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Tutkinto-ohjelma: Teknillinen fysiikka ja matematiikka

Vastuuopettaja: Prof. Harri Ehtamo

Ohjaaja: TkT Tapani Raiko

Koneoppimisessa halutaan monesti kuvata annettu data käyttäen parametrista
mallia, jolloin mallin parametrit voidaan päätellä datasta käyttäen bayesilaista
päättelyä. Valitettavasti päättelyä on harvoin mahdollista tehdä turvautumatta
jonkinlaisiin approksimatiivisiin menetelmiin. Tässä työssä tarkastellaan erästä
tällaista menetelmää nimeltä variaatio-Bayes-oppiminen.
Monien suosittujen mallien tapauksessa VB-oppiminen on mahdollista toteuttaa
käyttäen VB EM -algoritmia (variational Bayesian expectation maximization).
On kuitenkin olemassa monia mielenkiintoisia malleja, joihin VB EM -algoritmia
ei voida soveltaa, jolloin on käytettävä yleisempiä epälineaarisia optimointimene-
telmiä kuten gradienttimenetelmää. Viime aikoina on huomattu, että gradientti-
pohjaisten menetelmien tehokkuutta voidaan parantaa tulkitsemalla parametria-
varuus kaareutuneeksi Riemannin monistoksi. Tämä ajatus johtaa luonnolliseen
konjugaattigradienttialgoritmiin (natural conjugate gradient, NCG).
NCG-algoritmia on toistaiseksi onnistuneesti käytetty monimutkaisen
epälineaarisen tila-avaruusmallin oppimiseen. Tähän malliin ei kuitenkaan
voida soveltaa VB EM -algoritmia ja siten algoritmien vertailu ei ole ollut
mahdollista. Tässä työssä tämä vertailu suoritetaan käyttäen yksinkertaisempaa
Gaussin mikstuurina tunnettua mallia. Tätä varten työssä johdetaan ja implemen-
toidaan NCG-algoritmi Gaussin mikstuuriin sovellettuna. Algoritmeja vertaillaan
empiirisesti käyttäen sekä keinotekoista dataa että tosielämän kuvadataa. Lisäksi
tutkitaan VB EM:n nopeutusta käyttäen pattern search -menetelmää.
Koetulosten perusteella voidaan todeta, että NCG on kilpailukykyinen VB EM:n
kanssa, vaikkakin tuloksissa on suuria eroja eri datajoukkojen välillä. Erityisesti
eräissä tapauksissa NCG näyttäisi löytävän parempia optimeita kuin muut algorit-
mit. Tutkituista algoritmeista pattern search -menetelmällä nopeutettu VB EM
osoittautui kuitenkin yksinkertaisuutensa ja tasavahvan suorituskykynsä vuoksi
parhaaksi vaihtoehdoksi Gaussin mikstuurin variaatio-oppimiseen.
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It is a typical problem in machine learning that one wants to represent a given
set of data using some parametric model. The parameters of the model can be
inferred from the data using Bayesian inference techniques. Unfortunately, exact
Bayesian inference is seldom possible and some approximation scheme has to be
used. One such method is a technique called variational Bayesian learning.
For many popular models, variational Bayesian learning can be conducted using
the variational Bayesian expectation maximization (VB EM) algorithm. There
are, however, many interesting models for which the VB EM algorithm is not
available and one has to revert to using standard nonlinear optimization methods
such as the gradient descent. It has been recently suggested that the performance
of these gradient-based algorithms can be improved by interpreting the problem
space to be a curved Riemannian manifold. This idea gives rise to the natural
conjugate gradient (NCG) algorithm.
Thus far, the NCG algorithm has been successfully applied to learning the com-
plicated nonlinear state-space model where the VB EM algorithm cannot be used
and hence comparison of the algorithms has not been possible. This thesis does
this comparison using the simpler mixture of Gaussians (MoG) model. The NCG
algorithm for learning MoG is derived, implemented and empirically compared to
the VB EM algorithm using both artificial data and real-world image data. A
speed-up of VB EM using the pattern search method is also studied.
Based on the experiments, it is concluded that NCG is highly competitive against
VB EM although there are datasets where one of the algorithms is clearly superior
to the other. Especially with some datasets, NCG seems to excel at finding better
optima than the other algorithms. However, given its simplicity and good perfor-
mance across a wide range of datasets VB EM accelerated with pattern searches
seems to be the best choice out of the compared algorithms for variational learning
of the mixture of Gaussians model.

Keywords: machine learning, Bayesian inference, variational Bayesian learning,
information geometry, natural conjugate gradient, mixture of Gaus-
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1 Introduction

Bayesian inference is a stochastic framework for inferring the posterior distribution of
some quantity given our prior beliefs about the quantity. However, in many real life
problems, exact Bayesian inference is intractable and some approximation scheme
has to be employed. Unfortunately, the traditional point estimate approximations
such as maximum likelihood (ML) and maximum a posteriori (MAP) are inaccurate
and suffer from overfitting problems. On the other hand, sampling-based Markov
chain Monte Carlo (MCMC) methods are in theory able to achieve exact results but
are too slow for many real-world problems.

