
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Engineering Physics and Mathematics

Content-based retrieval of hierarchical objects

with PicSOM

Mats Sjöberg

Master’s thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology

Supervisor Professor Erkki Oja
Instructor Docent Jorma Laaksonen

Espoo, Finland, 2nd June 2006



Helsinki University of Technology Abstract of master’s thesis
Department of Engineering Physics and Mathematics 2nd June 2006

Author: Mats Sjöberg

Department: Department of Engineering Physics and Mathematics
Major subject: Computer and Information Science
Minor subject: Engineering Physics, Computational Physics

English title: Content-based retrieval of hierarchical objects with PicSOM
Swedish title: Inneh̊allsbaserad sökning av hierarkiska objekt med PicSOM
Number of pages: 78

Chair: T-61 Computer and Information Science
Supervisor: Professor Erkki Oja
Instructor: Docent Jorma Laaksonen

Abstract:
The amounts of multimedia content available to the public has been increasing rapidly
in the last decades and it is expected to grow exponentially in the years to come. This
development puts an increasing emphasis on automated content-based information
retrieval (CBIR) methods, which index and retrieve multimedia based on its contents.
Such methods can automatically process huge amounts of data without the human
intervention required by traditional methods (e.g. manual categorisation, entering of
keywords). Unfortunately CBIR methods do have a serious problem: the so-called
semantic gap between the low-level descriptions used by computer systems and the
high-level concepts of humans.

However, by emulating human skills such as understanding the contexts and rela-
tionships of the multimedia objects one might be able to bridge the semantic gap.
To this end, this thesis proposes a method of using hierarchical objects combined
with relevance sharing. The proposed method can incorporate natural relationships
between multimedia objects and take advantage of these in the retrieval process,
hopefully improving the retrieval accuracy considerably.

The literature survey part of the thesis consists of a review of content-based informa-
tion retrieval in general and also looks at multimodal fusion in CBIR systems and how
that has been implemented previously in different scenarios.

The work performed for this thesis includes the implementation of hierarchical objects
and multimodal relevance sharing into the PicSOM CBIR system. Also extensive
experiments with different kinds of multimedia and other hierarchical objects (seg-
mented images, web-link structures and video retrieval) were performed to evaluate
the usefulness of the hierarchical objects paradigm.

Keywords:
content-based retrieval, self-organizing map, multimedia databases



Tekniska Högskolan Sammandrag av diplomarbete
Avdelningen för teknisk fysik och matematik 2 juni 2006

Utfört av: Mats Sjöberg

Avdelning: Avdelningen för teknisk fysik och matematik
Huvudämne: Informationsteknik
Biämne: Teknisk fysik, beräknings fysik

Arbetets namn: Inneh̊allsbaserad sökning av hierarkiska objekt med PicSOM
Title in English: Content-based retrieval of hierarchical objects with PicSOM
Sidoantal: 78

Professur: T-61 Computer and Information Science
Övervakare: Professor Erkki Oja
Handledare: Docent Jorma Laaksonen

Sammandrag:
Mängden av audiovisuellt material som st̊ar till allmänt förfogande har ökat snabbt
under de senaste decennierna, och förväntas fortsätta öka exponentiellt under de
kommande åren. Denna utveckling ställer ett allt ökande krav p̊a automatiska och
inneh̊allsbaserade metoder för informationssökning (eng. content-based information
retrieval – CBIR), som indexerar och söker multimedia baserat p̊a dess verkliga in-
neh̊all. Dylika metoder kan automatiskt bearbeta stora mängder data utan mänskligt
ingripande vilket traditionella metoder kräver (t.ex. manuell kategorisering, inmatning
av nyckelord). Tyvärr har CBIR-metoderna ett grundläggande problem: den s.k.
semantiska klyftan, dvs. den vida klyftan mellan den maskinella representationen hos
datorsystem och de semantiska begrepp som människor använder.

Men genom att efterlikna mänskliga färdigheter, t.ex. förm̊agan att beakta kontext
och förh̊allanden mellan olika objekt, kan man försöka överbrygga den semantiska
klyftan. Detta är utg̊angspunkten för denna avhandling, som föresl̊ar en ny metod som
använder sig av hierarkiska objekt kombinerat med relevansfördelning. Den föreslagna
metoden kan ta tillvara naturliga förh̊allanden mellan multimedieobjekt och dra nytta
av dessa i sökningsprocessen, vilket potentiellt kan förbättra precisionen avsevärt.

Avhandlingens litteraturöversikt best̊ar av en genomg̊ang av inneh̊allsbaserad infor-
mationssökning i allmänhet samt multimodal fusion inom CBIR system och hur dylika
system har realiserats i olika sammanhang inom tidigare forskning.

Arbetet som utfördes i samband med denna avhandling omfattar bl.a. vidareutveckling
av PicSOM CBIR systemet för att omfatta även hierarkiska objekt och multimodal
relevansfördelning. Utöver detta genomfördes utförliga experiment med olika typer av
multimedia och olika former av hierarkiska objekt (segmenterade bilder, webblänk-
strukturer samt videosökning) för att utvärdera nyttan i praktiska sammanhang.

Nyckelord:
inneh̊allsbaserad sökning, självorganiserad karta, multimedia databaser



Acknowledgements

All the research work presented in this Master’s thesis has been conducted at the
Laboratory of Computer and Information Science at the Helsinki University of Tech-
nology.

First, I would like to thank my instructor and leading researcher in the PicSOM
project, Doc. Jorma Laaksonen, for always guiding this thesis into the right direc-
tion. In addition to providing inspiring research ideas and a constant willingness
to help with every conceivable technical problem that has arisen, he has also tire-
lessly proof-read the thesis and suggested many improvements in both language and
content.

I owe my gratitude to Prof. Erkki Oja for supervising this thesis and for enabling it
by providing excellent research facilities. I also want to thank the entire staff of the
laboratory for providing a great working environment with a relaxed atmosphere.
A special thanks goes to co-workers Markus Koskela and Ville Viitaniemi for much
assistance and advise during the different stages of the research work.

Finally, I am grateful to my parents for sparking my interest in science and support-
ing me during my studies.

Espoo, 2nd June 2006

Mats Sjöberg

4



Contents

1 Introduction 8

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Content-based information retrieval and hierarchical objects 11

2.1 Content-based information retrieval . . . . . . . . . . . . . . . . . . . 11

2.1.1 Object similarity . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Database indexing . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 The semantic gap . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.5 Query by example, relevance feedback . . . . . . . . . . . . . 17

2.2 Multimodal information, hierarchical objects . . . . . . . . . . . . . . 18

2.2.1 Multi-part hierarchical objects . . . . . . . . . . . . . . . . . . 19

2.2.2 Segmented images . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Video and audio content . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Web-link structures . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Multimedia messages . . . . . . . . . . . . . . . . . . . . . . . 26

3 PicSOM CBIR system 28

3.1 SOM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Tree-structured SOMs . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 PicSOM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Implementing hierarchical relevance feedback in PicSOM . . . . . . . 33

3.4.1 Original algorithm . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Using hierarchical objects . . . . . . . . . . . . . . . . . . . . 36

3.5 Feature extraction framework . . . . . . . . . . . . . . . . . . . . . . 37

3.6 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5



4 Implementation 41

4.1 Image segmentation and features . . . . . . . . . . . . . . . . . . . . 41

4.1.1 k-means segmentation . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Region merging . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Average colour feature . . . . . . . . . . . . . . . . . . . . . . 44

4.1.4 Texture neighbourhood feature . . . . . . . . . . . . . . . . . 45

4.1.5 Colour moments feature . . . . . . . . . . . . . . . . . . . . . 46

4.2 Video features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Web-link feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Textual features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Character and word n-grams . . . . . . . . . . . . . . . . . . . 49

4.4.2 Word histogram . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.3 Binary keyword features . . . . . . . . . . . . . . . . . . . . . 50

4.5 External feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 MPEG-7 content descriptions . . . . . . . . . . . . . . . . . . 51

4.5.2 Mel cepstrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Experiments 54

5.1 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Ground truth classes . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Recall-relative precision . . . . . . . . . . . . . . . . . . . . . 55

5.1.3 Average precision . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Retrieval with segmented images . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Experiment setting . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Retrieval with web-link structures . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Database collection . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 Experiment setting . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 TRECVID 2005 automatic search . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Video multi-part structure . . . . . . . . . . . . . . . . . . . . 63

5.4.2 Semantic class models . . . . . . . . . . . . . . . . . . . . . . 64

5.4.3 Text query processing . . . . . . . . . . . . . . . . . . . . . . 66

5.4.4 Experiment setting . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6



6 Conclusions and future prospects 69

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7



Chapter 1

Introduction

1.1 Motivation

Information in its every form is becoming more and more important in the world

of today. Modern computer systems can store huge amounts of data, and new

data is acquired at an ever increasing rate. In a recent study Lyman and Varian

[2003] it was estimated that we collectively produced around 5 exabytes∗ of new

information in the year 2003! All this, coupled with the fact that we are becoming

more and more dependent on finding relevant information quickly in our daily private

and professional lives, calls for new and better information retrieval methods to be

developed.

A typical situation in information retrieval might be searching a large database of

multi-media content, like text, pictures, music or video. Such a database could for

example be the World Wide Web or a subset of it. The traditional indexing approach

of manually entering meta-data, like textual descriptions and keywords associated

with the stored data, quickly becomes infeasible when we have thousands or millions

of data objects. Manually entering meta-data is not only labour intensive but also

error prone. Additionally the descriptions provided by humans can vary from person

to person, from language to language, and can depend on different interpretations

and points of view.

The contemporary solution to the indexing problem is content-based information re-

trieval (CBIR), where the data objects are indexed by feature vectors automatically

calculated from the data objects themselves. This allows us to search by the actual

contents and we are no longer constrained by keywords and meta-data descriptions.

∗5× 1018 bytes

8



Automatic feature extraction is of course also much faster than manual indexing,

and in some cases even the only possibility.

On the other hand, creating a good feature extraction algorithm is not a trivial task.

A CBIR system cannot “understand” the data that it is indexing in the sense that

humans can, and therefore the retrieval results can never be perfect as judged by a

human being. This means that a CBIR system is most effective as a semi-automatic

tool, with a human expert pointing it in the right direction. Used in the correct

manner we can get a best-of-both-worlds solution where the computational system

calculates and compares low-level features, and the human user provides the high-

level abstract overview. In reality the CBIR systems are far from perfect, and the

human interaction with the system, trying to point it in the right direction, might

be tedious and frustrating.

To improve existing CBIR systems we have looked at how humans do recognition and

association. Humans do not only rely on immediate low-level data, but also benefit

from a priori knowledge and an understanding of the context and relationships of

the data items. The latter is something that has been chosen as the focal point of

this thesis; because data objects in a database are seldom unrelated, it might be

fruitful to use any existing object dependencies in an information retrieval system.

Such dependencies might be the context of words, images found in the same web

page, links to other web pages, or an e-mail message containing attachments.

Our approach is to model dependency relationships as multi-part hierarchical objects

and share the user-given relevance assessments between related objects. In this way,

for example an image attachment of an e-mail message that has been deemed relevant

(e.g. on the basis of its colour properties) can also increase the relevance of the e-

mail message that it is attached to. Thus objects that are related, but not similar

in the view of low-level features can still be found in the retrieval process.

1.2 Background

The PicSOM system Laaksonen et al. [2002] developed at the Laboratory of Com-

puter and Information Science at Helsinki University of Technology is a system for

content-based information retrieval. The PicSOM project was started in 1998 by

Prof. Erkki Oja and Dr. Jorma Laaksonen. It was inspired by the earlier WEB-

SOM Honkela et al. [1997] text retrieval system of Academician Teuvo Kohonen

and his group.

The unique approach used in PicSOM is to have several Self-Organising Maps Koho-

9



nen [2001] in parallel to index and determine the similarity of data objects. Through

query by example a PicSOM query becomes an iterative process where the user can

improve the search results by giving relevance feedback.

The PicSOM CBIR system was initially designed to index and retrieve images only.

Segmentation was introduced into PicSOM Viitaniemi [2002], and later we have used

image segments in parallel with entire images to improve retrieval results Sjöberg

et al. [2003]. This algorithm was then generalised to be used with multi-part mes-

sages Muurinen [2003]. In this thesis we generalise the concept further to include

any multi-part hierarchical object relationships. Additionally we describe some ex-

periments done with the improved PicSOM version, using MPEG-7 image features

and segmented multi-part images. We also discuss an experiment with web pages,

using links and web page images to form hierarchical objects. Finally we review our

contribution to the TRECVID 2005 evaluations where automatic queries of video

clips were performed using video, image, textual and audio features combined with

semantic class models. Our results compared very favourably with the other par-

ticipating groups: PicSOM had the third best group-wise results of the automatic

search task.

1.3 Thesis organisation

The rest of the thesis is organised as follows. In Chapter 2 content-based information

retrieval is introduced together with a review of the hierarchical object paradigm.

We also present some example usages of this idea. In Chapter 3 we describe the

original PicSOM system and how the use of hierarchical objects was added to the

PicSOM algorithm. In Chapter 4 we describe the implementation details of our

experiments, such as the specific segmentation and feature extraction algorithms

used. The experiments themselves are reviewed in Chapter 5, and the thesis ends

with the final conclusions in Chapter 6.

10



Chapter 2

Content-based information

retrieval and hierarchical objects

In the first section of this chapter we will shortly review the central content-based

information retrieval (CBIR) concepts used throughout this text. Notice that by

CBIR we mean content-based information retrieval rather than the more common

image retrieval. This is because we also consider objects of other types than images,

for example text, video, and multi-media objects in general.

As hierarchical objects are the special focus of this text, the rest of the chapter is

used for presenting this concept and the different types of hierarchical objects that

we have used for our experiments with the PicSOM CBIR system.

2.1 Content-based information retrieval

In content-based information retrieval one usually has a large database of objects

from which one wishes to retrieve a smaller set of objects relevant to a specific

query. In general there exist many different types of search scenarios, depending on

the needs of the user. A common classification for CBIR search tasks is described

in Cox et al. [2000]:

Target search. In a target search the user is looking for a specific object in the

database that he or she knows in advance. For example looking for a specific

photo of the Big Ben in a database of holiday photos.

Category search. In a category search the user is looking for objects of a certain

type. The classification of relevant objects is up to the user, but he or she

11



has a specific class in mind. For example if searching a database of videos, a

user might search for videos containing flying airplanes, but not have a specific

video in mind.

Open-ended search or browsing. When interactively browsing the object database,

the goal of the user can be very vague, and can change radically during the

search process. An example would be an artist looking for inspiration in an

image database, exploring different types of images.

A good CBIR system should support most or even all of the search types given above.

To be able to perform an open-ended search and browse the database intuitively we

need a CBIR system that provides tools with good visualisation capabilities. Also

grouping similar objects nearby in the user interface would assist the browsing.

The PicSOM system supports all of these mentioned features. The difficulty of

performance evaluation of CBIR systems generally increases with more abstract

search tasks, with target search considered to be the least abstract and open-ended

search the most abstract.

2.1.1 Object similarity

A fundamental operation in a traditional database search is object matching. The

user makes an exact database search query, using for example a query language

like SQLDate [2003], and the retrieval system returns all matching objects. In

CBIR a different approach is needed because it is very unusual to know the exact

properties of the object or objects one wishes to retrieve. Objects are ranked using

some kind of similarity measure, and the search query must be transformable into

the same form so that the similarity of the search query with the database objects

can be measured. The CBIR database queries can then, for example, be k-nearest

neighbour, thus choosing the k most similar objects, or α-cut query where all objects

within a certain similarity threshold α are chosen.

