinite transition sequence o' such

that M[o');.



Proof. See the proof of Theorem 3.18 in [13].
O

The result in Theorem 28 is due to Valmari
[10, 12] but has missed explicit treatment. Our
proof is like the proof in [12] which is more
general than the proof in [10]. Theorem 28
states that for each marking in the reduced
reachability graph, if an infinite transition se-
quence is enabled at the marking, the graph
contains an infinite path that starts from the
marking. If there is no loop in a finite reduced
reachability graph, Theorem 28 implies that
the full reachability graph is finite and has no
loop either.

We now turn to the ignoring phenomenon.
A transition is ignored at a marking iff the
transition is enabled at the marking but not
fired at any marking that is reachable from the
marking [10]. The existence of ignored transi-
tions is called the ignoring phenomenon. For
example, if there is an isolated transition, we
easily get a reduced reachability graph con-
taining only one vertex and one edge, thus
leaving the behaviour of the other parts of
the net uninvestigated. Valmari has shown [10]
that if ignoring does not occur, a transition
occurs in the reduced reachability graph iff it
occurs in the full reachability graph. Liveness
of a transition in the sense defined by Reisig
[8] is also preserved if ignoring does not occur
[10].

Valmari has developed an algorithm for de-
tecting ignored transitions and an algorithm
for eliminating the ignoring phenomenon. The
elimination algorithm requires that the cho-
sen dynamically stubborn sets are strongly dy-
namically stubborn. The detection algorithm
does not have that limitation. The detection
algorithm works in time at most linear in the
number of vertices and edges of the reduced
reachability graph. The elimination algorithm
works in time at most proportional to the
number of vertices and edges of the resulting
reduced reachability graph multiplied by the
number of transitions of the net [10].

Valmari’s algorithms for detecting and elim-
inating the ignoring phenomenon are based on
the property that is stated in Lemma 29.

Lemma 29. Let (S,T,F, K, W, My) be a pla-
ce/transition net. Let f and g be functions
from M to 27 such that f is dynamically stub-
born and

VM e M g(M) C
{t € f(M) |V6 €(T\ f(M))"
M[8) = M[5t)}.

Then

YoeTI*VteT VM e M
(M[o)yg AN M[t) AVS € T* =M[6t);)
= 1M[0’t>.

Proof. See the proof of Lemma 3.19 in [13]. O

The result in Lemma 29 is due to Valmari
[10] but has missed explicit treatment. Let’s
assume that f is a dynamically stubborn func-
tion, and there is a path leading from a mark-
ing M to a marking M’ in the f-reachability
graph such that for each edge (M",t, M""") on
the path, ¢ is a key transition of f(M'") at
M". From Lemma 29 it then follows that any
transition ignored at M is ignored at M’ too.

Let f and g be as in Lemma 29. By Defini-
tion 11,

{te f(M)|Vée (T\Ts)" M[6) = M[ét)}

is then the set of key transitions of f(M) at
M and nonempty. We can thus require that
g(M) is nonempty when M is nonterminal.
Let’s further assume that the g-reachability
graph is finite. For each transition that is ig-
nored at some marking in the f-reachability
graph, by Lemma 29 there is then a termi-
nal maximal strongly connected component
of the g-reachability graph such that for each
marking in the component, the transition is
enabled but not fired at the marking. Val-
mari’s algorithm for detecting ignored transi-
tions inspects the terminal maximal strongly
connected components of such g-reachability

graph [10].



All enabled transitions of a strongly dy-
namically stubborn set are key transitions
of the set by Lemma 12. If f is a strongly
dynamically stubborn function, we can then
choose g(M) to be the set of enabled tran-
sitions in f(M) with the consequence that
the g-reachability graph is the f-reachability
graph. Let’s further assume that the f-
reachability graph is finite. For each transi-
tion that is ignored at some marking in the
f-reachability graph, there is then a termi-
nal maximal strongly connected component of
the f-reachability graph such that for each
marking in the component, the transition is
enabled but not fired at the marking. Val-
mari’s algorithm for eliminating the ignoring
phenomenon utilizes this property [10].

4 Sleep Set Method

In this section we present Godefroid’s sleep set
method[1,3,4,5,2, 14, 15]. The plain sleep set
method preserves at least one sequence from
each conditional trace leading from the initial
state to a terminal state. To prevent a transi-
tion from firing, it is put into a so called sleep
set.