Variational Bayesian (VB) learning [11, 3, 5] is a fairly recently introduced efficient
method for conducting approximate Bayesian inference. The idea of VB learning
is to approximate the true posterior distribution with another distribution q and
introduce a cost function to measure the misfit of the distributions. Hence, the
smaller the cost function, the better the approximate distribution q. Tractability is
achieved by somehow restricting the functional form of q.

Many important models in machine learning belong to the so called conjugate-
exponential family where VB inference can be conducted using a computationally
efficient algorithm called the variational Bayesian expectation maximization (VB
EM) algorithm. There are, however, a great deal of interesting models such as the
nonlinear state-space model (NSSM) of [26] where the VB EM algorithm cannot be
used. With such models, one can minimize the cost function directly using gradient-
based optimization techniques such as the conjugate gradient (CG) method.

It was shown in [12] that the performance of gradient-based learning of NSSM can
be substantially improved if the optimization is interpreted to take place in a curved
Riemannian manifold instead of flat Euclidean space. In a Riemannian manifold,
the standard gradient is replaced by the natural gradient and, when combined with
the conjugate directions of the CG method, the resulting algorithm is called the
natural conjugate gradient (NCG) algorithm.

In this thesis, the NCG algorithm is derived, implemented and experimentally stud-
ied in the case of the mixture of Gaussians (MoG) model which is a fairly complex
model in the conjugate-exponential family. The aim is gain knowledge on the perfor-
mance of NCG compared to VB EM. A speed-up of VB EM using a method called
pattern searches is also studied.

The structure of this thesis is as follows. An introduction to VB inference as well
as the VB EM algorithm and its acceleration using pattern searches is given in
Section 2. Many central concepts used throughout this thesis such as the conjugate-
exponential family are also introduced in that section. Section 3 focuses on the
gradient-based methods and gives a brief account of the necessary concepts of infor-
mation geometry required for the understanding of the NCG algorithm. The various
algorithms applied to the MoG model are discussed in Section 4 which also includes
a ragbag of important implementation details. The algorithms are experimentally
compared to each other using both artificial data and real-world image data in Sec-
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tion 5. The results are analyzed in Section 6 after which conclusions are given in
Section 7. There are also three appendices. Appendix A gives a summary of the
most important results regarding the Dirichlet, Gaussian and Wishart distributions
used in this thesis while Appendix B includes derivations of the necessary equations
for the implementation of the gradient-based algorithms. Appendix C summarizes
this thesis in Finnish.
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2 Variational Bayesian Inference

This chapter gives an introduction to Bayesian inference with emphasis on varia-
tional Bayesian learning. Two important rules of probability theory, namely the
product rule and the sum rule, are presented in Section 2.1. The Bayes’ rule, the
cornerstone of Bayesian probability theory, is discussed in Sections 2.2 and 2.3.
Variational Bayesian learning, an approximate Bayesian inference technique, is in-
troduced in Section 2.4 while Section 2.5 discusses the concept of the conjugate-
exponential family. The VB EM algorithm and its speed-up with pattern searches
are discussed in Sections 2.6 and 2.7.

2.1 The Basic Rules of Probability

Traditionally, the probability of an event is interpreted to describe the frequency of
outcomes favorable to the event in a random experiment. This viewpoint is called
the frequentist approach to probability theory. More recently, however, another
interpretation called the Bayesian approach has gained ground. In that approach,
the probability of an event is regarded as ones subjective degree of belief that the
event will take place. This approach was axiomatized by Cox in the 1940s into what
is now know as the Cox axioms [7].

Two fundamental rules of probability theory can derived from the Cox axioms,
namely the product rule

p(x, y) = p(x|y)p(y) (1)

and the sum rule
p(x) =

∑
Y

p(x, y) =
∑
Y

p(x|y)p(x) (2)

which is also know as the marginalization principle. Here p(x) denotes the proba-
bility that random variable X has some value X = x, p(x, y) the joint probability
X = x and Y = y and p(x|y) the probability that X = x given Y = y. In Equation
(2) the sum is taken over all possible values of random variable Y and is replaced
by integration in case of continuous random variables.

2.2 The Bayes’ Rule

Due to the symmetry of joint probability p(x, y) = p(y, x), one can easily see that
the following equation known as the Bayes’ rule holds:

p(x|y) =
p(y|x)p(x)

p(y)
. (3)

Here p(x|y) is called the posterior as it gives the probability of X = x when we
have observed that Y = y. p(y|x) and p(x) are called the likelihood and the prior
respectively while p(y), which is called the evidence, can be viewed as a scaling factor
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which makes sure that the posterior probabilities will sum to 1 over all possible values
of X. The Bayes’ rule also holds for probability distributions of continuous random
variables.

2.3 The Bayes’ Rule in Machine Learning

In the field of machine learning, it is often needed to infer the parameters θ of some
model M given the data X. The Bayes’ rule can be used for this inference task in
the form

p(θ|X,M) =
p(X|θ,M)p(θ|M)

p(X|M)
(4)

which gives us the posterior probability distribution of model parameters θ. The
dependence on the selected modelM is explicitly stated here to emphasize that the
general form of the model used to represent the data has to be selected a priori.
This dependence will, however, be omitted for brevity for the rest if this thesis.