Obviously the similarity measure must be chosen so that it correlates at least to

some degree with human judgement of similarity. This is only possible if there

is enough overlap between the machine and human measures of similarity Squire

et al. [1999]. A common way to approach the similarity measure problem is to use

the vector space model (VSM). In the VSM we use the distance between vectors,

representing the database objects, as a dissimilarity measure. So a smaller distance

between the vectors of two objects means higher similarity.

12



A distance measure, or metric, d is a mapping from a pair of points in vector space

(p,q) ∈ RK × RK , where K is the dimension of the vector space, to the set of

non-negative real numbers R+, such that the following equations are all satisfied:

d(p,q) = 0, if and only if p = q (2.1a)

d(p,q) = d(q,p) (2.1b)

∀r ∈ RK : d(p,q) ≤ d(p, r) + d(r,q). (2.1c)

A common distance measure is the generalised Euclidean distance

dGE(p,q) =
√

(p− q)TA(p− q), (2.2)

where A is a matrix with dimension K×K. This simplifies to the normal Euclidean

distance measure when we set A = I:

dE(p,q) = ‖p− q‖ =

√√√√ K∑
n=1

(p(n)− q(n))2, (2.3)

where p(n) and q(n) are the nth components of the vectors.

Another generalised distance measure is the Minkowski distance

dLλ
(p,q) =

(
K∑

n=1

|p(n)− q(n)|λ
)1/λ

, (2.4)

where λ is a parameter specifying the base norm Lλ. With λ = 1, we get the

Manhattan or city-block distance, and with λ = 2 we get the Euclidean distance

dL2 = dE.

A distance measure that gives the same ordering as the Euclidean distance for

normalised vectors is the cosine measure

dcos(p,q) =
p · q
|p||q|

=

∑K
i=1 p(n)q(n)√∑K

i=1 p(n)2

√∑K
i=1 q(n)2

. (2.5)

In some situations it is more appropriate to use binary features, where the component

values of the vectors are restricted to 0 and 1. A value of 1 then means that a

certain feature is present, and 0 that it is not. An example would be if a certain

word is present in a text or not. Binary feature vectors can be handled like real-

numbered feature vectors, but there are also some special distance measures that

can be used only with binary features. Note that such measures are not necessarily

metric distances because they do not always satisfy the triangle inequality in (2.1c).

13



For a binary feature vector p, we define P to be the set of features present in the

corresponding object, i.e. for which p(n) = 1 where n is the index of the feature. By

|P | we mean the number of features present in the corresponding object, which is

the same as the L1 norm of the vector p.

Now we can, for example, define the following distance measures between feature

sets P and Q (and their corresponding binary vectors of length K):

Absolute difference

Dm(P, Q) =
|P | − |Q|

K
. (2.6)

Logical AND

Dand(P, Q) = 1− |P ∩Q|
K

. (2.7)

Logical XOR

Dxor(P, Q) =
|(P \Q) ∪ (Q \ P )|

K
, (2.8)

where P \Q = {x ∈ P : x /∈ Q} is the set minus operator.

Tversky’s contrast model Tversky [1977] gives a distance measure which can be seen

as a kind of combination of the above:

DT = αf(P \Q) + βf(Q \ P )− f(P ∩Q), (2.9)

where f is a non-negative function and α and β are some constants.

2.1.2 Feature extraction

In order to utilise the vector space model presented in the previous section, we

need to form a vector representation for each database object. The objects in a

typical CBIR database often contain a lot of data, for example a digital image with

1280 × 1024 pixels or a text with hundreds of pages. In a typical database we can

have thousands of objects, so it would simply be computationally infeasible to deal

directly with all this information in an on-line query. Also because of the curse

of dimensionality Bellman [1961] one could not even expect very good results by

directly dealing with data of such high dimensionality.

A common approach to address the problem of high dimensionality in CBIR is to

reduce each one of the objects in the database into one or many low-dimensional

feature vectors by using different automatic feature extraction methods. The ex-

tracted features should describe the contents of the objects in a concise, meaningful

and discriminative manner. Ideally the feature description should also correlate well

14



with human judgement of what is distinctive of the object. The reduction of objects

into low-dimensional feature vectors, or feature extraction, is a very crucial point

in a CBIR system. If the feature extraction produces bad, non-descriptive feature

vectors, then the information retrieval system will almost certainly give poor results.

The use of automated feature extraction methods as opposed to manually entering

descriptive information, like textual annotations and keywords, is in most cases

inevitable due to the large amounts of data involved. Automated feature extraction

is also subject-independent, while manual annotation is not. A person manually

analysing the data might not be sensitive to properties that seem irrelevant to him

or her, but might be relevant to some other person, or in some other situation.

Additionally the mood of the annotator and other environmental factors might affect

the result, giving feature descriptions that might not be very useful.

2.1.3 Database indexing

The index is a central data structure in an efficient CBIR system. Slow interaction

frustrates users and might cause them to entirely reject the retrieval system Miller

[1968], Nielsen [1999]. The index creation is often a very slow process and is thus

usually performed off-line before the retrieval. The index should preferably still be

able to add new objects on-line if needed, for example objects uploaded by the user

during the retrieval process.

When choosing the data structure for indexing in CBIR, there are several aspects

that need to be taken into account. The databases are typically very large, which

means that a query implemented as a basic linear search becomes too slow. This

calls for data structures that support efficient search methods. On the other hand,

because the feature space in the vector space model can be of high dimensionality,

it is impossible to create an index for all imaginable queries and some compromises

need to be made.

In the vector space model, an essential operation of the index is to find the k nearest

feature vectors (and thus their corresponding objects) of a given query, represented

by a point in feature space. The resulting objects of this k-nearest-neighbour (kNN)

search are considered to be similar to the given query in the sense that their, hope-

fully descriptive, feature vectors are near to the query point representation in that

feature space.

There are several possible indexing structures that can be used in CBIR. Koskela

[2003] divides the structures into two broad categories. The first approach trans-

forms the feature space into a new space (usually with lower dimensionality) where

15



the database operations can be implemented more efficiently. Dimensionality reduc-

tion can be done for example by using principal component analysis (PCA) Hotelling

[1933], singular value decomposition (SVD), random mapping Kaski [1998] or the

Self-Organising Map (see Section 3.1).

The second indexing approach is to use divide-and-conquer strategies. This means

dividing the data or feature space into clusters or subspaces, ideally so that only

a few of these need to be processed per query. Methods such as Tree-structured

Vector Quantisation Chen et al. [1997] and Tree-structured Self-Organising Maps

(see Section 3.2) can be used for this.

2.1.4 The semantic gap

Automated feature extraction methods do have a crucial problem which is very

central in CBIR today: the so-called semantic gap. Eakins [2002] identifies three

semantic levels of image queries, which can be applied more generally for any infor-

mation query:

Level 1 retrieval by primitive features;

Level 2 retrieval by logical features or semantic attributes;

Level 3 retrieval by abstract attributes.

Level 1 means low-level features, such as colours of an image or words or character

combinations in a text. Level 2 can be more high-level descriptions such as “a

picture of a car” or “a medical text”. Level 3 contains more abstract concepts such

as “a picture depicting happiness” or “an ironic text”.

This division into semantic levels also clearly illustrates the semantic gap, i.e. the

large separation between the high-level semantic description used by humans and the

low-level features used by computer systems Rui et al. [1999]. Object descriptions

in CBIR systems are mostly of semantic level 1, while humans naturally use levels 2

or 3 when describing their query target. For example in the case of a digital image,

the automatically extracted low-level features only “see” local phenomena, such as

colours, patterns and textures. A human analysis of the same image might be more

holistic, describing for example the objects seen in the image and their relationships,

not necessarily even noticing particular colours or textures.

The core of the problem lies in the difficulty of automatically extracting semantic

content from a data object. The same semantic concept might have many totally

16



different low-level representations, and also objects with similar low-level features

might have distinct semantic meanings. This was also pointed out by Gupta and

Jain [1997] in the domain of digital images. Humans on the other hand are experts in

recognising semantic content. And from what we know, low-level information, such

as specific words in a text or colours in an image, is only one part of the information

used in the recognition process of humans. A lot of a priori knowledge is involved,

such as previous experience of similar situations, cultural context and so on. Such

information is very hard to incorporate into a computer system.

To achieve something analogous to our human understanding of information content

we would need to incorporate other sources, such as the aforementioned a priori

knowledge, into our CBIR systems. One way to introduce a certain amount of

learning from previous similar query situations was demonstrated by Koskela et al.

[2003] using the PicSOM CBIR system. In that work the system stores the relevance

history of each object, i.e. how relevant the object has been in different past queries.

This information is then used as a separate statistical feature in future queries,

giving a measure of semantic similarity based on previous experience. But this is of

course still a long way from the wide spectrum of information, cultural knowledge

and superb recognition and association skills that humans possess.

The fundamental gap between semantic and low-level information is certainly a

serious limitation to the CBIR approach. But even so CBIR systems can serve as

very useful semi-automatic information mining and browsing tools when looking for

information in huge databases. However, in specific or narrow application domains,

such as identifying errors in industrial products, CBIR methods can even perform

as good as humans.

2.1.5 Query by example, relevance feedback

A common paradigm in CBIR is query by example which means that the queries

are based on example objects from the database or some external source. The user

can then grade these objects, for example, as relevant or non-relevant. The user

thus becomes a part of the query process because the retrieval system is dependent

on the feedback from him. This idea is discussed specifically for picture searches

in Chang and Fu [1980].

As a CBIR system usually cannot return all the relevant objects correctly in its

first response, the retrieval process becomes an iterative process. The user refines

the results in each query round by providing relevance feedback Salton and McGill

[1983], Rui et al. [1998] resulting in an iterative refinement of the query. This entire

17



process can be seen as a form of supervised learning, where the user steers the system

by providing feedback.

A CBIR system implementing relevance feedback essentially tries to learn the op-

timal correspondence between the high-level human concepts and the low-level in-

ternal features used in the system. This learned correspondence is usually stored

only per query session because the relevance of the different objects will change from

query to query.

Relevance feedback is often implemented by adjusting internal weights, for example

the influence of specific features, to better correspond to the given feedback. Rele-

vance feedback can thus also relieve the user from the burden of manually specifying

the internal weights of the system as they are automatically tuned in each query.

This is a desirable property as the internal weights given to different features often

do not correspond well with the human conceptual understanding of the contents of

the object Picard [1996].

The prerequisites for relevance feedback can be condensed into three minimum re-

quirements that need to be fulfilled by a system implementing it:

1. The system must present a series of new example objects and never give the

same object more than once. Thus the system will eventually present all

objects and will not end up in a loop.

2. The user must judge the relevance of each presented object. Often this is done

by explicitly picking the relevant ones, while the system automatically marks

the other ones as non-relevant.

3. The system must change its behaviour depending on the feedback from the

user. After each query round the system will have more graded objects, i.e.

more information, and should therefore be able to improve the retrieval results

in the next round.

The last point is really the tricky part in relevance feedback: how to use this feedback

information to find the most relevant objects most efficiently.

2.2 Multimodal information, hierarchical objects

As mentioned in the introduction, the focal point of this thesis is how to express

and take advantage of known relationships and context of data items in informa-

tion retrieval. This problem, sometimes called multimodal information fusion, is

18



not trivial as there is no obvious general solution. The information coming from

different modalities, like text, audio or video content, may often correlate in some

manner which can be beneficial to the information retrieval. But in other cases the

information from different sources may even contradict each other. A general mul-

timodal information retrieval system needs to be able to handle all such situations

and combine the information from different modalities in a useful way.

There are several ways to implement multimodal fusion in information retrieval,

and the problem can be addressed on different levels. On the feature level, feature

vectors from different modalities can simply be concatenated, essentially creating a

new feature. This is the approach taken for example in ImageRover Cascia et al.

[1998] where visual and textual features are combined into one unified vector. An-

other strategy is to process the different modalities separately and then merge the

retrieval results in some manner in the end. Finally, the most promising technique

is to implement cross-modality into to the information retrieval process itself. This

usually results in associating objects across different modalities. This cross-modality

can for example be based on context that has been stored beforehand, for exam-

ple that a certain sound clip was recorded at the same time and place as a certain

video shot was taken. Another way to implement cross-modality is by statistical

correlation, using for example latent semantic indexing (LSI) or cross-modal factor

analysis Li et al. [2003] and Bayesian network models Rehg et al. [1999]. Most of

the existing multimodal information retrieval systems are highly specialised to work

with specific types of media, for example audio and video, or even very specific

domains, e.g. videos of sporting events.

In the following section, relevance sharing with multi-part hierarchical objects is pre-

sented as a novel technique for multimodal fusion. After that, different domains are

presented where the hierarchical object approach has been successfully implemented.

Then we shortly review some other systems solving similar retrieval problems.

2.2.1 Multi-part hierarchical objects

We have chosen to model relationships between objects in a database by grouping

the objects involved into multi-part objects. A multi-part object is a collection of

objects in the database and does not have any intrinsic properties other than those

of the contained objects.

This text focuses mostly on multi-part objects that can be represented in a hier-

archical manner, and thus can be organised in an object tree in the database. In

some situations an object in the tree can have many parents, and then the structure

19



is technically no longer a tree but rather a graph. Still, we usually use the term

“object tree”. Also, if we consider each multi-part object as being formed of one

parent plus its children (on one or more levels), a graph can be considered as a tree

that only happens to share some children with other object trees. These object trees

or hierarchical objects can be multi-modal, i.e. consist of objects of different types,

and the object tree can be of any depth.

The parent objects and the sub-objects in the hierarchical object tree can be real

data objects, from which we can calculate feature vectors, but in general they do

not have to be. They can also be logical objects that just contain other objects.

The objects that are leaf nodes in the tree, on the other hand, must be real data

objects with indexable feature vectors.

Two examples of real-world multi-media objects are shown in Fig. 2.1. On the

left side we have a typical media-rich e-mail message with image, audio and video

attachments, where the different parts have been highlighted and numbered. On the

right there is an example of a web page with textual content, embedded images and

links to other web pages. Examples of hierarchical object trees created from these

examples are shown in Fig. 2.2. For technical reasons the web addresses, or universal

resource locators (URLs), of the web page and its containing links are collected in

one separate “links” object numbered 00000004:0. The specifics of these hierarchical

objects will be discussed in the following sections. The feature extraction methods

used with the different media types will be discussed in detail in Chapter 4.

Relevance sharing

The properties of each object in the hierarchical tree, i.e. the calculated feature

vectors (using one or many different feature extraction methods), can be considered

to be characteristic not only of the object itself, but to some extent also of its parents,

children and siblings in the tree structure. We call this idea relevance sharing, which

means that the relevance assessments originally received from user feedback will be

transferred from the object to its parents, children and siblings. This means, for

example, that if a certain e-mail message is considered relevant by the user in a

query, its attachments would also get elevated relevance values. Additionally, when

we retrieve new attachments which are similar to the previous ones, this relevance

will in time also propagate to e-mail messages with similar attachments.

Fig. 2.3 shows an illustration of relevance sharing in the e-mail example. On the left

the relevance goes upwards from a child video-clip object, which has perhaps been

marked as relevant by the user. On the right the relevance is spread downwards from

20



:0

From: mats@cis.hut.fi
To: jorma@cis.hut.fi
Subject: Hello again
Date: Tue, 16 Aug 2005 16:37:58

Hi!

Look at these:

Listen to this:

:1
:2 :3

:4

HUT

http://www.cis.hut.fi :0

CIS HOME PAGE
The CIS lab is at

:0
:1

:2

Figure 2.1: A typical e-mail message with inline attachments (left), a web page with

text, link information and images (right).