Wolper and Godefroid [14], Godefroid and
Pirottin [3], and Wolper, Godefroid, and
Pirottin [15] have combined the sleep set
method with the stubborn set method. The
combination is justified by the fact that
the stubborn set method alone is sometimes
bound to fire independent transitions at a
state. The combination presented in [3, 14, 15]
is such that at each encountered nonterminal
state a nonempty persistent set is computed.
Let us recall from Lemma 22 that a set is a
nonempty persistent set iff the set is a strong-
ly dynamically stubborn set consisting of en-
abled transitions only. In [14, 15], persistence
is defined on the basis of global independence
but since global independence implies inde-
pendence at each reachable state, the persis-
tent sets in [14, 15] are persistent in the sense
defined by Godefroid and Pirottin [3]. As men-

tioned immediately above Definition 19, our

definition of persistence in Definition 19 corre-
sponds to Godefroid’s and Pirottin’s definition
[3]. The plain sleep set method can be thought
as a special case of the combined method: a
simple heuristic for computing a persistent set
is used. We shall not consider the plain sleep
set method further.

We concentrate on a generalized version of
Wolper’s and Godefroid’s terminal state de-
tection algorithm [14]. The generalized ver-
sion is in Figure 5. The intuitive idea of the
algorithm is to eliminate such redundant in-
terleavings of transitions that are not elimi-
nated by the transition selection function f.
We show that the algorithm is guaranteed to
find all reachable terminal markings of any fi-
nite place/transition net with a finite set of
reachable markings. Any dynamically stub-
born function is valid for f, but the algorithm
is not limited to dynamically stubborn sets.
It suffices that f represents all sets of length-
secure alternative sequences to terminal mark-
ings. The set Ty can be any subset of transi-
tions that are disabled at the initial marking.
The ¢ in Figure 5 can be any truth-valued
function on M x T' x T x 27 that satisfies:
if o(M,t,t',Ts), then either ¢ and ¢ commute
at M and t’ € Ty, or tt' is disabled at M. For
example, o(M,t,t',T) could be

“either t and ' commute at M and

t' € Ty, or tt' is disabled at M”,

— “t and t' are independent at M and
tetT,”,

— “t and t' commute at M and t' € T,”, or

simply

“false”.

Note that if M[t)M', then t¢' is disabled at
M iff ¢/ is disabled at M’. So the first alter-
native in the above list has the effect that if
t is fired from M to M’ in the algorithm in
Figure 5, then the sleep set pushed onto the
stack with M’ contains all those transitions
that are disabled at M’. We shall consider the
practicalities related to ¢ and Tj later in this
section.



make Stack empty; make H empty;
push (Mo, Ty) onto Stack;
while Stack is not empty do {
pop (M, Sleep ) from Stack;
if M is not in H then {
Fire= {t € f(M)\ Sleep | M[t)};
if Fire and Sleep are both empty then
print “Terminal state!”;
enter (M, a copy of Sleep ) in H;
}
else {
let hSleep be the set associated
with M in H;
Fire = {t € hSleep \ Sleep | M[t)};
Sleep = hSleep N Sleep;
substitute a copy of Sleep for the set
associated with M in H;
}

for each t in Fire do {
let M[t)M';
tSleep= {t' € T' | p(M,1,t',Sleep ) };
push (M’ a copy of tSleep ) onto Stack;
Sleep = {t}U Sleep;

}

Fig.5. A terminal marking detection algorithm.

The algorithm in Figure 5 is similar to
Wolper’s and Godefroid’s algorithm [14]. The
only essential differences are that Wolper and
Godefroid assume that the set corresponding
to f(M) is persistent, the set corresponding
to Ty is empty, and the condition correspond-
ing to o(M,t,t',T;) is “t and ¢’ are globally
independent and t' € Ty”.

Theorem 30. Let (S,T,F, K,W, My) be a fi-
nite place/transition net such that the set of
markings reachable from My s finite. Let f
be a function from M to 2T such that f rep-
resents all sets of length-secure alternative se-
quences to terminal markings. Let Ty be a sub-
set of transitions that are disabled at Mgy. Let
@ be a truth-valued function on M xT xT x 2T
such that for each marking M, for all tran-

sitions t and t', and for each Ty C T, if
e(M,t,t',Ty), then eithert and t' commute at
M and t' € Ty, or tt' is disabled at M. Then
the algorithm in Figure 5 finds all terminal
markings that are reachable from M.