The prior p(θ) in Equation (4) can be interpreted as our knowledge of the model
parameters before the data X is observed while the posterior p(θ|X) gives us the
parameter distribution after the data is observed. Thus, the observation of the data
can be seen as changing our prior beliefs about the parameters. The prior p(θ)
is always subjective which is typical of the Bayesian approach but also its most
controversial feature as the selection of the prior can greatly influence the outcome
of the inference task.

2.4 Variational Bayesian Learning

Using the sum rule (2), the evidence in (4) can be evaluated to be

p(X) =

∫
θ

p(X,θ)dθ. (5)

The central issue in Bayesian inference is that, apart the simplest models, this in-
tegral is intractable and while it can, in principle, be calculated numerically using
MCMC methods, they are computationally too costly for efficient learning algo-
rithms. It follows that for example the evaluation of the predictive distribution
p(x|X), that is the distribution of a new observation x given the observed data X,
becomes intractable as its evaluation requires integration over the posterior distri-
bution.

Variational methods attempt to overcome the intractable integral in (5) by approx-
imating the true posterior distribution p(θ|X) by another distribution q(θ). While
there are various ways to achieve this, this thesis focuses on one particular varia-
tional Bayesian learning method sometimes called ensemble learning which has its
roots in statistical physics, more precisely in the variational free energy minimization
of Feynman and Bogoliubov [8].
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The idea is to use a concept know as Kullback-Leibler divergence to measure the
misfit between the true posterior distribution p(θ|X) and the approximate distri-
bution q(θ). The Kullback-Leibler divergence between q(θ) and p(θ|X) is defined
as

DKL(q||p) =

∫
θ

q(θ) ln
q(θ)

p(θ|X)
dθ = Eq

{
ln

q(θ)

p(θ|X)

}
(6)

where Eq {·} denotes the expectation over distribution q.

Due to a principle known as the Gibbs’ inequality it holds that [14]

DKL(q||p) ≥ 0 (7)

with equality if and only if q(θ) = p(θ|X). Thus, the minimization of DKL(q||p) is
equivalent to the optimization of the quality of the approximate posterior q(θ) and
DKL(q||p) can be used as a cost function to be minimized during learning.

As the true posterior p(θ|X) in (6) is unknown, we will subtract the log-evidence,
which is a constant, from this to obtain the true cost function C used in the learning
process

C = DKL(q||p)− ln p(X)

=

∫
θ

q(θ) ln
q(θ)

p(θ|X)
dθ −

∫
θ

q(θ) ln p(X)dθ

=

∫
θ

q(θ) ln
q(θ)

p(θ,X)
dθ (8)

= Eq

{
ln

q(θ)

p(θ,X)

}
.

To make the integral in (8) tractable one has to somehow restrict the form of the
distribution q(θ). One way to accomplish this is to select the functional form of the
distribution q(θ) governed by some parameters ξ which we will denote by q(θ|ξ). A
popular choice for this fixed form solution is a Gaussian distribution with a limited
covariance matrix.

Another popular way of restricting q(θ) again draws from statistical physics, namely
from an approach to variational free energy minimization called mean field theory
[19]. In this approach, the parameters θ are divided into disjoint groups θi, i =
1 . . .M which are assumed to be posteriorly independent, that is

q(θ) =
M∏
i=1

qi(θi). (9)

It is shown for example in [5] that given this factorization the optimal solution for
the jth distribution qj(θj) is

qj(θj) = A exp(Eqi,i 6=j {ln p(θ,X)}) (10)
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where A is a normalizing constant given by

A =
1∫

θj
exp(Eqi,i 6=j {ln p(θ,X)})dθj

. (11)

Since the expectation in (10) is taken over distributions qi, i 6= j, this results in
an iterative algorithm where distributions qi, i = 1 . . .M are first set to some initial
values and index j in (10) is then cycled through all the values j = 1 . . .M until con-
vergence is achieved which is determined by evaluating the cost function (8) on each
iteration. It should be emphasized that in this approach the only assumption made
is the factorization in Equation (9) while the functional forms of the distributions
qi are determined automatically by Equation (10).

VB learning has recently become popular in inference tasks due to its capability of
automatically selecting the complexity of the model, thus mostly avoiding overfitting
or underfitting the data while still being computationally efficient enough to be
able to solve real-world problems. If applied to, for example, the task of fitting a
polynomial curve to some measurement data, the VB method is capable of avoiding
overfitting even if given a high-order polynomial to fit. This is something that
competing methods such as ML, MAP or least squares fail to achieve.

2.5 Conjugate Priors and the Exponential Family

The prior p(θ) is said to be conjugate to the likelihood p(X|θ) if it is selected
so that the posterior p(θ|X) has the same functional form as the prior. Conjugate
priors are used extensively in Bayesian inference as they greatly simplify the required
calculations.

Many of the most commonly used probability distributions belong to a class of
distributions called the exponential family [4, 5] which are of the form

p(x|θ) = h(x)g(θ) exp(θTu(x)) (12)

where x is a random variable, θ is called the natural parameters of the distribution,
h(x) and u(x) are some functions of x and g(θ) is a normalizing constant.