00000003
message

...0003:1
text

...0003:0
text

...0003:2
image

...0003:3
video

...0003:4
sound

html

...0004:0
links

...0004:1
image

...0004:2
image

00000004

Figure 2.2: Hierarchical object trees for an e-mail message (left) and a web page

(right).

00000003
message

...0003:1
text

...0003:0
text

...0003:2
image

...0003:3
video

...0003:4
sound

00000003
message

...0003:1
text

...0003:0
text

...0003:2
image

...0003:3
video

...0003:4
sound

Figure 2.3: Relevance sharing in a multi-part e-mail object tree, going up from a

child to its parent (left) or down from the parent to its children (right).

21



the parent to its children. (The originating child object does not get its relevance

value elevated further if the relevance returns to it.) This process will result in the

multimodal fusion of the information concerning different object types.

In the following sections some specific applications of hierarchical objects in CBIR

will be described in more detail: segmented images, video and audio content, web-link

structures and multimedia messages.

2.2.2 Segmented images

In this section we concentrate on the use of segmented images in a hierarchical object

structure. Image segmentation essentially means dividing a digital image spatially

into smaller disjoint parts according to some rule. The rule could, for example,

simply be to divide the image into two by splitting it in the middle. To obtain

more meaningful results most segmentation methods use some visual features of the

image, for example colour, to determine the segments.

Intuitively one can easily understand the importance of segmentation in content-

based image retrieval. Typically a picture contains several real-world objects, of

which some are not relevant to a certain query. One might, for example, be searching

a large image database looking for pictures of cars, but the surroundings of the car

in a specific picture are not interesting. Then it would not matter if the retrieved

image has a lot of grass or asphalt or if one can see a lot of the blue sky in the

image or not, as long as there is a car in it. In this case it would thus be useful to

be able to automatically segment the car images into at least two parts: the car and

its surroundings.

Also if we consider the general problem of image understanding, we find that it is

intrinsically linked to the problem of image segmentation. That is, if one understands

an image, one can also tell what the distinct parts of it are. Segmentation thus

seems to be a natural part of image understanding, which of course is one of the

main problems in computer vision. A solution to the image understanding problem,

however far away that may seem, will almost certainly contain segmentation in some

form.

With this in mind, our segmentation algorithm should ideally produce segments that

correspond to our high-level semantic understanding of the image. This means that

the segments should correspond directly to what humans see as different objects

in the image, like the car and its surroundings, or even smaller elements, like the

wheels of the car, the sun, etc.

22



In reality the automatically generated segments seldom correspond directly to our

understanding of the image because they are created using only low-level visual

features (e.g. colour or texture). So for example, if colour is used for segmentation,

two nearby but different objects with similar colour might end up in the same

segment. This is actually an instance of the problem discussed in Section 2.1.4, i.e.

the semantic gap between the high-level semantic description used by humans and

the low-level features used by computer systems. A computer vision system simply

cannot understand an image based on only low-level feature information.

But even so we think that segmentation is useful in image retrieval because different,

visually homogeneous regions somehow characterise the objects and scenes in the

image. That is, we believe that the use of segmentation can give more information of

the composition of the image than calculating features from the entire image alone.

So for example, if you say that an image has three red segments and a green one, it

is much more informative than saying that its average colour is yellow.

When we have segmented an image, we can create an object hierarchy where the

original unsegmented entire image is the parent object and the segments, i.e. parts

of the image, are child objects in a tree. Thus relevance feedback, together with the

relevance sharing in hierarchical objects discussed in the previous section, gives us

a system where both similar images and images with similar segments contribute to

each others’ relevance values.

In Fig. 2.4 one can see an example of the use of segments in feature extraction.

On the left we have calculated the average RGB colour feature (the average of the

red, green and blue colour components of the image pixels) for the entire image.

On the right we have segmented the image using k-means combined with region

merging (see Section 4.1) and calculated the feature for each segment separately.

The segmented image provides much more information than by averaging over the

entire image. One could argue that the same result could be achieved by simply

concatenating the colour features calculated from each segment to generate one long

feature vector with all the results. And furthermore, that the extra information

gained is just because we have a feature vector with higher dimensionality. But

this is not the case, as each segment is treated as an object in its own right with

its own low-dimensional colour feature. So image similarity increases not only from

images having similar features, but also from images having similar segments. For

example red segments might be found to be crucial to the retrieval in a particular

case, but other colours might not be very important. Such a situation would be

hard to benefit from in the retrieval process if all the colour feature data is simply

concatenated in some more or less arbitrary order.

23



red green blue

0.4263577 0.4061035 0.386114

red green blue segment

0.0086115 0.0086115 0.0084055 0

0.0301994 0.0261996 0.0217827 1

0.6279142 0.6435601 0.5504292 2

0.0186285 0.0175655 0.2216980 3

0.1802614 0.1599783 0.2017541 4

0.6643879 0.3807732 0.0891608 5

0.0406402 0.0320094 0.0552036 6

Figure 2.4: On the left we have calculated the average RGB colour feature of an

image. On the right we have segmented the image using k-means combined with

region merging and calculated the average colour feature for each segment separately.

Adapted from Viitaniemi [2002].

24



Segmentation techniques have been employed in many CBIR systems, including

e.g. NetRa Ma and Manjunath [1999], VisualSEEk Smith and Chang [1996], Blob-

World Carson et al. [2002] and SIMPLIcity Wang et al. [2001]. The PicSOM sys-

tem Laaksonen et al. [2002], Viitaniemi [2002] uses segmentation together with the

hierarchical objects approach described in this section. Additionally, such methods

as Unified Feature Matching (UFM) Chen and Wang [2001] and the use of point

configurations in the feature space Dimai [1999] have been presented. These ap-

proaches differ mainly in the fashion the segment-wise similarities are combined to

form image-wise similarities used in the retrieval.

2.2.3 Video and audio content

A video clip consists of a series of still images shown rapidly in a sequence. Typical

frame-rates are around 24 or 30 images per second. There can also be a sound track

associated with the video sequence. Videos can thus be stored hierarchically so that

the image frames and sound tracks are sub-objects in an object tree. Alternatively

we can store only important key frames of the video as separate images, and have

the entire video clip as the parent object. If the video itself is very long it might

also be a good idea to segment it into shorter segments, for example into different

scenes. Then the entire video would be the parent, with the shorter segments as

sub-objects. Additionally, key frames and sounds can be assigned as children to the

video segments creating a tree with three levels. In this way we can, for example,

share relevance between two different videos having similar sounds or frames.

One of the most interesting currently available video retrieval systems is the Informe-

dia project Wactlar et al. [1996]. Informedia tries to provide full content search and

browsing of video clips by integrating speech, closed captioning and image recog-

nition. It also has good video data visualisation capabilities. Another system is

proposed by Castro and Muntz [1999] that uses “context-based” indexing of video-

conference recordings. It uses additional sensors to acquire for example the location

and identities of people as an additional context to the actual video. Bayesian

networks are used for probabilistic analysis of the sensor information.

2.2.4 Web-link structures

Web-link structures have previously been studied in the PicSOM system strictly

from an image retrieval point-of-view in Laakso et al. [2001]. In that study the

images were the focal point, and the web-link information was considered only as

25



auxiliary feature vectors of the images. The hierarchical object structure however,

fits perfectly for storing web pages with their contents and links. We have chosen

a model where each web page with its links, images and other media content is

one tree with the web page itself as the root object. The links between pages are

stored in separate link sub-objects, and the normal vector-based similarity approach

is used to gain the connection between linked pages and pages with similar links.

An example of a hierarchical web page object is shown on the right in Fig. 2.2.

A special property of the web is that images and other media types embedded

in the web pages can be linked to from several different contexts. This leads to

a hierarchical object structure that is not purely tree-like as certain sub-objects

(images) can have many parent objects (web pages). Using the hierarchical approach

together with feature-based indexing means that similarity in embedded media, links

and text content can be used not only for searching web pages, but also for images

and other embedded data. This information is used in all searches so that, for

example, in an image search, one gains relevance information also from links and

texts of related web pages.

Most systems today either use only the image data itself or only surrounding textual

information and meta-data. Popular systems such as Google Image Search∗ and

Yahoo! Image Search† belong to the latter class. See the TASI [2004] review of

image search engines for more details. The systems described in a recent review

of current CBIR World Wide Web image retrieval systems Kherfi and Ziou [2004]

describes mostly engines that belong to the former class, i.e. using mostly image

data, but some also combine image data with textual data from the enclosing web

pages. ImageRover Cascia et al. [1998] for example combines the visual and textual

features into one unified vector. WebMars Ortega-Binderberger et al. [2000] is the

only system in the review that allows multimodal browsing and it uses a hierarchical

object model. Another interesting system, which is not mentioned in the review, is

AMORE Mukherjea et al. [1999] that uses multiple media types as well.

2.2.5 Multimedia messages

A promising area where it is very natural to use the multi-part hierarchical object

paradigm is multimedia messages. Multimedia messages can potentially combine

all the media types that we have discussed: text, images, audio and video. Mul-

timedia messages can for example be e-mails, SMS mobile text messages or MMS

∗http://images.google.com/
†http://images.search.yahoo.com/

26

http://images.google.com/
http://images.search.yahoo.com/


mobile multimedia messages with both text, images and perhaps even video or sound

content.

Such multi-part messages form a tree hierarchy, with the abstract message object

itself as the parent object and the headers, such as sender and receiver, text and

different media content as child nodes. See Fig. 2.2 (left) for an example of how this

structure might look like for an e-mail message. In this case the header information

is stored in the parent object. Alternatively one might have a “header” child object

with its own children containing the different e-mail header fields, like sender and

receiver, subject, date, content-types etc. In Muurinen [2003] the retrieval of e-mail

messages using hierarchical objects was studied by using the PicSOM CBIR system.

Again, with the hierarchical object approach we can gain relevance information from

all the different media types used in the object tree. Even if we restrict our search to

only one media type, for example to return only images, we can still gain from the

relevance sharing of the other media types. For example, two image attachments

might be deemed as similar because their e-mails discuss the same subjects, even

though the images themselves do not have much in common in terms of low-level

visual features.

27



Chapter 3

PicSOM CBIR system

The content-based information retrieval system PicSOM Laaksonen et al. [2001,

2002] has been used as a framework for the research described in this thesis. The

PicSOM project was started in 1998 by Prof. Erkki Oja and Dr. Jorma Laaksonen

at the Laboratory of Computer and Information Science at the Helsinki University

of Technology. It was inspired by the text retrieval system WEBSOM Honkela et al.

[1997] of Academician Teuvo Kohonen and the WEBSOM group∗. PicSOM has been

developed or applied in seven master’s degree theses Koskela [1999], Brandt [1999],

Laakso [2000], Pakkanen [2002], Viitaniemi [2002], Rummukainen [2003], Rautkorpi

[2005] and one PhD thesis Koskela [2003].

PicSOM uses the Self-Organising Map (SOM) algorithm Kohonen [2001], developed

by Academician Teuvo Kohonen, to index and determine the similarity of database

objects. The name PicSOM derives from the words “picture” and “SOM”. The

PicSOM system was initially used only for indexing pictures, hence the name.

The novel idea in PicSOM is to use several SOMs in parallel to retrieve objects

relevant to a query. These parallel SOMs have been trained with separate data sets

obtained by using different feature extraction algorithms on the same objects. So

each SOM arranges the same objects differently, according to its particular multi-

dimensional feature vectors.

PicSOM uses the principles of query by example and relevance feedback described

earlier in Section 2.1.5. This means that the system shows the user a set of database

objects, which the user then indicates as relevant or non-relevant to the current

query, i.e. close to or far from what he is looking for. Based on this relevance feedback

information PicSOM changes its configuration so that it will display better objects

in the next round. This is done by increasing the influence of those SOMs that give

∗http://websom.hut.fi/websom/

28

http://websom.hut.fi/websom/


the most valuable similarity evaluation according to the current relevance feedback

information. The PicSOM query process is iterative as the results are refined in

each query round by using the relevance feedback given by the user. The process

can thus be seen as a form of supervised learning.

The PicSOM web page, with a list of publications on PicSOM and a working demon-

stration is located at http://www.cis.hut.fi/picsom.

3.1 SOM algorithm

The SOM algorithm can be viewed as an elastic two-dimensional grid of artificial

neuron units that is fitted to the input space in an optimal manner, thus placing

similar vectors in nearby neurons on the map. Each neural unit is represented by a

model vector mi. In general the SOM grid can have any dimension, but the PicSOM

system uses a two-dimensional grid as this is the easiest one to visualise.

The training of the map, i.e. fitting the grid to the input vectors, is carried out

as a sequential process with a step index t = 0, 1, 2, . . . , tmax − 1. In each step we

introduce a new input vector x(t) to the map, and seek the index c(x) of the best-

matching unit (BMU), or “winner neuron”, which is the map unit that is closest to

the input vector in the Euclidean sense. The model vector mc(x)(t) in this unit thus

satisfies

∀i : ‖x(t)−mc(x)(t)‖ ≤ ‖x(t)−mi(t)‖. (3.1)

When we have found the BMU index c(x) we update the model vectors mi of the

map for the next time step t + 1 as

mi(t + 1) = mi(t) + h(t; c(x), i)(x(t)−mi(t)), (3.2)

where h(t; c(x), i) is the neighbourhood function. This function is usually a bell-

shaped curve that is centred on the BMU index c(x) and decreases gradually when

the distance of index i from the centre increases.

Eq. (3.2) changes the values of the map units towards the value of the input vector.

The BMU is modified the most and the other map units are modified in smaller

amounts as the neighbourhood function decreases with increasing distance to the

BMU. This process is iterated over all the available input samples and h(t; c(x), i)

is let to decrease over time t so that the model vectors mi converge. The large

modifications in the beginning of the iteration determine the large-scale topology of

the map, whereas the small values in the end fine-tune it.

29

http://www.cis.hut.fi/picsom


Figure 3.1: The structure of a three-layer two-dimensional TS-SOM, adopted from

Koskela [1999].

3.2 Tree-structured SOMs

Rather than the ordinary SOM, PicSOM uses the Tree-structured Self-Organising

Map (TS-SOM) Koikkalainen and Oja [1990], Koikkalainen [1994]. A TS-SOM has

several layers of normal SOMs with increasing size. Each unit, except those in the

lowest layer, has an area of child units in the larger SOM below.

When the BMU has been found in one layer it is only necessary to search through

its child units and their closest neighbours to find the BMU in the layer below. This

scheme resembles the conventional tree-search algorithm, and reduces the complex-

ity when searching for the BMU from O(n) to O(log n). Fig. 3.1 depicts a very

small two-dimensional TS-SOM with with three SOM layers. The circles represent

individual map units and the dashed lines span the individual SOM layers. A typical

TS-SOM configuration for PicSOM is four layers with 4 × 4, 16 × 16, 64 × 64 and

256× 256 units.

In the PicSOM system several feature vectors may be extracted for each object in

the database, each providing a different “view” of the object. Each feature extrac-

tion algorithm gives a different similarity assessment of the objects and result in a

differently organised TS-SOM. For a given object type, say images, we thus get one

TS-SOM per feature extraction algorithm performed for that object type.

Each TS-SOM layer will be trained separately and each vector is used several times

in the training, for example a hundred times is typical in PicSOM. After a layer has

30



Figure 3.2: A 16×16 layer of a map trained with MPEG-7 Edge histogram features

of images from the Corel database (left). The map unit in the upper right corner

is “zoomed in” and the box (right) shows the 4 × 4 area of child units in the layer

below.

been trained, it is fixed, and each neural unit is given an object label corresponding

to the database object with the nearest feature vector.