Proof. See the proof of Theorem 4.1 in [13]. O

The result in Theorem 30 is new though in-
spired by Wolper and Godefroid [14], Gode-
froid and Pirottin [3], and Wolper, Godefroid,
and Pirottin [15]. In [13], an example is given
which shows that the statement obtained from
Theorem 30 by removing the word “length-
secure” is not valid.

Let us recall from Theorem 26 that dynam-
ically stubborn functions represent all sets of
enabled permutations to terminal markings.
So they represent all sets of length-secure al-
ternative sequences to terminal markings, too.
From Theorem 30 it thus follows that the al-
gorithm in Figure 5 is compatible with all dy-
namically stubborn sets.

Lemma 31. Let (S,T,F, K, W, My) be a fi-
nite place/transition net. Let ¢ be a iruth-
valued function on M x T x T x 27 such that
for each marking M, for all transitions t and
t', and for each Ts C T, if o(M,t,t',Ts), then
t andt' are independent at M and t' € Ty. Let
To = 0. Then in the algorithm in Figure 5,
each sleep set associated with a marking con-
tains only transitions that are enabled at the
marking.

Proof. See the proof of Lemma 4.2 in [13]. O

The result in Lemma 31 is due to Wolper
and Godefroid [14] despite the differences be-
tween the algorithm in Figure 5 and their ter-
minal state detection algorithm.

In Figure 6, an implementation of the algo-
rithm in Figure 5 with respect to ¢ and Tp is
presented. The algorithm in Figure 6 can be
obtained from the algorithm in Figure 5 by
making 7y empty, removing the checking of
enabledness from the “else-block”, and defin-
ing: (M, t,t',Ts) iff t and ' commute at M



and ¢/ € T,. We know that transitions com-
mute at a marking iff they are enabled and in-
dependent at the marking. Checking commu-
tation should be easier than checking indepen-
dence. Lemma 31 implies that the algorithm
in Figure 5 is equivalent to the algorithm in
Figure 6 when Tj is empty and ¢ is defined:
(M, t,t',Ts) iff t and ¢ commute at M and
t' € T,. Lemma 6 thus also implies that in the
algorithm in Figure 6, each sleep set associ-
ated with a marking contains only transitions
that are enabled at the marking.

make Stack empty; make H empty;
push (Mg, @) onto Stack;
while Stack is not empty do {
pop (M, Sleep ) from Stack;
if M is not in H then {
Fire= {t € f(M)\ Sleep | M[t}};
if Fire and Sleep are both empty then
print “Terminal state!”;
enter (M, a copy of Sleep ) in H;
}
else {
let hSleep be the set associated
with M in H;
Fire = hSleep \ Sleep;
Sleep = hSleep N Sleep;
substitute a copy of Sleep for the set
associated with M in H;
}

for each ¢ in Fire do {
let M[t)M';
tSleep = {t' € Sleep |
t and ¢’ commute at M};
push (M’ a copy of tSleep ) onto Stack;
Sleep = {¢}U Sleep;

}

Fig.6. A practical implementation of the algo-
rithm in Figure 5 with respect to ¢ and To.

Lemma 32. Let (S,T,F,K,W, My) be a fi-
nite place/transition net such that the set of

markings reachable from My is finite. Let Tg
be a subset of transitions that are disabled
at My. Let ¢ be a truth-valued function on
M x T xT x 27 such that for each marking
M, for all transitions t and t', and for each
Ts CT, if (M, t,t',Ty), then eithert and t'
commute at M andt’ € Ty, ortt’ is disabled at
M. Let’s further require that for each marking
M, for all transitions t and t', and for each
T, CT, ift and t' commute at M and t' € Ty,
then (M, t,t',Ty). Let’s assume that the sets,
the set operations (insertion, union, intersec-
tion, and difference), the stack, the stack oper-
ations, the “for-loop”, and the computation of
F(M) in the algorithms in Figure 5 and 6 are
implemented exactly in the same way. Then
the algorithms visit exactly the same markings
and fire exactly the same transitions in exactly
the same order.