The exponential family is of great importance, not only because of its ubiquity, but
also because all distributions in the exponential family have conjugate priors [10]. It
can be shown, for example, that the Gaussian distribution belongs to the exponential
family and that its conjugate prior is another Gaussian distribution when we are
inferring the mean and the Wishart distribution when we are inferring the precision
matrix [5] (for details on the multivariate Gaussian distribution see Appendix A).
When conjugate priors are used with exponential family distributions, the model is
said to be in the conjugate-exponential family.
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2.6 The VB EM Algorithm

The concept of a latent variable plays an important role in many models used in
machine learning. By definition, latent variables are quantities related to each ob-
served data point which can not be observed directly. Thus, the number of latent
variables is proportional to the number of observations. Latent variables are also
sometimes called hidden or unobserved variables.

If the used modelM incorporates latent variables they will have to be inferred from
the data along with the model parameters. Thus, we can substitute θ ↪→ (θ,Z) in
the previous discussion where Z is used to denote the latent variables of the model
M.

By assuming that the approximate posterior q(θ,Z) will factorize between the pa-
rameters θ and the latent variables Z, that is

q(θ,Z) = q(θ)q(Z), (13)

one can use Equation (10) to cyclically first update the distribution over the latent
variables followed by the distribution over the model parameters until convergence
is achieved. This algorithm is called the variational Bayesian expectation maximiza-
tion (VB EM) algorithm as it bears a close similarity to the traditional expectation
maximization (EM) algorithm used in ML and MAP learning. Following the naming
conventions of the EM algorithm, the update of the latent variable distribution q(Z)
is called the E-step and the update of the parameter distribution q(θ) is called the
M-step.

The VB EM algorithm is the standard way of conducting variational Bayesian infer-
ence for modelsM in the conjugate-exponential family. Its computational efficiency
is comparable to the EM algorithm while it does not suffer from the same overfitting
and singularity problems as ML and MAP methods tend to do.

2.7 Acceleration of VB EM with Pattern Searches

It was proposed in [13] that cyclic parameter update algorithms could be accelerated
using a technique called pattern searches which will now be described for the case of
the VB EM algorithm. Let q(Z|ξZ) be the approximate latent variable distribution
parametrized by some parameters ξZ and q(θ|ξθ) the approximate parameter dis-

tribution parametrized by ξθ. If we further denote ξ =

[
ξZ

ξθ

]
, we can now consider

the cost function C in (8) to be a function of ξ, that is C = C(ξ). The algorithm is
as follows:

1. Set ξZ and ξθ to some initial values

2. Perform the E-step, let the new parameters be ξZ
′

3. Perform the M-step, let the new parameters be ξθ
′
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4. Calculate search direction ∆ξ =

[
ξZ
′ − ξZ

ξθ
′ − ξθ

]
5. Perform a line search in the search direction ∆ξ to obtain the step size λ:
λ← argmin

λ
C(ξ + λ∆ξ)

6. Update parameters: ξ ← ξ + λ∆ξ

7. Repeat from 2 until convergence

It was further found out in [13] that in practice the algorithm works much better
if the parameter updates are let to stabilize between line searches by performing
multiple cyclic parameter updates in a row. This is also beneficial in terms of time
complexity of the algorithm as performing a line search can be computationally
expensive. The pattern searches approach is illustrated in Figure 1.

Figure 1: Illustration of pattern searches applied to VB EM updates. The horizontal
axis represents the value of the parameters ξθ of the approximate distribution over
model parameters while the vertical axis represents the value of the parameters ξZ

of the approximate distribution over latent variables. During the VB EM E-step ξZ

is updated and during the M-step ξθ is updated. The figure illustrates a situation
in which we first perform two VB EM iterations and then combine the results of
the E-step and M-step of the last VB EM iteration to obtain a search direction. We
then perform a line search in the search direction followed by another set of VB EM
iterations.
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3 Gradient-based Learning Algorithms

This chapter focuses on minimizing the cost function with gradient-based optimiza-
tion techniques. The widely used gradient descent and conjugate gradient methods
are discussed in Sections 3.1 and 3.2. Section 3.3 begins with a brief introduction
to information geometry followed by discussion of algorithms based on the natural
gradient including the NCG algorithm.

3.1 Gradient Descent

While the VB EM algorithm provides a straightforward way of learning models in
the conjugate-exponential family, there are more complicated models for which the
VB EM algorithm is not available such as the nonlinear state-space model (NSSM)
of [26]. In this case, one has to apply the fixed form learning approach described in
Section 2.4 and thus select some approximate distribution q(θ|ξ) governed by pa-
rameters ξ. Consequently, the cost function C becomes a function of the parameters
ξ, C = C(ξ). As a results, one can apply standard nonlinear optimization techniques
to find the minimum of C.
The most elementary nonlinear optimization technique is the gradient descent. In
that method, one first evaluates the negative gradient of the cost function

pk = −∇C(ξk), (14)

then performs a line search in the direction of pk to obtain a step size λ and finally
updates the parameters using this step size

ξk+1 = ξk + λpk. (15)

Instead of line search, the step size λ can also be set to some sufficiently small
constant or adjusted adaptively during the learning process.