The object labels combined with the hierarchical layout of the TS-SOM can be used

in interactive browsing of the database. For visualisation the object labels should

ideally be represented in a visual form; for example a representative image frame of

a video object, or a small thumbnail image of an image object. We can then plot

a visual map of a TS-SOM layer, were each neural unit will be represented by its

corresponding object label. Then the map layers provide views of the database with

different resolutions. When one has found an interesting object on a high layer one

can “zoom in” on that object and inspect its child units on the layer below, which

can be expected to be similar and give a higher resolution view of that map area.

An example of visual browsing with TS-SOMs is shown in Fig. 3.2. The figure shows

a 16 × 16 TS-SOM map layer created from a database of images using a texture-

based visual feature (MPEG-7 Edge histogram). The map unit in the upper right

corner has been “zoomed in” and the child units from the TS-SOM layer below are

shown. These units (or their corresponding visual labels) tend to have a texture

similar to their parent unit.

31



HTML / CGI
communication

PicSOM servant
Perl + Apache (mod_perl)

m
e

ss
a

g
e

s
X

M
L

PicSOM server

Off−line processing

− Feature extraction

− TS−SOM training

TS−SOMs

Web Browser Client

Object
database

Figure 3.3: PicSOM architecture with web browser and server subsystems.

3.3 PicSOM architecture

The PicSOM system architecture is illustrated in Fig. 3.3. The system can be

accessed via any standard World Wide Web browser, its client-side is thus platform

independent. PicSOM consists of three subsystems:

1. off-line processing,

2. the PicSOM server,

3. the PicSOM servant.

The off-line processing takes care of feature extraction from the database objects

and training the TS-SOMs from the feature data. The resulting TS-SOMs are stored

in PicSOM’s internal database. The off-line processing subsystem consists of many

smaller programmes, mostly implemented in C++ and Perl.

The PicSOM servant, implemented as a CGI script∗ in Perl, takes care of generating

the web user interface. The servant is normally run by the Apache World Wide Web

server software† using the common mod perl module‡, which is a fast Perl interpreter

∗The Common Gateway Interface, http://hoohoo.ncsa.uiuc.edu/cgi
†http://httpd.apache.org/
‡http://perl.apache.org/

32

http://hoohoo.ncsa.uiuc.edu/cgi
http://httpd.apache.org/
http://perl.apache.org/


running inside Apache. The servant generates web pages shown to the human user,

receives input from him and communicates with the PicSOM server using special

XML messages∗.

The PicSOM server receives the user input via the servant. The user feedback is a

set of database objects marked as relevant or non-relevant, which are then mapped

to the TS-SOMs. Using the PicSOM relevance feedback algorithm (described in

Section 3.4) the server calculates a set of new objects for the next round which

are then sent to the servant to be presented to the user. The PicSOM server is

implemented in ISO/ANSI C++ and currently runs on Silicon Graphics systems

with IRIX64, AlphaServer with Tru64 UNIX or 32- and 64-bit Linux PC systems.

All subsystems in PicSOM are completely independent and communicate through

a set of predefined interfaces. This means that each part can be changed internally

without disturbing the others. This principle of modularity is carried through the

entire PicSOM implementation down to the internal object-oriented structure of the

PicSOM server and the off-line processing implementation. This gives an open and

easily extensible architecture.

The object databases are implemented directly as multi-level hierarchical directory

structures in the Unix file system. The objects themselves and the features calcu-

lated from them are stored in the leaf directories of the directory tree. The top-level

directories contain the trained TS-SOMs, log files of the performed queries and other

information.

3.4 Implementing hierarchical relevance feedback

in PicSOM

In this section we first shortly present the original algorithm used in PicSOM be-

fore hierarchical objects were implemented. Then we review the changes that were

made to incorporate hierarchical objects. The original PicSOM CBIR algorithm is

illustrated in Fig. 3.4, the new one in Fig. 3.5.

3.4.1 Original algorithm

In the query process of PicSOM the user evaluates each shown object by marking

it either as relevant or non-relevant. For each object type, all relevant objects get a

∗http://www.w3.org/XML/

33

http://www.w3.org/XML/


User gives
relevance feedback feature #1

feature #2

feature #N

.

.

.
OBJECT

DATABASE

Final select
sort, cut

object subsets

combined set

ST
A

G
E

 1
ST

A
G

E
 2

Select best
sort, cut eg. bottom SOM

Process objects

TS−SOMs

Figure 3.4: PicSOM CBIR stages, the original algorithm.

convergence

feature #1

feature #2

feature #N

.

.

.

Expand

relevance

in all object trees

User gives

relevance feedback

Exchange

relevance

in object list

object subsets

combined set

OBJECT

DATABASE

S
T

A
G

E
 1

S
T

A
G

E
 2

Select best

sort, cut eg. bottom SOM

Process objects Converge

relevance

in object list

Final select

sort, cut

TS−SOMsrelevance expansion

relevance

exchange

relevance

Figure 3.5: PicSOM CBIR stages with hierarchical objects.

34



positive weight inversely proportional to the total number of relevant objects of that

type. Similarly the non-relevant objects get a negative weight inversely proportional

to their total number. The grand total of all weights is thus always zero for a specific

type of objects. In each layer of each TS-SOM, these values are summed into the

best-matching units (BMUs) of the objects, which results in sparse value fields on

the maps.

There can be several situations in any spatial neighbourhood on any particular

SOM: there can be units corresponding to a) mostly relevant objects, b) mostly

non-relevant objects, c) relevant and non-relevant objects mixed or d) no rated

objects. The first two cases, a) and b), indicate that the feature used in creating

this particular map is good at separating relevant objects from non-relevant ones.

Case c) on the other hand means that the feature is not very useful in this query.

Case d) does not give any information on the usefulness of the feature.

The value fields on the maps are low-pass filtered or “blurred” to spread the relevance

information between neighbouring map units. This is because neighbouring map

units have similar properties and it is probable that neighbours of relevant objects

are relevant too. In this way all the units in the maps, and thus also the objects

mapped to the units, get a qualification value depending on the local density of

relevant objects. Maps with very mixed distributions of relevant and non-relevant

objects get low qualification values as a result of the low-pass filtering and therefore

they are automatically less influential in the object selection process.

After this a fixed number of objects from each TS-SOM with the highest qualifi-

cations values are selected. We then have N sets of object lists, where N is the

number of features used. This means that in each list the objects are the most

relevant for that specific feature, but not necessarily for any other feature. The lists

are combined to one large list by summing the object qualification values from all

SOMs. This also automatically removes any duplicates. These steps end stage 1 in

Fig. 3.4, which is characterised by the fact that we consider the feature-wise object

relevance values only, whereas, in stage 2 the objects are considered together with

respect to all features.

In stage 2 we first select the best objects, i.e. the ones with the highest total qual-

ification values. Then in some cases we might reconsider all objects by the sum of

their bottom-most qualification values on all feature TS-SOMs. A specific number

of objects that have not been shown before, usually 20, with the highest total quali-

fication values are selected to be used as the new example objects in the next query

round.

35



3.4.2 Using hierarchical objects

The implementation of relevance feedback with hierarchical objects in PicSOM was

done by modifying the original algorithm described in the previous section. The old

PicSOM algorithm considered only single objects, usually digital images. To this we

added an object hierarchy so that the objects could have sub-objects, thus creating

an object tree with parents and children. Initially this was done only for images,

using their segments as sub-objects, creating a tree with a depth of one Sjöberg

et al. [2003]. But in the work described in Muurinen [2003] this was generalised

further to include other multimedia objects and retrieval of multi-part messages

was implemented. For this thesis, the algorithm was generalised even further to

include such situations where a child can have many parents. Additionally many

more scenarios were implemented, such as web-link structures and video retrieval.

The processing stage of the new PicSOM algorithm is illustrated in Fig. 3.5.

Feature vectors are calculated from each object, including all objects in the hierarchi-

cal object trees, and separate TS-SOMs are trained from these as before. Normally

there will be one map for each combination of the feature and its appropriate object

types. So for example with segmented images, there would be separate maps calcu-

lated from the images and from the segments, even though the feature extraction

algorithms may be the same.

As we now have many different object types, the user must select the target type,

i.e. which type of objects he or she is looking for. This means that the PicSOM

system uses all object types internally, but only returns objects of the specified

target type. For example we might want to see only the image attachments when

searching through a database of e-mail messages. But at the same time we still

benefit from the relevance sharing between for example the texts and headers of the

e-mail messages.

The relevance feedback process described in the previous section was modified so

that when an object is marked as relevant the relevance is expanded from parents to

children, from children to parents and possibly also to siblings depending on the type

of the objects. This stage is called relevance expansion in the algorithm diagram.

Qualification values are then calculated for all the objects on all the TS-SOMs, and

the value fields are low-pass filtered on each map as before. After combining the

best object lists from all features, we get to the stage relevance exchange. Here the

qualification values are again shared between parents and children in the hierarchical

trees.

After the final processing stage, the relevance values are finally converged in the

36



hierarchical trees by sharing the values as before. This stage, relevance convergence,

forms the final object list containing only objects of the desired target type. From

this the 20 objects with the highest qualification values that have not been shown

before, are chosen as the example objects for the next query round.

In the new selection process described above, the relevance values are thus shared

both up-wards and down-wards in the object trees in three stages of the processing.

As a result, the qualification values of the objects are not only determined by their

own features, but also depend on the parent, child and sibling objects in their

hierarchical trees.

3.5 Feature extraction framework

The current PicSOM system contains a separate programme that handles the feature

extraction. It consists of a driver programme and a feature extraction framework

that provides many extraction methods and is easy to expand in the future. The

feature extraction algorithms are implemented as subclasses derived from the base

class Feature that provides some basic facilities common to all features. The com-

plete class structure of the feature extraction framework is illustrated in Fig. 3.6

in UML diagram form∗. The leaf nodes in the UML tree are all concrete imple-

mentations that can be instantiated, the intermediate classes are virtual ones that

represent different groups of feature extraction methods. Each concrete class derived

from Feature provides an implementation for a specific feature extraction method.

The classes also contain an internal data storage class that encapsulates the feature

vector data in some form.

The class ContourFD calculates Fourier descriptors of contours in an image. The

class PixelBased is a virtual class that provides methods for doing pixel-based fea-

ture extraction. This means that we iterate over each pixel in the image and extract

some properties that depend on this pixel alone, or possibly including its immediate

surroundings. The resulting feature vector is a function of these pixel-based prop-

erties. An example of this is the Average RGB colour feature (see Section 4.1.3),

implemented in the Rgb class. Class ColM calculates the Colour moments feature

(see Section 4.1.5) which performs feature extraction using the three first central

moments of the colour distribution in the HSV colour space.

The virtual class TemplateBased is a subclass of PixelBased that uses a template

that is placed on each pixel in turn. The template is simply a collection of positions

∗Unified Modelling Language (UML) is a specification by the Object Management Group, see
http://www.uml.org/

37

http://www.uml.org/


ContourFD TextBasedRegionBased

Feature

Cepstrum

MPEG7_XM

Texture

SampleColour

Colour

Rgb

TemplateBased

ColM MsgDate

NGram

WebLink

WordHist

Raw

PixelBased External

Figure 3.6: The feature extraction class structure in UML.

around the current pixel that should be considered in the feature extraction. The

Texture neighbourhood feature is implemented in the Texture class. It uses a

template that covers the 8-neighbourhood of each pixel and calculates the estimated

probabilities that the neighbour pixels in each position are brighter (have higher

luminance values) than the central pixel (see Section 4.1.4).

The class RegionBased is a virtual class representing region-based computing of

features. This means that the image is separated into one or many rectangular

regions for which some properties are calculated separately. The Raw class in the

UML diagram in Fig. 3.6 is an example of this.

The External virtual class is for using external feature extraction software. This

makes it possible to use external systems transparently trough the familiar interface.

Users need not even be aware that the processing is done externally. MPEG7 XM which

runs the external MPEG-7 XM programme (Section 4.5.1) is an example of this.

Cepstrum creates Mel cepstrum audio features (Section 4.5.2) using an external

software created at our laboratory.

TextBased is a base class for textual features. NGram, which creates character or

word n-grams (Section 4.4.1), and WordHist, which creates word histograms (Sec-

tion 4.4.2), are suitable for general text documents. MsgDate creates a feature vector

based on the date of a message. WebLink creates a feature from a file containing

web links (Section 4.3).

38



3.6 User interface

The screen shot in Fig. 3.7 shows an example of how the web user interface of

PicSOM can look like during an interactive image query. In the top-part of the

picture we can see three TS-SOMs representing three different features extracted

from the images. The TS-SOMs are in three layers, with the bottom-most, largest

layer last. Each layer in the TS-SOMs is represented by a coloured two-dimensional

map. Notice how the resolution increases with lower SOM-layers.

The colours in the TS-SOM layers represent the relevance values of the different areas

on the SOM maps. The blue spots in a map represent areas with negative relevance

values, the red spots are areas with positive relevance, white means unmarked. The

maps have been low-pass filtered, as discussed in Section 3.4.1. As expected, some

maps have distinct red or blue clusters, while others are more uniform. More relevant

images are likely to be found in the areas with high concentrations of red.

In the middle section of the user interface we can see the images that have been

found, i.e. the images that have so far been marked as relevant by the user. In this

example the user is apparently looking for pictures of old buildings. In the lower

part we can see the query images, that is the new example images for this query

round given by the PicSOM server. As we can see, even from just a few relevant

images, many of the examples given by the PicSOM system seem to be correct.

Another important feature of the PicSOM user interface is the browsing mode, in

which one can navigate a TS-SOM map layer. The browsing is initialised by clicking

on some interesting area of a TS-SOM map in the normal query mode. The browsing

mode will start by showing the selected area of the TS-SOM layer as a grid of neurons

represented by their corresponding object labels. Fig. 3.2 gives an indication of what

this might look like. In the browsing mode one can then navigate up, down, left and

right in the two-dimensional TS-SOM layer by clicking on a set of arrows displayed

to the right of the maps. This mechanism facilitates the open-ended search task

described in Section 2.1, for example an artist looking for inspiration by more or

less randomly exploring the database.

39



Figure 3.7: PicSOM web user interface.

40



Chapter 4

Implementation

This chapter describes the details of how hierarchical objects were implemented, and

experimented with, in the content-based information retrieval system PicSOM. The

actual set-up and execution of the experiments are described in Chapter 5. This

chapter is separated into four sections according to feature types: segmented images,

web-link features, textual features and external feature extraction. Each section de-

scribes the particular feature extraction techniques and hierarchical objects models

used.

4.1 Image segmentation and features

The PicSOM CBIR system started out as a purely image-based retrieval system.

In Viitaniemi [2002] segmentation was introduced into PicSOM, and the next step

has been the development of the hierarchical object system, described in this thesis,

where the segments can be used as sub-objects to the entire images. In the experi-

ments with segmented images we used the k-means and region merging algorithms

for automatic image segmentation, as these methods were readily available and

produced reasonably good results. In this section, we also introduce some feature

extraction methods that were used with images and their segments.

4.1.1 k-means segmentation

k-means is a clustering algorithm that partitions data into k clusters. In our ex-

periments we used the isodata variant of the k-means algorithm Theodoridis and

Koutroumbas [1999]. In image segmentation the data points of the general algo-

rithm represent either single image pixels or disjoint groups of neighbouring pixels

41



(for example rectangular blocks of pixels). A localised visual feature vector is cal-

culated for each image data point. This feature vector is used as the value of the

data point in the k-means algorithm, as given in the following steps:

1. Fix the number of clusters k. Choose the initial cluster centres µi in some

way, for example randomly.