Proof. See the proof of Lemma 4.3 in [13]. O

The result in Lemma 32 is new though in-
spired by Wolper and Godefroid [14]. Lemma
32 states that there is no more refined imple-
mentation of the algorithm in Figure 5 with
respect to ¢ and Tp than the algorithm in Fig-
ure 6 if ¢ and Tp are required to satisfy the
assumptions in Theorem 30. Lemmas 31 and
32 suggest the heuristic that each sleep set as-
sociated with a marking should only contain
transitions that are enabled at the marking.

Let’s consider the complexity of the al-
gorithm in Figure 6. The time taken by a
check of whether two transitions commute at a
marking is at most proportional to v, where v
is the maximum number of adjacent places of
a transition. The cumulative time per marking
spent in the “for-loop” is at most proportional
to vp?, where p is the maximum number of en-
abled transitions of a marking, and all visits
to the marking are counted. This is based on
the fact that each sleep set associated with a
marking contains only transitions that are en-
abled at the marking. The time per visit to a
marking spent in the operations related to H
is the time of the search for the marking plus



a time that is at most proportional to p. The
searches in H are something that cannot be
avoided easily whether or not we use sleep sets
at all. It depends much on the net how many
times a marking is visited and how many si-
multaneous occurrences of a marking there are
in the stack. One stack element requires space
for the marking and at most p transitions. It is
not necessary to store copies of markings and
transitions since pointers suffice. More clever
ways to cut down on space consumption in
sleep set algorithms have been presented by
Godefroid, Holzmann, and Pirottin [2].

The combination of the sleep set method
and the stubborn set method can really be
better than the plain stubborn set method
as far as the number of inspected markings
is concerned. More precisely, there can be a
dynamically stubborn function f such that
F(M) can be computed by using a feasible al-
gorithm such as the incremental algorithm [9],
and for each dynamically stubborn function
g, the number of vertices in the g-reachability
graph is greater than the number of markings
that are inspected by the algorithm in Figure
6 that uses f. In [13], a simple example show-
ing this is given. The example is essentially the
same as can be found in [15]. The statistics in
[3, 14, 15] concerning some analyzed protocols
do not give direct information for comparing
the stubborn set method with the combina-
tion of the sleep set method and the stubborn
set method.

5 Conclusions

We have studied Valmari’s stubborn set
method [9, 10, 11, 12] and Godefroid’s sleep
set method [1, 3,4, 5, 2, 14, 15] and their com-
bination [3, 14, 15] in place/transition nets [8].

We have shown dynamically stubborn sets
[7, 12] to be a useful generalization of stubborn
sets. Dynamically stubborn sets seem to have
all the nice properties of stubborn sets except
that the definition of dynamic stubbornness
does not seem to imply a practical algorithm
for computing dynamically stubborn sets.

The stubborn set method alone is some-
times bound to fire independent transitions at
a state, so the sleep set method can further
be used to eliminate redundant interleavings
of transitions. We have generalized Wolper’s
and Godefroid’s terminal state detection algo-
rithm [14] and shown that the generalized ver-
sion detects all reachable terminal markings of
any finite place/transition net with a finite full
reachability graph, given that the transition
selection function represents all sets of length-
secure alternative sequences to terminal mark-
ings. As already known, dynamically stubborn
functions represent all sets of enabled permu-
tations to terminal markings. They thus also
represent all sets of length-secure alternative
sequences to terminal markings.

Wolper and Godefroid [14], and Wolper,
Godefroid, and Pirottin [15] suggest that the
stubborn set method and the sleep set are
compatible in a broad area of verification. The
compatibility should certainly be studied fur-
ther since all available means should be uti-
lized in attacking the state space explosion
problem, and in our opinion, only the detec-
tion of reachable terminal states has obtained
more than cursory treatment so far. Linear
temporal logics seem to form the most central
area of research since they have a great ex-
pressive power, and the stubborn set method
alone as well as the sleep set method alone
can be extended to verify properties expressed
as linear temporal logic formulae without a
next state -operator [4, 11]. The combination
of the stubborn set method and the sleep set
method should be studied in all those models
of concurrency where each of these two meth-
ods alone are applicable. Finally, we have the
problem of how efficient the algorithms are in
practice and what could be done to improve
their efficiency.