3.2 Conjugate Gradient Methods

The gradient descent method tends to use approximately the same search directions
multiple times during the iteration process which slows down the convergence as it
would be beneficial to make an optimal step in a particular direction the first time
without having to correct later. This problem can be solved by a method called the
conjugate gradient (CG).

In the CG method, the search direction is set to the negative of the gradient on the
first iteration just like in the gradient descent but on subsequent iterations Equation
(14) is replaced with

pk = −gk + βkpk−1 (16)
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where gk = ∇C(ξk), pk−1 is the previous search direction and βk can be calculated
either using the Fletcher-Reeves formula [9]

βk =
‖gk‖2

‖gk−1‖2
=

gTk gk
gTk−1gk−1

(17)

or the Polak-Ribiére formula [20]

βk =
〈(gk − gk−1),gk〉
‖gk−1‖2

=
(gk − gk−1)Tgk

gTk−1gk−1

. (18)

The CG algorithm can be justified by looking at a quadratic cost function

C(x) =
1

2
xTAx + bTx + c. (19)

It can be shown that in this case the search directions {pk} are conjugate with
respect to A which means that

pTi Apj = 0, i 6= j. (20)

From this, it follows that for a quadratic cost function (19) the CG method converges
in at most n steps where n is the number of variables in x. [9]

The CG method can nevertheless also be applied to a general cost function C where
the convergence in n steps can no longer be guaranteed. The closer C is to being
quadratic, the better the CG method will perform. The Fletcher-Reeves and the
Polak-Ribiére formulas are equivalent when C is quadratic but for a general C they
result in two distinctive algorithms [21]. There are also various other ways of select-
ing the value of βk and making an optimal selection remains a subject of ongoing
research. It is generally thought, however, that the Polak-Ribiére formula (18) is
the best alternative for selecting βk [18].

There are a few details one has to take care of when implementing a nonlinear
conjugate gradient algorithm. First of all, when using the Polak-Ribiére formula,
the convergence of the algorithm can only be guaranteed if βk is restricted to be
positive, that is

βk ← max(βk, 0). (21)

The performance of the algorithm can be further improved if the search direction pk
is reset to the negative of the gradient every n iterations. This is based on the fact
that the CG algorithm is capable of generating only n conjugate search directions
in a row. Restarting is especially important if the Fletcher-Reeves formula is used.
It should be noted that the condition (21) can also be considered as a restart when
βk < 0. [23]

3.3 Natural Gradient Methods

3.3.1 Riemannian Manifolds

Manifolds are abstract mathematical spaces which locally resemble the Euclidean
space but have a more complex global structure. In a manifold S, a vector v has to be
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defined in a tangent space Tp which is a vector space consisting of the tangent vectors
of all the smooth curves passing through point p ∈ S. One particularly important
type of manifolds is the Riemannian manifold which is a manifold equipped with an
inner product which varies smoothly between different points p. This inner product
is given by

〈v,u〉p = vTGu (22)

where G = (gij) is called the Riemannian metric tensor of manifold S at point p
and v,u ∈ Tp [16]. For Euclidean space G = I [1] and Equation (22) simplifies to
the Euclidean inner product

〈v,u〉 = vTu. (23)

As a consequence of (22), the squared norm of vector v in Riemannian manifold is

‖v‖2 = 〈v,v〉p = vTGv (24)

which is analogous with the squared norm in Euclidean space

‖v‖2 = 〈v,v〉 = vTv. (25)

If vectors v and u in (22) belong to different tangent spaces, that is v ∈ Tp and
u ∈ Tp′ , a procedure called parallel transport has to be performed in order to
transfer vector u from tangent space Tp′ to tangent space Tp. In this thesis, a
parallelly transported version of vector u is denoted by τu. As the process of
parallel transport is quite complicated involving the introduction of the concept of a
covariant derivative, it will not be reviewed here. For more information on parallel
transport, one can turn to, for example, [1].

In differential geometry, a geodesic is a curve which locally minimizes the distance
between points in a curved space. It is analogous to the concept of a straight line in
Euclidean geometry. For example, if the manifold in question is spherical then its
great circles can be regarded as geodesics.

3.3.2 Information Geometry

The application of differential geometry to probability and information theory is
called information geometry. In information geometry, the parameter space ξ of
probability distributions q(θ|ξ) is regarded as a Riemannian manifold whose Rie-
mannian metric tensor G is given by the Fisher information matrix [1, 16, 6]

gij(ξ) = Eq

{
∂ ln q(θ|ξ)

∂ξi

∂ ln q(θ|ξ)

∂ξj

}
= Eq

{
−∂

2 ln q(θ|ξ)

∂ξi∂ξj

}
. (26)

There are also other ways of selecting the Riemannian metric tensor G but using
the Fisher information is the most popular choice because of its invariance and
covariance properties [25].
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3.3.3 Natural Gradient Descent

If the geometry of the parameter space of C(ξ) is considered Riemannian, the direc-
tion of the steepest ascent is given, instead of the gradient, by the natural gradient
[2]

∇̃C(ξ) = G−1(ξ)∇C(ξ). (27)

Thus, the gradient descent method of Section 3.1 becomes

ξk+1 = ξk − λ∇̃C(ξk). (28)

This is called the natural gradient descent algorithm.