2. Partition the data points into clusters. Each data point belongs to the cluster

with the closest centre.

3. Calculate new cluster centres according to the mean value of the associated

data points from the previous step.

4. If the clustering is self-consistent, i.e. the clusters have not changed since the

last step, then stop. Otherwise go to step 2.

k-means partitions the image data according to the visual features only. It does

not consider the spatial locations of the image data points at all. Real objects

in an image usually consist of a spatial neighbourhood of similar pixels, however

the k-means algorithm might consider two distant points with the same colour as

belonging to the same cluster (object). One remedy to this problem is to segment

the image using k-means with a large k value and then merge nearby segments,

using for example region merging, as explained in the next section. Choosing the

number of segments k is of course problematic as the ideal value depends on the

contents of the image.

In Fig. 4.1 one can see an image of a car (top left) together with its k-means seg-

mentation with k = 10 (top right). The k-means segmentation produces a clearly

over-segmented image, i.e. there are many separate segments that belong to the

same object.

4.1.2 Region merging

In general an image region is defined as a set consisting of several adjacent pix-

els Sonka et al. [1998]. In the language of set theory an image region is a contiguous

set of pixels.

In contrast to the k-means algorithm, region merging starts with an image that

already has a large number of small segments and then merges these into larger

ones. Region merging is typically used in situations where one has first segmented

42



Figure 4.1: An image of a car (top left) with k-means segmentation (top right) and

k-means combined with region merging (bottom left). The final segmentation is

visualised (bottom right) by colouring each segment with its average colour.

an image with a method producing an over-segmented image. That is, one has more

segments than needed and wishes to merge some of them into larger ones.

To perform the merging one needs to define some conditions Sonka et al. [1998].

First a region Ri must satisfy some appropriate homogeneity condition:

H(Ri) = TRUE, ∀i = 1, 2, . . . , S, (4.1)

where S is the number of regions. This condition could for example be that the

colours of the region’s pixels must be sufficiently similar.

Also any two adjacent regions Ri and Rj must in the end satisfy the following:

H(Ri ∪Rj) = FALSE, ∀i 6= j. (4.2)

A general outline of the region merging algorithm would be as follows:

1. Start from an initially over-segmented image (e.g. from an earlier segmentation

method) with many small regions satisfying condition (4.1). Note that this

initial segmentation usually does not satisfy condition (4.2).

43



2. Define a criterion for selecting two adjacent regions to be merged.

3. Merge all adjacent regions satisfying the merging criterion.

4. If no two adjacent regions can be merged maintaining condition (4.1) then

stop, otherwise continue with step 3. In the end, condition (4.2) should hold.

Our implementation of region merging differs slightly from the general algorithm.

The merging criterion used in PicSOM has been based on feature vectors calculated

separately for each region. More specifically we have used the HSV Colour moments

feature where we treat the values in the different colour channels as separate prob-

ability distributions. The Colour moments feature is described in more detail in

Section 4.1.5.

First we merge all regions with their neighbours, if the regions are smaller than a

given threshold and their feature vectors are sufficiently close to each other in the

feature space. After merging the smallest regions we calculate the distances between

the feature vectors of adjacent regions and place the region pairs into a priority queue

with the shortest distances in the beginning. Then we repeatedly merge the pairs

at the beginning of the queue. After each merging we insert the distances between

the new region and its neighbours in the queue. The stopping condition is fulfilled

when a pre-specified maximum number of regions has been reached.

In Fig. 4.1, the image of the car (top left) that was initially k-means segmented

(top right) has been additionally processed with region merging (bottom left). The

resulting segmentation is much better with the combined method, but it is still

not perfect. For example the ground and the wheels belong to the same segment,

although they are clearly different real-world objects. A nicer visualisation of the

final segmentation is also shown in Fig. 4.1 (bottom right). Each segment has

been coloured with its average colour. This also illustrates the reduced feature

representation of the image we would get if we represented each segment with its

Average colour value.

4.1.3 Average colour feature

The Average colour feature is a three dimensional vector containing the average

RGB values (red, green and blue) of all the pixels within a specific region. The

region can be the entire image, a segment generated from the image or one of the

five fixed zones seen in Figure 4.2. The zones represent different areas of the image:

the upper (1), the lower (5), the left hand side (2), the right hand side (4) and the

44



 1 

2  3 4 

  5 

Figure 4.2: The five predefined zones used in some feature extraction algorithms in

PicSOM.

central zone (3). When using such fixed zones the features are usually calculated

for each zone in an image and concatenated into one 15-dimensional vector.

4.1.4 Texture neighbourhood feature

Texture neighbourhood is a simple textural feature that examines the Y-values (lu-

minance) of the YIQ colour representation of the 8-neighbourhood of each inner pixel

in an image. The YIQ colour components are calculated from the RGB components

in the following manner Gonzales and Woods [1992]: Y

I

Q

 =

 0.299 0.587 0.114

0.596 −0.275 −0.321

0.212 −0.523 0.311


 R

G

B

 . (4.3)

The values of the feature vector are then the estimated probabilities P̄i that the

neighbour pixel in position i is brighter (higher Y-value) than the central pixel k.

The position indices i are designated as shown in Figure 4.3. The Y-value of the

inner pixel k is yk, its neighbour in position i has the Y-value yk,i. The probability

estimate P̄i is calculated as

P̄i =
1

ninner

ninner∑
k=1

s(yk,i, yk), where s(a, b) =

1 if a > b,

0 otherwise,
(4.4)

where ninner is the number of inner pixels. The feature vector for one image or image

segment is then

[P̄0 P̄1 . . . P̄7]
T . (4.5)

45



0 2

7

1

3 4

5 6

pixel
central

Figure 4.3: The position indices i in the 8-neighbourhood of pixel k used in the

Texture neighbourhood feature.

4.1.5 Colour moments feature

If we treat the values in the different colour channels i as separate probability dis-

tributions we can calculate the three first central moments: mean Mi, variance σi

and skewness si. Given N pixels with colour channel values ci,j, j = 1, . . . , N , the

Colour moments components are calculated as

Mi =
1

N

N∑
j=1

ci,j, (4.6)

σi =

√√√√ 1

N

N∑
j=1

(ci,j −Mi)2, and (4.7)

si = 3

√√√√ 1

N

N∑
j=1

(ci,j −Mi)3. (4.8)

The colour channels can be for example red, green and blue (RGB) or hue, saturation

and brightness value (HSV). In these cases the Colour moments feature will give a

9-dimensional feature vector.

4.2 Video features

In addition to the MPEG-7 video features that will be discussed in Section 4.5.1

we can also calculate so called temporal versions of the three still image features

introduced in the previous section, giving three new video features.

A temporal video feature is calculated as follows. Each frame of the video clip

is divided into the five spatial zones of Figure 4.2: upper, lower, left, right and

46



centre. A still image feature vector is calculated separately for each zone and then

concatenated to form frame-wise vectors. The video clip is temporally divided into

five non-overlapping video sub-clips or slices of equal length. All the frame-wise

feature vectors are then averaged within the slices to form a feature vector for each

slice. The final feature vector for the entire video clip is produced by concatenating

the feature vectors of the slices. For example using the 3-dimensional Average colour

still image feature we would get a final vector with a dimensionality of 3×5×5 = 75.

Average colour (Section 4.1.3), Texture neighbourhood (Section 4.1.4) and Colour

moments (Section 4.1.5) have all been used as basis feature extraction algorithms

to produce such temporal features. The idea is to capture how the averaged still

image features change over time in the different spatial zones.

4.3 Web-link feature

Web-link structures were studied as a collection of hierarchical objects in our ex-

periments. The database was collected from real web pages using a web robot

programme developed at our institution. A special web-link feature was developed

to incorporate the special characteristics and properties of web links.

To explain the web-link feature it is easiest to go through the stages of its calculation.

Our goal was to generate a numerical feature vector from each of the special “links”

objects in the object database of PicSOM (see Fig 2.2). A links object contains the

web address, i.e. Universal Resource Locator (URL), of the web page itself and the

URLs of the external links to other web pages that it refers to. It also contains the

URLs of embedded images.

We start by creating a separate vector for each URL contained in the links object.

Later the final feature vector for the entire links object will be created by combining

these vectors. The goal is to construct a vector that contains information of the

URL itself and also its domain and directories. So, for example, if two pages belong

to the same domain, but have different URLs, their corresponding vectors should be

closer than if they did not have a common domain. To achieve this we will prune

each URL by successively removing one directory level. Each pruned URL is also

an URL on its own. For example, if we have this URL in the database:

http://www.cis.hut.fi/research/IA/index.shtml

we would prune it into the following URLs:

http://www.cis.hut.fi/research/IA/

http://www.cis.hut.fi/research/

47

http://www.cis.hut.fi/research/IA/index.shtml
http://www.cis.hut.fi/research/IA/
http://www.cis.hut.fi/research/


http://www.cis.hut.fi/

Now each URL can be regarded as one dimension in a very high-dimensional binary

space of all valid URLs. We can then construct a vector from an URL by summing

together the binary vectors of the original URL and its pruned components. This

will be an extremely sparse vector where the nonzero components correspond to the

URLs. If we calculate such a vector from the above example and compare it to a

vector from a different URL, for example:

http://www.cis.hut.fi/research/som-research/index.shtml

they will have at least two nonzero components in common, as the URLs share the

same domain and the first directory level. Thus we have now gained the property

that URLs with same domains or directories will have vectors that are closer to each

other.

The described approach would, however, be infeasible due to the enormous dimen-

sionality of the vectors. The solution, as initially suggested in Laakso et al. [2001],

is to reduce the dimensionality of the vectors by performing random mapping Kaski

[1998] using the Secure Hash Algorithm (SHA-1) FIPS [1995].

Random mapping replaces the original high-dimensional orthogonal base with a new

base of lower dimensionality that is almost orthogonal, reducing the dimensional-

ity in a way that preserves the similarities between the vectors in an approximate

manner. The SHA-1 produces a condensed 160-bit representation of a text string

or message, called a message digest. The algorithm has its origins in cryptography

and data security, and has been designed as a one-way function. This means that it

is intended to be computationally infeasible to find the corresponding message to a

given digest, or indeed two different messages which would produce the same digest.

The latter property makes the SHA-1 useful for indexation.

The URL-wise vector is then constructed as follows:

1. The URL is pruned as described above; the original URL, the web page direc-

tory and each higher level directory up to and including the domain part.

2. We calculate the SHA-1 message digest for each of these URL parts and gen-

erate a 1024-dimensional random vector for each by looking at the first 32

bits from its SHA-1 message digest, interpreted as four 8-bit values. The first

value is used as an index in the range [0, 255], the second in [256, 511], the

third in [512, 767] and the fourth in [768, 1023]. These indices specify the four

components of the 1024-dimensional vector that are set to 1. The 1020 other

components of the random vector are set to 0.

48

http://www.cis.hut.fi/
http://www.cis.hut.fi/research/som-research/index.shtml


3. The random vectors are then weighed so that the original URL gets the largest

weight, reducing the weight for each successive directory level with the domain

having the lowest weight.

4. The weighted vectors are summed and the Euclidean length of the resulting

vector is normalised to unity. We thus get a normalised vector for each orig-

inal URL, containing components not only for the URL itself but also for its

directory parts and domain.

The final feature vector for the entire links object itself is given as the sum of

these normalised vectors calculated for each URL contained in the links object.

The URL of the web page itself is weighted in the sum so that its contribution is

more prominent than that of the linked and embedded URLs. The vector sums are

implemented according to the maximum-norm, i.e. for each component index we

choose the maximum value as the component sum. This produces approximately

the same results as normal addition because the vectors are sparse.

The resulting web-link feature vector now has the property we initially described,

i.e. that pages with URLs having the same domain or directories would have vectors

that are close. The dimensionality is also fixed at 1024 which is computationally

sound.

4.4 Textual features

Some simple but sufficient textual features have been developed for the PicSOM

CBIR system to be used in describing the contents of textual objects e.g. in mul-

timedia messages. Some of these features are shortly presented in the following

sections.

4.4.1 Character and word n-grams

The character or word n-gram feature is calculated by first extracting every n-gram,

i.e. each set of n consecutive letters or words existing in the text. The text might be

pre-processed and stemmed beforehand. So for example from the text string “Hello

World” we can extract the following character n-grams with n = 3, also known as

trigrams:

  H,  He, Hel, ell, llo, lo , o W,  Wo, Wor, orl, rld, ld , d  .

49



For each n-gram we calculate an SHA-1 message digest and form a 1024-dimensional

random vector from the first 32 bits in the same manner as with the web-link feature

(see Section 4.3). The final feature vector is the sum of all these vectors from each

n-gram in the text, normalised by their number.

4.4.2 Word histogram

The Word histogram feature is calculated in three stages. First a histogram is cal-

culated for each textual object (document) in the database giving the frequencies of

all the words in that text. Then the document-specific histograms are combined into

a single histogram or dictionary for the whole database. The final Word histogram

feature vectors are calculated for each document by comparing its word frequencies

to the dictionary, i.e. the words in the database-wide histogram. For each non-stop

word (i.e. not commonly used words such as “the”) in the dictionary we calculate the

tf-log-idf weight Salton and McGill [1983] for the document. The resulting feature

vector then gives the tf-log-idf values for all dictionary words in that document.

The tf-idf weight is commonly used in information retrieval and is given as the prod-

uct of the term frequency and the inverse document frequency. The term frequency

for a word k in one document is calculated as

tfk =
nk∑

j∈KD
nj

, (4.9)

where nk is the number of occurrences of the word k and the denominator gives

the number of occurrences of all dictionary words KD in the document. The corre-

sponding document frequency is calculated as

dfk =
Nk

N
, (4.10)

where Nk is the number of documents where the word k appears, and N is the total

number of documents. The tf-log-idf is then given as the product of Eq. (4.9) and

the log-inverse of Eq. (4.10):

tf-log-idfk =
nk∑

j∈KD
nj

log
N

Nk

. (4.11)

4.4.3 Binary keyword features

An extension of the PicSOM system allows the usage of an inverted file as an index

instead of the SOM Koskela et al. [2004]. The binary keyword feature is such a

50



feature, where the inverted file contains a mapping from words to the database

objects containing them. The inverted file contains only non-stop words which have

been stemmed using the Porter stemming algorithm Porter [1980].

When a text query q is used in PicSOM, the words of the query are stemmed and

stop words are removed. The system then removes those words that do not exist

in the inverted file and a short list of keywords Kq characterising the search query

remains. A measure Si,q is calculated for each textual object i in the database as

Si,q =
∑
k∈Kq

δi,k

Nk

, where δi,k =

1 if k exists in i,

0 otherwise,
(4.12)

and where Nk is the total number of textual objects that contain the keyword k.

The higher the value of Si,q for a specific textual object is, the closer it is deemed to

be to the search query. Using this measure we can sort a list of the most qualified

objects as used in the PicSOM algorithm (see Section 3.4).

4.5 External feature extraction

Many feature extraction methods have already been implemented outside of Pic-

SOM and these external algorithms can be used transparently through the familiar

PicSOM feature extraction interface. A new class structure for calling external pro-

grammes was added to our feature extraction framework (see Fig. 3.6). Extensions

for new external programmes can easily be added to this structure.

4.5.1 MPEG-7 content descriptions

We have previously relied only on our own self-implemented features in experiments

with PicSOM, which has made comparisons with other systems difficult. However,

recently we have adopted the standardised content descriptions for multimedia data

provided by the MPEG-7 international standard MPEG [2002] devised by the Mov-

ing Picture Experts Group (MPEG).