Acknowledgements

This work has been carried out in the Dig-
ital Systems Laboratory of Helsinki Univer-
sity of Technology. This paper is an abridged



version of a part of the research report [13].
I am grateful to Professor Leo Ojala for his
continuous support and Assistant Professor
Mikko Tiusanen for his helpful comments.
In addition, I would like to thank Assistant
Professor Antti Valmari and Lic. Tech. Marko
Rauhamaa for fruitful discussions on the sub-
ject of this research.

The financial support received from the
Emil Aaltonen Foundation is also gratefully
acknowledged.

References

1. Godefroid, P.. Using Partial Orders to
Improve Automatic Verification Methods.
Clarke, E.M. and Kurshan, R.P. (Eds.): Pro-
ceedings of the 2nd International Work-
shop on Computer-Aided Verification, New
Brunswick NJ, June 1990. Lecture Notes
in Computer Science 531, Springer-Verlag,
Berlin 1991, pp. 176-185.

2. Godefroid, P., Holzmann, G.J.,; and Pirot-
tin, D.: State Space Caching Revisited. von
Bochmann, G. and Probst, D.K. (Eds.): Pro-
ceedings of the 4th International Workshop
on Computer-Aided Verification, Montreal,
June 1992. Lecture Notes in Computer Sci-
ence 663, Springer-Verlag, Berlin 1993.

3. Godefroid, P. and Pirottin, D.: Refining De-
pendencies Improves Partial-Order Verifica-
tion Methods. Courcoubetis, C. (Ed.): Pro-
ceedings of the 5th International Conference
on Computer-Aided Verification, Elounda,
Greece, June/July 1993. Lecture Notes
in Computer Science 697, Springer-Verlag,
Berlin 1993, pp. 438-449.

4. Godefroid, P. and Wolper, P.: A Partial Ap-
proach to Model Checking. Proceedings of the
6th Annual IEEE Symposium on Logic in
Computer Science, Amsterdam, July 1991.
IEEE Computer Society Press, Los Alamitos
CA 1991, pp. 406-415.

5. Godefroid, P. and Wolper, P.: Using Partial
Orders for the Efficient Verification of Dead-
lock Freedom and Safety Properties. Formal
Methods in System Design 2 (1993) 2, pp.
149-164.

(o2}

10.

11.

12.

13.

14.

15.

Katz, S. and Peled, D.: Defining Conditional
Independence Using Collapses. Theoretical
Computer Science 101 (1992) 2, pp. 337-359.
Rauhamaa, M.:. A Comparative Study of
Methods for Efficient Reachability Analysis.
Helsinki University of Technology, Digital
Systems Laboratory Report A 14, Espoo
1990, 61 p.

. Reisig, W.: Petri Nets: An Introduction.

EATCS Monographs on Theoretical Com-
puter Science 4, Springer-Verlag, Berlin 1985,
161 p.

. Valmari, A.: Frror Detection by Reduced

Reachability graph generation. Proceedings of
the 9th European Workshop on Application
and Theory of Petri Nets, Venice, June 1988,
pp. 95 112.

Valmari, A.: Stubborn Sets for Reduced State
Space Generation. Rozenberg, G. (Ed.), Ad-
vances in Petri Nets 1990. Lecture Notes
in Computer Science 483, Springer-Verlag,
Berlin 1991, pp. 491-515.

Valmari, A.: A Stubborn Attack on State Fax-
plosion. Formal Methods in System Design 1
(1992) 4, pp. 297-322.

Valmari, A.: Stubborn Sets of Coloured Petri
Nets. Proceedings of the 12th International
Conference on Application and Theory of
Petri Nets, Gjern, Denmark, June 1991, pp.
102-121.

Varpaaniemi, K.: Efficient Detection of Dead-
locks in Petri Nets. Helsinki University of
Technology, Digital Systems Laboratory Re-
port A 26, Espoo, October 1993, 56 p.
Wolper, P. and Godefroid, P.: Partial-Order
Methods for Temporal Verification. Best,
E. (Ed.): Proceedings of the 4th Inter-
national Conference on Concurrency The-
ory, Hildesheim, August 1993. Lecture Notes
in Computer Science 715, Springer-Verlag,
Berlin 1993, pp. 233-246.

Wolper, P., Godefroid, P., and Pirottin.: A
Tutorial on Partial-Order Methods for the
Verification of Concurrent Systems. Tutorial
material of the 5th International Conference
on Computer-Aided Verification, FElounda,
Greece, June/July 1993, 85 p.