The step size λ is again obtained with line search which in the presence of a Rieman-
nian manifold should be made along a geodesic. Since the derivation of geodesics
is typically difficult and their use computationally expensive, it is customary to
approximate using Euclidean straight lines.

The matrix inversion required for the evaluation of the natural gradient in (27) would
be prohibitively expensive if the full matrix had to be inverted. Luckily, because of
the typical factorizing approximation of Equation (9), the matrix G becomes block
diagonal [12]. Hence, it can be inverted effectively since

diag(A1, . . . ,An)−1 = diag(A−1
1 , . . . ,A−1

n ) (29)

where diag(·) denotes a block diagonal matrix which has the given matrices as its
diagonal blocks.

3.3.4 Riemannian Conjugate Gradient Algorithm

The natural gradient descent algorithm can be improved by using conjugate direc-
tions as described in Section 3.2 by replacing the gradient in (16) with the natural
gradient

gk ↪→ g̃k = ∇̃C(ξk). (30)

Furthermore, the squared norms and the inner products in (17) and (18) have to
be taken in the Riemannian sense in accordance with Equations (22) and (24) and
the previous natural gradient vector g̃k−1 has to be transferred to the tangent space
of the current gradient with parallel transport. When the line search is, in addi-
tion, performed along a geodesic, the resulting algorithm is called the Riemannian
conjugate gradient algorithm [24].

3.3.5 Natural Conjugate Gradient Algorithm

As in the case of natural gradient descent, it is beneficial to approximate the line
search along geodesics in the Riemannian conjugate gradient with line search along
Euclidean straight lines. It was further suggested in [12], that the parallel transport
of g̃k−1 could be approximated with an identity mapping and that the squared norms
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and the inner products in (17) and (18) could be taken in an Euclidean sense. This
resulting algorithm is called the natural conjugate gradient (NCG) algorithm and
it was shown to significantly improve the performance of the CG algorithm when
applied to the NSSM of [26].

Another version of the NCG algorithm can be derived by performing the vector
operations in (17) and (18) in accordance with Equations (22) and (24) while still
approximating the parallel transport of g̃k−1 with an identity mapping. The costly
vector-matrix multiplications can be avoided by noting that

‖g̃k‖2 = g̃TkGkg̃k = g̃TkGkG
−1
k gk = g̃Tk gk. (31)

Because the norm of a vector is invariant under parallel transport [1], the resulting
equations are

βk =
‖g̃k‖2

‖τ g̃k−1‖2
=
‖g̃k‖2

‖g̃k−1‖2
=

g̃TkGkg̃k
g̃Tk−1Gk−1g̃k−1

=
g̃Tk gk

g̃Tk−1gk−1

(32)

in the case of the Fletcher-Reeves formula (17) and

βk =
〈(g̃k − τ g̃k−1), g̃k〉
‖τ g̃k−1‖2

≈
(g̃k − g̃k−1)TGkg̃k

g̃Tk−1Gk−1g̃k−1

=
(g̃k − g̃k−1)Tgk

g̃Tk−1gk−1

(33)

in the case of the Polak-Ribiére formula (18). It should be noted that with this ap-
proach the Riemannian Fletcher-Reeves formula (32) can be calculated without any
approximations and the only approximation made in the calculation of the Rieman-
nian Polak-Ribiére formula is the approximation τ g̃k−1 ≈ g̃k−1 in the numerator.
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4 Variational Mixture of Gaussians

In this chapter, the machine learning algorithms discussed above are applied to
learning the mixture of Gaussians model which is introduced in Section 4.1. Section
4.2 constructs a probabilistic model for learning the mixture of Gaussians and gives
the update equations for the VB EM algorithm. The cost function, which is used
to derive the NCG algorithm of Section 4.4, is given in Section 4.3. The quadratic
polynomial interpolation based line search used in this thesis is introduced in Section
4.5 while Section 4.6 discusses some important implementation details.

4.1 The Mixture of Gaussians Model

The model M, which is studied in detail in this thesis, is the mixture of Gaussians
model. It is a probability distribution which is a linear combination of K Gaussian
distributions [5]

p(x|π,µ,Σ) =
K∑
k=1

πkN (x|µk,Σk) (34)

where x is a D-dimensional random variable and π = [π1 · · · πK ]T are called the
mixing coefficients while µk and Σk are the mean and the covariance matrix of
the kth Gaussian component. The inverse of the covariance matrix Λk = Σ−1

k is
called the precision matrix. Figure 2 shows a plot of a two dimensional mixture of
Gaussians. More information on the multidimensional Gaussian distribution can be
found in Appendix A.

Figure 2: A surface plot of a two dimensional mixture of Gaussians with three
Gaussian components. All components have different mixing coefficients, means
and covariances.
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4.2 VB EM for the Mixture of Gaussians Model

This section is completely based on the variational treatment of the mixture of
Gaussians model in [5]. Because of this, some details of the derivation of the VB
EM algorithm for the MoG model will be omitted here and we will concentrate only
on the most important results.