Many video and still image descriptors of MPEG-7 have been integrated into the

PicSOM framework as a part of the work for this thesis. These descriptors are listed

in Table 4.1, with the dimensionality of each given in parentheses. Some of these

MPEG-7 descriptors were used in the experiments described in Chapter 5.

Some features had to be rejected from use with PicSOM. For example Contour-based

shape was very non-Euclidean and could thus not be used in PicSOM where the

51



Texture descriptors Colour descriptors

Edge histogram (80) Colour layout (12)

Homogeneous texture (62) Colour structure (256)

Dominant colour (6)

Shape descriptors Scalable colour (256)

Region-based shape (35)

Video descriptors

Motion activity (11)

Table 4.1: MPEG-7 video and still image descriptors used in our experiments, di-

mensionality is given in parentheses.

vector similarity comparisons are made using the Euclidean distance. As a matter

of fact, the Euclidean distance is not always optimal even for the other MPEG-7

features, but in most cases it is good enough. Homogeneous texture seemed to work

badly with very small segments, Colour structure did not work with segments at all.

So these two methods were not used in experiments with segmented images.

Feature extraction using the standardised content descriptors provided by the

MPEG-7 international standard has already been implemented in the MPEG-7

Experimentation Model (XM) Reference Software MPEG [2001]. This software

(MPEG-7 XM) is freely downloadable from their web site∗.

To run the external XM programme a number of things need to be done beforehand.

A few temporary input files need to be set up with the appropriate information. The

segmentation data format used in PicSOM has to be converted to PBM bitmap files

– one file for each image or segment. The feature extraction output from XM is

saved in an XML-based format. This needs to be interpreted and stored in the

internal data structures of our system. All this is done automatically on-the-fly by

the MPEG7 XM class during the execution of the feature extraction driver programme.

The XML parsing is done using the open source Libxml toolkit†.

4.5.2 Mel cepstrum

The Mel-scaled cepstral coefficient (MFCC), or shortly Mel cepstrum, is an audio

feature commonly used for speech recognition, but can be used with other sounds

as well Davis and Mermelstein [1990]. Mel cepstrum is the discrete cosine transform

∗http://www.lis.ei.tum.de/research/bv/topics/mmdb/e mpeg7.html
†http://www.xmlsoft.org/

52

http://www.lis.ei.tum.de/research/bv/topics/mmdb/e_mpeg7.html
http://www.xmlsoft.org/


(DCT) applied to the logarithm of the mel-scaled filter bank energies.

The discrete sampled audio signal x̃(n), where n is the time step, is first processed

into frames, i.e. small chunks over which the signal is assumed to have stationary

spectral characteristics. We get xt(n), where t is the frame number, which is then

Fourier transformed to produce the power spectrum as St(k) = |DFT(xt(n))|2.
The filter bank {Hj(k)} is Mel-scaled, which means that it is linearly spaced at

frequencies below 1 kHz and logarithmically spaced above 1 kHz. We calculate the

energies from each filter j = 1, . . . , P , where P is the number of filters:

et(j) =
N−1∑
k=0

Hj(k)|St(k)|2, (4.13)

where N is the size of the DFT frame.

The Mel cepstrum feature is then calculated as the DCT of the logarithm of et(j):

MFCCt(i) =

√
2

P

P∑
j=1

{
log(et(j)) cos(

πi

P
(j − 0.5))

}
. (4.14)

The number of coefficients taken is usually 12, i.e. i = 1, . . . , 12, and these are

organised as a vector. Finally the total power of the signal is appended to the vector

giving a feature vector of length 13. The Mel cepstrum feature is calculated using

an external programme created by the Speech recognition group at the Laboratory

of Computer and Information Science at the Helsinki University of Technology∗.

∗http://www.cis.hut.fi/projects/speech/

53

http://www.cis.hut.fi/projects/speech/


Chapter 5

Experiments

A series of experiments were run with different types of hierarchical objects to see

the effect of relevance sharing on the retrieval performance. The objective of these

experiments is to see how well the system can find members of a certain class of

objects in a large database, for example finding images depicting horses in a database

containing a wide array of different images. In the first two experiments we compare

the results of using hierarchical objects with using only single objects. In this way we

can evaluate the advantage that hierarchical objects give us in information retrieval.

The third experiment was the TRECVID 2005 evaluations where the goal was to

compare the PicSOM system using hierarchical objects with other systems in the

area of video retrieval.

This chapter starts by discussing the issue of performance evaluation in content-

based information retrieval systems and how we have implemented that in our Pic-

SOM CBIR system. This is followed by a presentation of the following experiments

and their results:

Segmented images, with images and their segments as sub-objects using MPEG-7

still-image features.

Web-link structures, with web pages and their embedded information such as text,

images and links represented as sub-objects. The set of features is wide because

of the many different types of objects: the MPEG-7 image features, the web-

link feature and the n-gram text feature.

TRECVID 2005 automatic search, video retrieval evaluation including video clips,

key frames and text from automatic speech recognition and translation. Intel-

ligent text query processing and positive and negative class models were also

used.

54



5.1 Performance evaluation

Evaluating the performance of a content-based information retrieval system is not a

trivial task. The evaluation should compare the retrieval results of the system with

the “correct” results as specified by a human user. In target search (see Section

2.1), the human user has a target class in mind, i.e. a class of objects that he or she

wishes to find as a result of the retrieval process. The target class is seldom well

specified, even in the mind of the user, and can even evolve during the interactive

retrieval process. Furthermore, the interpretation of the contents of an object might

differ between humans; some objects might clearly belong to a certain class, while

others might be unclear.

5.1.1 Ground truth classes

A common method of evaluating performance in CBIR is to use ground truth classes.

A ground truth class is a preselected subset of the database that consists of objects

belonging to a certain semantic class. This class is usually hand picked by human

experts, for example according to some well defined agreed-upon criteria. This

reduces differences of interpretation, and the class will be fixed during the retrieval

process.

If the ground truth class is available in an electronic format, the query task can

be performed automatically, speeding up the evaluation process substantially. The

same ground truth class can also be used in different situations as long as the

database remains the same. For example when using different features or competing

retrieval methods, the ground truth class provides a neutral and impartial way to

compare the results.

5.1.2 Recall-relative precision

To evaluate the performance of a CBIR system in an exact and automated manner we

need a mathematical formulation. Such a formulation can be developed as follows.

In a given query we are looking for objects of the class C, and the system presents

the example objects for evaluation in the order {I1, I2, . . . , IN}, where N is the

total number of objects in the database. We define ht = h(It; C) as the Boolean

membership value of the object It, where t = 1, . . . , N , that is,

55



ht = h(It; C) =

1, if It ∈ C,

0, if It /∈ C.
(5.1)

It is reasonable to assume that the correctness evaluation is independent of the

order in which the objects are presented. Additionally, this formulation does not

take into account that the system usually shows more than one example object

per query round. However, that will merely cause a lag in the relevance feedback

mechanism (because the system will not get feedback after each object) and does

not qualitatively alter our reasoning. We denote the number of objects belonging

to class C with NC. The a priori probability of class C is then ρC = NC/N .

The evaluation then usually proceeds as follows:

1. The ground truth class C is selected, for example “images of cars” in an image

database.

2. The evaluation process is initialised by giving the CBIR system an object of

the class C as an example of what we are looking for. Because of this the

effective size of the ground truth class is actually NC − 1 and the a priori

probability is given by ρC = (NC − 1)/(N − 1).

3. The evaluation then proceeds with a specified number NQ of normal query

rounds where NR example objects are given by the CBIR system in each

round. Objects belonging to our selected ground truth class C are marked as

relevant and the others as non-relevant, mimicking the normal human-driven

interactive feedback process.

4. Steps 2. and 3. are then repeated so that each object in the class C is used

once as the initialising object, and the results for each time instance t =

1, . . . , NQNC are averaged over all cases. This is to assure that the results do

not depend on a specific object.

With large databases we are not always interested in finding all the objects belonging

to a specific class simply because there are so many of them. Also if we look at a

normal human-driven query situation, browsing thousands of objects to find all

objects of a given class is simply not feasible. The goal is thus often just to find a

small set of objects belonging to that class. That is why the automatic evaluation

process is run only for a specified number of query rounds, typically showing a total

of a few thousand example objects.

56



Looking at the retrieval results we then determine how accurately and how exclu-

sively the system finds the relevant objects up to different points in time. This can

be presented compactly by plotting the relative precision against the recall.

Recall R expresses how large a portion of the relevant object class has already been

shown up to time instance t = 1, 2, . . . , N − 1:

R(t) =

∑t
i=1 hi

NC − 1
∈ [0, 1]. (5.2)

Precision P indicates the accuracy of retrieval, i.e. how exclusively only relevant

objects have been retrieved:

P(t) =

∑t
i=1 hi

t
∈ [0, 1]. (5.3)

Furthermore, we use relative precision Pr(t), which equals precision divided by the

a priori probability ρC of the class:

Pr(t) =
P(t)

ρC

. (5.4)

The resulting recall–relative precision plot first shows the initial accuracy of the

CBIR system, i.e. how well it finds relevant objects with very little or no user

feedback. The evolution of the curve after that indicates how well the relevance

feedback mechanism works. With a good relevance feedback mechanism the curve

should initially rise and then turn to a slow decline when a sufficiently large portion

of the relevant objects has been shown.

5.1.3 Average precision

In the TRECVID 2005 experiments non-interpolated average precision was used.

This measure is formed by calculating the precision after each retrieved relevant

object. The precision is defined to be zero for all non-retrieved relevant objects.

The average precision measure is then obtained by averaging these precisions over

the total number of relevant objects. If the total number of relevant objects found

exceeds the specified maximum results size (2000 in TRECVID), the average preci-

sion is averaged over the maximum results size instead. Average precision gives us

a single value which makes it easy to compare the retrieval performance of different

systems.

57



5.2 Retrieval with segmented images

The PicSOM CBIR system was initially designed to index and retrieve only images,

thus using image segments in combination with the entire images was a natural

experiment to start with. The idea, as described in Section 2.2.2, is to form the

object tree with the entire image as the parent and its segments as children. We

also compare this to results with the original PicSOM system, where we considered

only the entire images, to see what effect the relevance sharing would have.

5.2.1 Experiment setting

We used 59 995 colour photographs from the Corel Gallery 1 000 000 product∗.

These were converted to the JPEG format using a tool provided by Corel. The

image sizes are 384× 256 or 256× 384 pixels. From this set we hand picked six sets

of ground truth images. The sets and their verbal criteria are as follows:

• faces, 1115 images (a priori probability 1.85%), where the main target of the

image has to be a human head which has both eyes visible and the head has

to fill at least 1/9 of the image area.

• cars, 864 images (1.44%), where the main target of the image has to be a car,

and at least one side of the car has to be completely shown in the image and

it has to fill at least 1/9 of the image area.

• planes, 292 images (0.49%), where all airplane images have been accepted.

• sunsets, 663 images (1.11%), where the image has to contain a sunset with

the sun clearly visible in the image.

• houses, 526 images (0.88%), where the main target of the image has to be

a single house, not severely obstructed, and it has to fill at least 1/16 of the

image area.

• horses, 486 images (0.81%), where the main target of the image has to be one

or more horses, shown completely in the image.

We segmented all the images in the Corel database with the k-means algorithm (see

Section 4.1.1) followed by region merging (Section 4.1.2). After that we extracted

MPEG-7 still image features from both the segments and the entire images. As

∗http://www.corel.com/

58

http://www.corel.com/


colour descriptors we used Colour layout, Scalable colour and Dominant colour, as

a shape descriptor Region-based shape, and as a texture descriptor Edge histogram.

For the images and segments we trained TS-SOMs with layer sizes 4 × 4, 16 × 16,

64 × 64 and 256 × 256 units for each feature. Every object was used 100 times to

train each layer. The experiments were run on each of the ground truth classes in

three different ways: 1) using images only, 2) using segments only, and 3) using both

images and segments combined.

The first image shown to the system was selected from the correct class. Using the

preselected ground truth classes we could automatically determine the relevance or

non-relevance of each image. We performed NQ = 50 relevance feedback rounds

with NR = 20 images shown at each iteration. The experiment was repeated so that

each ground truth image was used once as the initialiser and the results were then

averaged over all NC experiments.

5.2.2 Results

Fig. 5.1 shows the recall–relative precision graphs for the six ground truth classes.

The relative precision initially increases, but after the recall has reached a certain

value, usually around 0.1 or 0.2, it starts to decrease. The only class where this

is not true is “houses”. Its precision is much lower than in the other classes, and

therefore the recall remains much lower as well. So we never reach the “turning

point” where the curve starts to decrease.

Using only segments does invariably worse than using only images, the latter rep-

resenting the performance of the old PicSOM algorithm. Results gained from some

initial experiments using fewer features suggests that this difference is smaller when

using a smaller set of features. Increasing the number of good features usually in-

creases the precision as well, and then the segment–image differences in the curves

grow larger.

However, using segments and images combined is always clearly better than using

either one of them separately. This also shows that although the segments by them-

selves do not produce very good results, they do contain significant and distinct

information that, when combined with images, improves the query performance as

a whole.

59



faces planes

0 0.05 0.1 0.15 0.2 0.25
2

4

6

8

10

12

14

16

recall

re
la

tiv
e 

pr
ec

is
io

n

combined
segments only
images only

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

40

recall
re

la
tiv

e 
pr

ec
is

io
n

combined
segments only
images only

houses sunsets

0 0.01 0.02 0.03 0.04 0.05
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

recall

re
la

tiv
e 

pr
ec

is
io

n

combined
segments only
images only

0 0.1 0.2 0.3 0.4 0.5
10

15

20

25

30

35

40

45

recall

re
la

tiv
e 

pr
ec

is
io

n

combined
segments only
images only

horses cars

0 0.05 0.1 0.15 0.2 0.25
2

4

6

8

10

12

14

16

recall

re
la

tiv
e 

pr
ec

is
io

n

combined
segments only
images only

0 0.05 0.1 0.15 0.2 0.25
2

4

6

8

10

12

14

16

recall

re
la

tiv
e 

pr
ec

is
io

n

combined
segments only
images only

Figure 5.1: Recall–relative precision graphs of the segmented images experiment.

60



5.3 Retrieval with web-link structures

Web pages are basically text files with formatting and linking commands written

in HyperText Markup Language (HTML)∗. The layout and graphics that one sees

in a web browser are rendered according to these commands. Images are stored

separately on the web server, but can be embedded in a web page by using a special

HTML command that refers to them. Some web pages may have intricate pro-

grammed functionality, for example written in Perl, Java or PHP, but these are

executed on the web server and the end result is still always plain HTML. One ex-

ception to this is JavaScript which is executed on the client-side, in the web browser,

but this has no significance to our discussion.

5.3.1 Database collection

We created a database of web pages by collecting all the pages contained in our

laboratory Internet site on the www.cis.hut.fi server. This resulted in a database

of a little over 7000 HTML pages and almost 2900 images. For the gathering of web

pages we used the ImgRobot programme, originally created by Olli-Pekka Rinta-

Koski Rinta-Koski [1999], and later modified by Sami Laakso Laakso [2000] and

myself. ImgRobot is a C++ programme that collects web pages starting from a

given initial page. It traverses the hyperlink structure by following the links of the

web pages until no new pages can be found within the specified domain.

The HTML files, images and other embedded objects are downloaded by the

ImgRobot programme and stored in their native formats in the PicSOM database.

The embedded objects are stored as separate sub-objects of the web page object in

the database (see Section 2.2.4). The links in the web page are collected and stored

in a special “links” object.