In the case of the mixture of Gaussians model, the latent variables discussed in
Section 2.6 are the information on which one of the K Gaussian components has
generated a particular observation xn. This information will be represented with a
K-dimensional binary vector zn whose elements znk are either 0 or 1 where 1 denotes
the component responsible for generating the observed data point xn in question. It
should be noted that only one component can be responsible for generating a single
observation and thus the elements of the vector zn sum to unity. Let N denote the
total number of observed data points. Now, all the N latent variables of the model
can be regarded as forming a latent variable matrix Z = (znk) of the order N ×K.

Given the mixing coefficients π, the probability distribution over the latent variables
is given by

p(Z|π) =
N∏
n=1

K∏
k=1

πznk
k . (35)

As we want to use conjugate priors in our treatment, we next introduce a Dirichlet
prior for the mixing coefficients

p(π) = Dir(π|α0) (36)

where α0 = [α0 · · ·α0]T is a K-dimensional hyperparameter vector whose elements
are all given by α0 due to symmetry.

Similarly, the distribution over the data X given the latent variables Z, the means
µ and the precision matrices Λ can be written as

p(X|Z,µ,Λ) =
N∏
n=1

K∏
k=1

N (xn|µk,Λ
−1
k )znk . (37)

Note that we are assuming here that the data vectors xn are independent and iden-
tically distributed. In this case, the conjugate prior for the component parameters
µ and Λ is given by the Gaussian-Wishart distribution

p(µ,Λ) = p(µ|Λ)p(Λ) =
K∏
k=1

N (µk|m0, (β0Λk)
−1)W(Λk|W0, ν0). (38)

The joint distribution over all the random variables of the model is then given by

p(X,Z,π,µ,Λ) = p(X|Z,µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ). (39)

This resulting model can be illustrated with the graphical model shown in Figure
3. More information on the Dirichlet and Wishart distributions can be found in
Appendix A.
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Figure 3: A graphical model representing the Bayesian treatment of the mixture of
Gaussians model [5]. Observed values are marked with a grey circle. In this case,
only the data X is observed and all latent variables and model parameters have to
be inferred from the data. The rectangular plate denotes a set of N independent and
identically distributed observations xn, n = 1 . . . N along with corresponding latent
variables zn, n = 1 . . . N .

We now make the factorizing approximation described by Equation (13)

q(Z,π,µ,Λ) = q(Z)q(π,µ,Λ) (40)

and use Equation (10) along with Equation (39) to first update q(Z) (E-step) and
subsequently update q(π,µ,Λ) (M-step). The resulting approximate posterior dis-
tributions are

q(Z) =
N∏
n=1

K∏
k=1

rznk
nk (41)

and

q(π,µ,Λ) = q(π)q(µ,Λ) = q(π)
K∏
k=1

q(µk,Λk) (42)

where

q(π) = Dir(π|α) (43)

q(µk,Λk) = N (µk|mk, (βkΛk)
−1)W(Λk|Wk, νk). (44)

In expressing the update rules for the distribution parameters in Equations (41),
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(43) and (44), we will find the following definitions useful:

Nk =
N∑
n=1

rnk (45)

xk =
1

Nk

N∑
n=1

rnkxn (46)

Sk =
1

Nk

N∑
n=1

rnk(xn − xk)(xn − xk)
T (47)

ln Λ̃k =
D∑
i=1

ψ

(
νk + 1− i

2

)
+D ln 2 + ln |Wk| (48)

ln π̃k = ψ(αk)− ψ(α̂) (49)

where D is the dimensionality of the data, α̂ is defined by Equation (A3) and ψ(·) is
the digamma function which is defined as the derivative of the logarithmic gamma
function, that is

ψ(x) =
d

dx
ln Γ(x). (50)

Using these definitions, the parameters rnk of the approximate posterior over latent
variables q(Z) which are updated in the E-step are given by

rnk =
ρnk∑K
l=1 ρnl

(51)

where

ρnk = π̃kΛ̃
1/2
k exp

(
− D

2βk
− νk

2
(xn −mk)

TWk(xn −mk)

)
. (52)

The parameters rnk are called responsibilities because they represent the responsibil-
ity the kth component takes in explaining the nth observation. The responsibilities
can be arranged into a matrix R = (rnk) and will have to satisfy the following
conditions:

0 ≤ rnk ≤ 1 (53)

K∑
k=1

rnk = 1. (54)

The parameter update equations for the M-step are then given by

αk = α0 +Nk (55)

βk = β0 +Nk (56)

νk = ν0 +Nk (57)

mk =
1

β0 +Nk

(β0m0 +Nkxk) (58)

W−1
k = W−1

0 +NkSk +
β0Nk

β0 +Nk

(xk −m0)(xk −m0)T . (59)
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4.3 The Cost Function

We can use Equation (8) along with Equations (35)-(44) to evaluate the cost function
for the learning process

C =
∑

Z

∫
π

∫
µ

∫
Λ

q(Z,π,µ,Λ) ln
q(Z,π,µ,Λ)

p(X,Z,π,µ,Λ)
dπdµdΛ

=Eq {ln q(Z,π,µ,Λ)} − Eq {ln p(X,Z,π,µ,Λ)}
=Eq {ln q(Z)}+ Eq {ln q(π)}+ Eq {ln q(µ,Λ)} − Eq {ln p(X|Z,µ,Λ)}
− Eq {ln p(Z|π)} − Eq {ln p(π)} − Eq {ln p(µ,Λ)} . (60)