From the images we extracted MPEG-7 still image features. As colour descriptors

we used Colour layout and Scalable colour, as shape descriptor Region-based shape,

and as texture descriptor Edge histogram. For the web links we calculated the web-

link feature, described in Section 4.3. For the text contents of the HTML files we

calculated the n-gram feature described in Section 4.4.1 with n = 3.

∗http://www.w3.org

61

www.cis.hut.fi
http://www.w3.org


tourist faces

0 0.2 0.4 0.6 0.8 1
2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

recall

re
la

tiv
e 

pr
ec

is
io

n

MPEG7 only
MPEG7+weblink
MPEG7+trigram
MPEG7+weblink+trigram

0 0.2 0.4 0.6 0.8 1

6

7

8

9

10

11

recall

re
la

tiv
e 

pr
ec

is
io

n

MPEG7 only
MPEG7+weblink
MPEG7+trigram
MPEG7+weblink+trigram

Figure 5.2: Recall–relative precision graphs for web-link experiment.

5.3.2 Experiment setting

Two ground truth classes containing images as the target type were selected manu-

ally:

• tourist, 907 images (a priori 31%), from a conference or vacation and mainly

outdoor tourist-type photography with attractions like monuments and build-

ings.

• faces, 253 images (8.6%), such that the main target was a human head.

We trained a SOM for each feature type, four from the MPEG-7 features of the

images, one from the web-link feature of the links, and one from the trigram feature

of the text contents. The sizes of the SOM layers were 4 × 4, 16× 16, 64 × 64 and

256× 256 units. Every object was used 100 times to train each SOM layer.

The experiments were run in four ways: 1) using only the MPEG-7 image features,

and then the MPEG-7 features combined with 2) the web-link feature, 3) the trigram

feature, and 4) both non-image features. Each query was initialised by showing one

image of the correct class. After this NQ = 50 query rounds were performed with

NR = 20 example images at each round. The experiment was repeated so that each

ground truth image was used as the initialiser once, and the results were averaged.

5.3.3 Results

In Fig. 5.2 one can see the recall–relative precision graphs for the two ground truth

classes. In all plots the precision initially increases and then begins to decline when

62



a clear majority of the relevant images have been found. The additional non-image

features can be seen to increase the precision of the retrieval in all three combina-

tions. In the combined cases the recall level where the precision starts to decline is

also substantially larger. Using non-visual features seems to bring the final recall to

unity, or at least very close to it. Thus almost all relevant images have been found

when only about one third of the images have been retrieved.

The overall precision in the faces class is better. This is probably because this

class contains mostly a very narrow class of mug-shot-type photos that probably

have very similar features. The tourist class is a much wider class including tourist

attractions, monuments and cityscapes.

The differences between the different non-image feature combinations are relatively

small. In the faces class, the combination of the web-link and trigram feature seems

to be the best overall, although by a very small margin. In the tourist class the

picture is more varied, trigram reaches the highest relative precision value, peaking

around a recall of 0.2. Otherwise differences are minimal.

5.4 TRECVID 2005 automatic search

The PicSOM group participated for the first time in the NIST TRECVID video

retrieval evaluation experiments for the TRECVID 2005 workshop Koskela et al.

[2005]. Our main objective was to implement all the necessary functionality into

PicSOM to be able to use the provided TRECVID data and return results in the

required XML format. We also wanted to combine multimodal features with a text

query and both positive and negative class models. The parallel TS-SOMs of the

PicSOM system were augmented with inverted file indices created from automatic

speech recognition and machine translation (ASR/TR) data provided by NIST.

The TRECVID evaluations consisted of many different tasks, of which only the

fully automatic search tasks will be described here. The automatic search tasks

were run with the PicSOM system by using predefined search topics and no user

interaction. The result of each run was a list of 2000 video clips ordered by their

deemed relevance to the search topic. To our delight, the PicSOM results compared

very well with the other systems taking part in the TRECVID 2005 evaluation.

5.4.1 Video multi-part structure

The videos in the supplied TRECVID 2005 database were several hour long segments

of news broadcasts in three languages: Arabic, Chinese (Mandarin) and English.

63



ke
yf

ra
m

e 
n

story 1 . . . story lstory 2
sh

ot
 1

sh
ot

 2

sh
ot

 m...

video file

au
di

o

te
xt

ke
yf

ra
m

e 
1

...

Figure 5.3: The hierarchical tree generated from the TRECVID 2005 videos.

The long videos were divided into “stories”, generally 1-2 minutes long, containing

one news story or some other appropriate segment. These were held as sub-objects

of the entire videos in a hierarchical object tree. The stories were further segmented

into short “shots” of a few seconds each, containing one internally homogeneous

scene. For example, an instantaneous change of the camera angle would usually

indicate the beginning of a new shot, while a slow panning of the camera might

be contained in the same shot. The shots belong to a new layer of sub-objects

as children to the stories. From the individual shots, audio clips and key frame

images were extracted as sub-objects. Finally textual content, created by automatic

speech recognition and machine translation from the non-English languages was also

added. The speech recognition and translation (ASR/MT) outputs were generated

by off-the-shelf products and provided by NIST. This entire hierarchical structure

is depicted in Fig. 5.3.

The predefined search topics were given with a textual instruction, a set of example

images and a set of example videos. These were composed as a hierarchical object

as shown in Fig. 5.4, and could thus easily be inserted in the system. Appropriate

features were then calculated from the given objects.

5.4.2 Semantic class models

Some semantic classifications of the video clips in the training set were provided by

NIST, for example a list of clips showing an explosion or fire. A very informative

64



au
di

o

te
xt

ke
yf

ra
m

e 
1

...

ke
yf

ra
m

e 
n

im
ag

e 
1

im
ag

e 
2

im
ag

e 
l

...

vi
de

o 
1

vi
de

o 
2

vi
de

o 
m

...

te
xt

search topic

Figure 5.4: The hierarchical tree of a search topic used with the TRECVID 2005

database.

visualisation can be gained by mapping the feature vectors of the objects belonging

to a specific semantic class as impulses on the SOM surfaces. This gives insight

into how well a certain feature can cluster the vectors associated with that semantic

concept. When used in the retrieval, the sign of the impulses can be adjusted to

represent relevant (positive) and non-relevant (negative) concepts. The sparse value

fields on the maps are low-pass filtered as usual to spread the information. This

also helps visual inspection as the marked areas become larger and more uniform.

An example of such a mapping of the concept explosion/fire on the MPEG-7 Colour

layout SOM can be found in Figure 5.5. Areas corresponding to objects of the

concept are shown in shades of grey. As can be seen, the objects cluster quite well

on the map into nearby locations.

Theoretically the class distributions must be considered as estimates of the true

distributions as they are finite and mapped on to the discrete two-dimensional grids

of the SOMs, while the original feature space usually has a much higher dimension-

ality. The class model idea was initially used in PicSOM for comparing different

features Laaksonen et al. [2003] and for image group annotation in Koskela and

Laaksonen [2005].

65



Figure 5.5: The explosion/fire class model mapped on the MPEG-7 Colour layout

SOM, adapted from Koskela et al. [2005].

5.4.3 Text query processing

The ASR/MT output of non-English videos included additional information, such as

if a certain proper name was a person, location or organisation. Of these we used the

person and location information to create an index of “known” proper names and

whether they referred to persons or locations. Furthermore, discriminative words

were picked up from the ontology descriptions (provided by NIST) to create a word–

concept index. For example the word “minister” would map to the semantic class

government leader. This information was used in processing the text queries in the

automatic search experiments before being used in the retrieval.

Proper names were initially identified in the text query by recognising single or

consecutive words with a capitalised first letter. These proper names were then

compared with the index of known proper names by using the Levenshtein dis-

tance Black [1999]. If the index name with the shortest distance was sufficiently

close to the query name then the query name was deemed to be a misspelled ver-

sion of the index name. The tolerance was dependent on the length of the query

name, so that for short names a shorter Levenshtein distance was needed for ac-

ceptance. The identified misspelled words were corrected and the query string was

cleaned, i.e. lowercased, dots and commas removed, and unnecessary text such as

the preceding “Find shots of” discarded.

Additionally, the word–concept index was used to identify words that might indicate

useful class models. The presence of negative words, like a preceding “not” negated

the class model. Finally if a person’s name was identified previously, the class models

66



face and person were added automatically.

Table 5.1 shows the transformations that would be made to this example query

string: “Find shots of Omar Karammi, the former prime minister of Lebannon”

(spelling errors intentional). The first row in the table shows the original string,

and the second row the identifications found by the system. “Omar Karammi” is

identified as a person and “Lebannon” as a location (even though they are mis-

spelled). The identification WORD-CONCEPT under the word “minister” signifies

that the word has been found in the word–concept index. The third row shows the

actions or transformations performed. The initial “Find shots of” is deleted and

the misspelled names are corrected. The corrections are marked by CORR with the

corrected version in parenthesis. The fourth row shows the class models added, the

sign before the class name identifies a positive or negative class model. The iden-

tified person automatically adds the class models face and person and “minister”

adds government leader. The last row shows the final processed text, capital letters,

dots and commas removed, that was processed with the inverse file.

original Find shots of Omar Karammi, the former prime minister of Lebannon

identification PERSON WORD-CONCEPT LOCATION

actions DELETE CORR(Omar Karami) CORR(Lebanon)

classes +face, +person +government leader

processed omar karami the former prime minister of lebanon

Table 5.1: An example of text query processing in automatic search.

5.4.4 Experiment setting

The experiments were run automatically as batch runs with 24 different search

topics, ranging from finding a specific person to specific situations or events (e.g. an

object burning or exploding). In Fig. 5.6 an example query taken from the actual

TRECVID 2005 search topics is shown. The entire text query was “Find shots

of Mahmoud Abbas, also known as Abu Mazen, prime minister of the Palestinian

Authority”. Two example images were given and nine video segments, of which only

two are represented in the figure by their key frames.

In total the video shots were indexed using four video features (the MPEG-7 Mo-

tion activity and temporal versions of Average colour, Colour moments and Texture

neighbourhood), three still image features from MPEG-7 (Colour layout, Edge his-

togram, and Homogeneous texture) and one audio feature (Mel cepstrum). These

features were all explained in Chapter 4. The sizes of the SOM layers were 4 × 4,

16×16, 64×64 and 256×256 units. Only one query round was performed returning

2000 video objects.

67



5.4.5 Results

The average precision for each search topic, numbered from 149 to 172, is shown

in Fig. 5.7 compared to the median and best results. For most topics the PicSOM

system performs on or above the median. In only one case the result remains clearly

under the median, whereas in seven cases it is clearly above it. By calculating

the mean average precision over all topics we get an overall score for the retrieval

accuracy. If we take only the best result from each research group into account,

the PicSOM system ranked third out of 9 groups. That is a very good achievement

taking into account that this was our first year in TRECVID and our main goal was

just to make our system compatible with the evaluation interfaces.

text

search topic #154

image 1 image 2 video 1 video 2

Find shots of Mahmoud Abbas,
also known as Abu Mazen...

Figure 5.6: An example search topic from TRECVID 2005.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

   Interpolated            Precision at
   recall precision           n shots
    0.0  0.5055               5  0.3250
    0.1  0.2406              10  0.2833
    0.2  0.1701              15  0.2806
    0.3  0.0973              20  0.2583
    0.4  0.0705              30  0.2375
    0.5  0.0493             100  0.1842
    0.6  0.0242             200  0.1458
    0.7  0.0057             500  0.0983
    0.8  0.0044            1000  0.0731
    0.9  0.0000
    1.0  0.0000
   

TRECVID 2005: search results
 
Run ID:                             PicSOM-F2
Processing type:                    automatic
System training type:               A (trained on common devel.data/annotation)
Condition:                          2 (as defined by the participant)
Priority:                           3

            Across 24 test topics (149-172)
   
         Total relevant shots:   8395
Total relevant shots returned:   1755
   
Mean(prec. @ total relevant shots): 0.000
           Mean(average precision): 0.083
   

150 155 160 165 170
Topic number

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 p
re

ci
sio

n

Run score (dot) versus median (---) versus best (box) by topic

150 155 160 165 170
Topic number

0

5

10

15

20

El
ap

se
d 

se
ar

ch
 ti

m
e 

(m
in

s.)

Elapsed search time by topic

Figure 5.7: The average precision for each search topic. The score for PicSOM is

shown (dot) versus the median (dotted line) and the best result (box).

68



Chapter 6

Conclusions and future prospects

6.1 Conclusions

This thesis started by discussing the increasing amounts of data that we produce and

have to understand and use efficiently in the modern world. The goal of the research

discussed here is to reduce this continuous stream of information into something that

is manageable by humans by using content-based information retrieval methods.

The purpose is to create a semiautomatic search tool to aid humans in finding

relevant information quickly. This problem will probably be one of the defining

questions in information science of the 21st century. Although this problem was in

no way solved in this thesis, I would like to think that we have taken a step forward

by slightly improving existing CBIR methods.

The novel idea in this thesis was to take advantage of known relationships between

different data objects in content-based information retrieval. This was done by using

hierarchical data objects where each object can have parents and children. In the

relevance feedback process these hierarchies were used for relevance sharing, so that

objects deemed relevant in a query would influence related objects as well.

Many examples of the application of this idea were given by using the PicSOM CBIR

system: images with their segments, videos with image frames and audio, web-link

structures and multi-part messages. In the case of segmented images and linked web

pages we presented experimentation results showing the clear advantage of using

hierarchical objects over using just plain objects. A working multi-part message

database has been created Muurinen [2003], but we do not yet have proper testing

data to be able to produce any quantitative results. Video and audio experiments

have been carried out in the framework of the TRECVID 2005 evaluations producing

results that compared well with other participating retrieval systems.

69



The bulk part of the underlying and “hidden” work of this thesis was in implement-

ing new extensions to the existing systems: the new relevance feedback method

for hierarchical objects, integrating the MPEG-7 features into the PicSOM frame-

work, implementing the storing of hierarchical objects, modifying the ImgRobot web

traversing tool, and diverse minor tasks.

6.2 Future prospects

As CBIR is both computationally heavy and also very user-centric in its nature, there

are two areas where improvements can be made. First, the internal processing, such

as object similarity and the usage of relevance feedback. Second, the external user

interface for interactive query and browsing. This thesis has mostly concentrated

on the first area, but it is recognised that improvements in the latter can also have

a large impact. What is the use of fancy indexing techniques if the end user cannot

benefit from them?

Increased control and ability to steer the query process in an intuitive manner would

be obvious improvements to the user interface. For example being able to select

interesting image segments or other areas of interest in the user interface of PicSOM

could be useful. The relevance given to the image could then be focused to selected

segments and not given equally to all segments as currently is the case. A problem

with this, though, is that the automatic segmentation algorithms seldom produce

results that correspond to the human understanding of the image. This situation

could be improved by using human driven semi-automatic segmentation, or even

combining it with the focusing approach. The user could then somehow help the

system along by specifying different points, or interesting areas in an image. For

example, by picking out a car in an image by drawing its borders, the system would

try to find similar segments with similar properties in other images.

Internally many improvements could still be made to the PicSOM system. More

and better feature extraction methods should be implemented and experimented

with. For many features the Euclidean distance metric is not always optimal. If this

could be resolved some way, it might improve retrieval results. Alternative indexing

techniques should also be tried out.

Although our method is taking advantage of relations between the database objects,

there are often other higher level relationships that are not used. For example in

the case of multi-part messages like e-mails, there often exist long chains of replies.

The messages and their replies are closely linked because they discuss the same

70



subjects, but this information is currently not explicitly used. Another example is

the web-link structure. Although our current implementation uses links objects that

incorporate the links and domain and directory levels of URLs, the web of links is

not used explicitly. Therefore pages that are not directly linked or share similar

links do not benefit from this information.

Another interesting viewpoint is the semantic web paradigm Berners-Lee et al.

[2001], where semantic information is explicitly embedded into web documents. The

hierarchical object structures used in PicSOM incorporate certain forms of semantic

knowledge in an automated way, which can be seen to complement the semantic

web idea. This could reduce the manual annotation work normally required when

creating the semantic web. On the other hand, future developments in our system

could utilise semantic web information as an additional feature in the hierarchical

structure.

Further experimenting with different types of media is also an interesting topic.

Video and multi-media messages seem to be especially promising areas. Combining

content-based features with textual annotations would also be interesting. In some

cases, annotations such as keywords could be available only for a subset of the

database objects. The CBIR system should then be able to take advantage of this

information as well.

The above ideas are only the tip of the iceberg when it comes to possible future

improvements. So there are a lot of things that can be done in the coming years.

In addition to the mentioned incremental improvements to existing methods, also

more fundamental research must be made if we are ever to bridge the semantic gap.

This is perhaps our ultimate, possibly unachievable, goal in this research area.

71



Bibliography

R. Bellman. Adaptive control processes: a guided tour. Princeton University Press,

Princeton, NJ, USA, 1961.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,

284(5):28–37, 2001.

P. E. Black. Algorithms and theory of computation handbook. In NIST Dictionary

of Algorithms and Data Structures. CRC Press LLC, 1999. http://www.nist.

gov/dads/HTML/Levenshtein.html.

S. Brandt. Use of shape features in content-based image retrieval. Master’s thesis,

Laboratory of Computer and Information Science, Helsinki University of Technol-

ogy, 1999.

C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: Image segmenta-

tion using expectation-maximization and its application to image querying. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(8):1026–1038, Au-

gust 2002.

M. L. Cascia, S. Sethi, and S. Sclaroff. Combining textual and visual cues for

content-based image retrieval on the world wide web. In IEEE Workshop on

Content-Based Access of Image and Video Libraries, pages 24–28, Santa Barbara,

CA, USA, 1998.

P. Castro and R. Muntz. Using context to assist in multimedia object retrieval.

In ACM Workshop on Multimedia Intelligent Storage and Retrieval Management,

Orlando, FL, USA, October 1999.

N.-S. Chang and K.-S. Fu. Query-by-Pictorial-Example. IEEE Transactions on

Software Engineering, 6(6):519–524, November 1980.

J.-Y. Chen, C. A. Bouman, and J. P. Allebach. Fast image database search using

tree-structured VQ. In Proceedings of IEEE International Conference on Image

72

http://www.nist.gov/dads/HTML/Levenshtein.html
http://www.nist.gov/dads/HTML/Levenshtein.html


Processing (ICIP ’97), volume 2, pages 827–830, Santa Barbara, CA, USA, Oc-

tober 1997.

Y. Chen and J. Z. Wang. Looking beyond region boundaries: Region-based image

retrieval using fuzzy feature matching. In Multimedia Content-Based Indexing and

Retrieval Workshop, September 24-25, INRIA Rocquencourt, France, September

2001.

I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, and P. N. Yianilos. The

Bayesian image retrieval system, PicHunter: Theory, implementation and psy-

chophysical experiments. IEEE Transactions on Image Processing, 9(1):20–37,

January 2000.

C. Date. Introduction to Database Systems. Addison Wesley, New York, 8 edition,

2003.

S. B. Davis and P. Mermelstein. Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences. In A. Waibel and

K. Lee, editors, Readings in speech recognition, pages 65–74. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1990.

A. Dimai. Invariant scene description based on salient regions for preattentive sim-

ilarity assessment. In 10th International Conference on Image Analysis and Pro-

cessing (ICIAP), September 27-29, pages 957–962, Venice, Italy, September 1999.

J. P. Eakins. Towards intelligent image retrieval. Pattern Recognition, 35(1):3–14,

January 2002.

FIPS. Secure hash standard. In Federal Information Processing Standards Publica-

tion 180-1. NIST, 1995. http://www.itl.nist.gov/fipspubs/fip180-1.htm.

R. C. Gonzales and R. E. Woods. Digital Image Processing. Addison-Wesley, New

York, 1992.

A. Gupta and R. Jain. Visual information retrieval. Communications of the ACM,

40(5):70–79, May 1997.

T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. WEBSOM—self-organizing

maps of document collections. In Proceedings of WSOM’97, Workshop on Self-

Organizing Maps, Espoo, Finland, June 4-6, pages 310–315. Helsinki University

of Technology, Neural Networks Research Centre, Espoo, Finland, 1997.

73

http://www.itl.nist.gov/fipspubs/fip180-1.htm


H. Hotelling. Analysis of a complex of statistical variables into principal components.

Journal of Educational Psychology, 24:417–441, 1933.

S. Kaski. Dimensionality reduction by random mapping: Fast similarity method

for clustering. In Proceedings of IEEE International Joint Conference on Neural

Networks (IJCNN98), volume 1, pages 413–418, Anchorage, AK, USA, May 1998.

M. Kherfi and D. Ziou. Image retrieval from the world wide web: Issues, techniques

and systems. ACM Computing Surveys, 36(1):35–67, 2004.

T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information

Sciences. Springer-Verlag, Berlin, third edition, 2001.

P. Koikkalainen. Progress with the tree-structured self-organizing map. In A. G.

Cohn, editor, 11th European Conference on Artificial Intelligence, pages 211–215,

Amsterdam, The Netherlands, August 1994. European Committee for Artificial

Intelligence (ECCAI), John Wiley & Sons, Ltd.

P. Koikkalainen and E. Oja. Self-organizing hierarchical feature maps. In Proceedings

of International Joint Conference on Neural Networks, volume II, pages 279–284,

San Diego, CA, USA, 1990.

M. Koskela. Interactive Image Retrieval using Self-Organizing Maps.

PhD thesis, Laboratory of Computer and Information Science, Helsinki

University of Technology, November 2003. Available online at:

http://lib.hut.fi/Diss/2003/isbn9512267659/.

M. Koskela. Content-based image retrieval with self-organizing maps. Master’s

thesis, Laboratory of Computer and Information Science, Helsinki University of

Technology, 1999.

M. Koskela and J. Laaksonen. Semantic annotation of image groups with Self-

Organizing Maps. In Proceedings of 4th International Conference on Image and

Video Retrieval (CIVR 2005), pages 518–527, Singapore, July 2005.

M. Koskela, J. Laaksonen, and E. Oja. Inter-query relevance learning in PicSOM

for content-based image retrieval. In Supplementary Proceedings of 13th Interna-

tional Conference on Artificial Neural Networks / 10th International Conference

on Neural Information Processing (ICANN/ICONIP 2003), pages 520–523, Istan-

bul, Turkey, June 2003.

M. Koskela, J. Laaksonen, and E. Oja. Use of image subset features in image

retrieval with self-organizing maps. In Proceedings of 3rd International Conference

74



on Image and Video Retrieval (CIVR 2004), pages 508–516, Dublin, Ireland, July

2004.

M. Koskela, J. Laaksonen, M. Sjöberg, and H. Muurinen. PicSOM experiments in

TRECVID 2005. In Proceedings of the TRECVID 2005 Workshop, pages 262–270,

Gaithersburg, MD, USA, November 2005.

S. Laakso. Implementation of content-based www image search engine. Master’s

thesis, Laboratory of Computer and Information Science, Helsinki University of

Technology, 2000.

S. Laakso, J. Laaksonen, M. Koskela, and E. Oja. Self-organizing maps of web link

information. In N. Allinson, H. Yin, L. Allinson, and J. Slack, editors, Advances

in Self-Organising Maps, pages 146–151, Lincoln, England, June 2001. Springer.

J. Laaksonen, M. Koskela, S. Laakso, and E. Oja. Self-organizing maps as a rel-

evance feedback technique in content-based image retrieval. Pattern Analysis &

Applications, 4(2+3):140–152, June 2001.

J. Laaksonen, M. Koskela, and E. Oja. PicSOM—Self-organizing image retrieval

with MPEG-7 content descriptions. IEEE Transactions on Neural Networks, Spe-

cial Issue on Intelligent Multimedia Processing, 13(4):841–853, July 2002.

J. Laaksonen, M. Koskela, and E. Oja. Probability interpretation of distributions on

SOM surfaces. In Proceedings of Workshop on Self-Organizing Maps (WSOM’03),

pages 77–82, Hibikino, Kitakyushu, Japan, September 2003.

D. Li, N. Dimitrova, M. Li, and I. K. Sethi. Multimedia content processing through

cross-modal association. In MULTIMEDIA ’03: Proceedings of the eleventh ACM

international conference on Multimedia, pages 604–611, New York, NY, USA,

2003. ACM Press.

P. Lyman and H. R. Varian. How Much Information. http://www.sims.berkeley.

edu/how-much-info-2003/, 2003.

W. Y. Ma and B. S. Manjunath. NeTra: a toolbox for navigating large image

databases. Multimedia Systems, 7(3):184–198, 1999.

R. Miller. Response time in man-computer conversational transactions. In AFIPS

Spring Joint Computer Conference, pages 267–277, Atlantic City, NJ, USA, 1968.

MPEG. MPEG-7 Overview (version 8.0), July 2002. ISO/IEC JTC1/SC29/WG11

N4980.

75

http://www.sims.berkeley.edu/how-much-info-2003/
http://www.sims.berkeley.edu/how-much-info-2003/


MPEG. MPEG-7 visual part of the eXperimentation Model (version 9.0), January

2001. ISO/IEC JTC1/SC29/WG11 N3914.

S. Mukherjea, K. Hirata, and Y. Hara. Amore: A world wide web image retrieval

engine. World Wide Web, 2(3):115–132, 1999.

H. Muurinen. Implementing Support for Content-Based Multimedia Message Re-

trieval in the PicSOM System, 2003. Special assignment, Laboratory of Computer

and Information Science, Helsinki University of Technology.

J. Nielsen. User interface directions for the web. Communications of the ACM, 42

(1):65–72, 1999.

M. Ortega-Binderberger, S. Mehrotra, K. Chakrabarti, and K. Porkaew. WebMARS:

A multimedia search engine. In Proceedings of the SPIE Electronic Imaging 2000:

Internet Imaging, pages 314–321, San Jose, CA, 2000.

J. Pakkanen. Sisältöpohjainen haku paperivirhetietokannassa PicSOM-järjestelmän

avulla (in Finnish). Master’s thesis, Laboratory of Computer and Information

Science, Helsinki University of Technology, 2002.

R. W. Picard. A society of models for video and image libraries. IBM Systems

Journal, 35(3/4):292–312, 1996.

M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

R. Rautkorpi. Shape features in the classification and retrieval of surface defect im-

ages. Master’s thesis, Laboratory of Computer and Information Science, Helsinki

University of Technology, 2005.

J. M. Rehg, K. P. Murphy, and P. W. Fieguth. Vision-based speaker detection using

bayesian networks. In IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’99), volume 2, pages 110–116, 1999.

O.-P. Rinta-Koski. WWW-kuvahakurobotti (in Finnish), 1999. Special assignment,

Laboratory of Computer and Information Science, Helsinki University of Technol-

ogy.

Y. Rui, T. S. Huang, M. O. , and S. Mehrotra. Relevance feedback: A power tool

in interactive content-based image retrieval. IEEE Transactions on Circuits and

Systems for Video Technology, 8(5):644–655, September 1998.

76



Y. Rui, T. S. Huang, and S.-F. Chang. Image retrieval: Current techniques, promis-

ing directions, and open issues. Journal of Visual Communication and Image

Representation, 10(1):39–62, March 1999.

M. Rummukainen. Implementing multimedia retrieval markup language for image

retrieval systems’ comparison. Master’s thesis, Laboratory of Computer and In-

formation Science, Helsinki University of Technology, 2003.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. Com-

puter Science Series. McGraw-Hill, New York, 1983.

M. Sjöberg, J. Laaksonen, and V. Viitaniemi. Using image segments in PicSOM

CBIR system. In Proceedings of 13th Scandinavian Conference on Image Analysis

(SCIA 2003), pages 1106–1113, Halmstad, Sweden, June/July 2003.

J. R. Smith and S.-F. Chang. VisualSEEk: A fully automated content-based image

query system. In Proceedings of the 4th International ACM Multimedia Conference

(ACM MM ’96), pages 87–98, Boston, MA, USA, November 1996.

M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and Machine Vision.

Brooks/Cole Publishing Company, Pacific Grove, CA, USA, 2nd edition, 1998.

D. Squire, H. Müller, and W. Müller. Improving response time by search pruning in a

content-based image retrieval system, using inverted file techniques. In Proceedings

of IEEE International Workshop on Content-Based Access of Image and Video

Libraries (CBAIVL ’99), pages 45–49, Fort Collins, CO, USA, June 1999.

TASI. A review of image search engines, 2004. http://www.tasi.ac.uk/

resources/searchengines.html.

S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic press, San

Diego, CA, USA, 1999.

A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.

V. Viitaniemi. Image segmentation in content-based image retrieval. Master’s thesis,

Laboratory of Computer and Information Science, Helsinki University of Technol-

ogy, 2002.

H. D. Wactlar, T. Kanade, M. A. Smith, and S. M. Stevens. Intelligent access to

digital video: Informedia project. IEEE Computer, 29(5):46–52, 1996.

77

http://www.tasi.ac.uk/resources/searchengines.html
http://www.tasi.ac.uk/resources/searchengines.html


J. Z. Wang, J. Li, and G. Wiederhold. SIMPLIcity: Semantics-sensitive integrated

matching for picture libraries. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 23(9):947–963, 2001.

78


	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Thesis organisation

	2 Content-based information retrieval and hierarchical objects
	2.1 Content-based information retrieval
	2.1.1 Object similarity
	2.1.2 Feature extraction
	2.1.3 Database indexing
	2.1.4 The semantic gap
	2.1.5 Query by example, relevance feedback

	2.2 Multimodal information, hierarchical objects
	2.2.1 Multi-part hierarchical objects
	2.2.2 Segmented images
	2.2.3 Video and audio content
	2.2.4 Web-link structures
	2.2.5 Multimedia messages


	3 PicSOM CBIR system
	3.1 SOM algorithm
	3.2 Tree-structured SOMs
	3.3 PicSOM architecture
	3.4 Implementing hierarchical relevance feedback in PicSOM
	3.4.1 Original algorithm
	3.4.2 Using hierarchical objects

	3.5 Feature extraction framework
	3.6 User interface

	4 Implementation
	4.1 Image segmentation and features
	4.1.1 k-means segmentation
	4.1.2 Region merging
	4.1.3 Average colour feature
	4.1.4 Texture neighbourhood feature
	4.1.5 Colour moments feature

	4.2 Video features
	4.3 Web-link feature
	4.4 Textual features
	4.4.1 Character and word n-grams
	4.4.2 Word histogram
	4.4.3 Binary keyword features

	4.5 External feature extraction
	4.5.1 MPEG-7 content descriptions
	4.5.2 Mel cepstrum


	5 Experiments
	5.1 Performance evaluation
	5.1.1 Ground truth classes
	5.1.2 Recall-relative precision
	5.1.3 Average precision

	5.2 Retrieval with segmented images
	5.2.1 Experiment setting
	5.2.2 Results

	5.3 Retrieval with web-link structures
	5.3.1 Database collection
	5.3.2 Experiment setting
	5.3.3 Results

	5.4 TRECVID 2005 automatic search
	5.4.1 Video multi-part structure
	5.4.2 Semantic class models
	5.4.3 Text query processing
	5.4.4 Experiment setting
	5.4.5 Results


	6 Conclusions and future prospects
	6.1 Conclusions
	6.2 Future prospects