These expectations can be evaluated to give [5]

Eq {ln q(Z)} =
N∑
n=1

K∑
k=1

rnk ln rnk (61)

Eq {ln q(π)} =
K∑
k=1

(αk − 1) ln π̃k + lnC(α) (62)

Eq {ln q(µ,Λ)} =
K∑
k=1

{
1

2
ln Λ̃k +

D

2
ln
βk
2π
− D

2
−Hq{Λk}

}
(63)

Eq {ln p(X|Z,µ,Λ)} =
1

2

K∑
k=1

Nk

{
ln Λ̃k −

D

βk
− νk Tr(SkWk) (64)

− νk(xk −mk)
TWk(xk −mk)−D ln 2π

}
Eq {ln p(Z|π)} =

N∑
n=1

K∑
k=1

rnk ln π̃k (65)

Eq {ln p(π)} = lnC(α0) + (α0 − 1)
K∑
k=1

ln π̃k (66)

Eq {ln p(µ,Λ)} =
1

2

K∑
k=1

{
D ln

β0

2π
+ ln Λ̃k −

Dβ0

βk
(67)

− β0νk(mk −m0)TWk(mk −m0)

}
+K lnB(W0, ν0)

+
ν0 −D − 1

2

K∑
k=1

ln Λ̃k −
1

2

K∑
k=1

νk Tr(W−1
0 Wk)

where Tr(A) denotes the trace of matrix A and Hq{Λk} is the entropy of the dis-
tribution q(Λk) given by Equation (A12) of Appendix A. The coefficients C(α) and
B(W0, ν0) are given by Equations (A2) and (A9) respectively.

The cost function C given by Equation (60) can be used to determine when the VB
EM algorithm has converged. The cost function will decrease during each iteration
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and when the difference between the previous cost function value Ck−1 and the
current value Ck becomes sufficiently small we can assume that the learning process
has converged.

4.4 Natural Conjugate Gradient for the Mixture of Gaus-
sians Model

To be able to compare the VB EM and NCG algorithms, we assume that the ap-
proximate posterior distribution q(Z,π,µ,Λ) takes the same functional form as in
the case of the VB EM algorithm. Thus, the fixed form posterior distributions
are given by Equations (41), (43) and (44) and the cost function which is to be
minimized by the NCG algorithm is given by Equation (60). In this thesis, we
will only be optimizing the responsibilities rnk, n = 1 . . . N, k = 1 . . . K and the
means mk, k = 1 . . . K using gradient-based methods. All other model parameters,
namely the parameters αk, k = 1 . . . K of the Dirichlet distribution, the parameters
βk, k = 1 . . . K controlling the covariance of the component means as well as the
parameters Wk, k = 1 . . . K and νk, k = 1 . . . K of the Wishart distribution, are
updated using the VB EM update Equations (55), (56), (57) and (59) during the
line search procedure.

There are a few things that have to be taken into account when deriving gradient-
based algorithms for the mixture of Gaussians model. Firstly, the responsibilities
have to satisfy the constraints given by Equations (53) and (54). This can be
enforced by using the softmax parametrization

rnk =
eγnk∑K
l=1 e

γnl

. (68)

It can be easily seen that by using this parametrization the responsibilities are always
positive and

∑K
k=1 rnk = 1. As a results it holds that 0 ≤ rnk ≤ 1 and the restricting

conditions (53) and (54) are satisfied for all values of γnk.

Secondly, if we set the responsibilities rnk, n = 1 . . . N, k = 1 . . . K−1 to some values,
the values of rnK , n = 1 . . . N are given by condition (54), that is rnK = 1−

∑K−1
k=1 rnk.

As a results, the number of degrees of freedom in the responsibilities of the model
is not the number of responsibilities NK but instead N(K− 1). When we are using
the parametrization (68), this means that we can regard the parameters γnK as
constants and only optimize the cost function with respect to parameters γnk, n =
1 . . . N, k = 1 . . . K−1. This is especially important when using the natural gradient.

As a results, as far as the gradient is concerned, the cost function is a function of
the means mk, k = 1 . . . K and the parameters γnk, n = 1 . . . N, k = 1 . . . K − 1

C = C(m1, . . . ,mK , γ11, . . . , γ1K−1, . . . , γN1, . . . , γNK−1). (69)

We will denote the gradient with respect to both the means mk and the parameters
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γnk by ∇m,γ . Hence

∇m,γ C =

[
∇m C
∇γ C

]
=



∇m1C
...

∇mK
C

∂γ11C
...

∂γ1K−1
C

...
∂γN1
C

...
∂γNK−1

C



(70)

where ∂γnk
C = ∂C

∂γnk
.

The gradient of the cost function (60) with respect to mk is given by

∇mk
C = νkWk(Nk(mk − xk) + β0(mk −m0)), k = 1 . . . K (71)

and the derivative with respect to γnk is given by

∂C
∂γnk

= Enk − rnkFn, n = 1 . . . N, k = 1 . . . K − 1 (72)

where

Enk = rnk

{
ln rnk − ln π̃k −

1

2

(
ln Λ̃k −

D

βk
−D ln 2π − νk(xn −mk)

TWk(xn −mk)

)}
(73)

and

Fn =
K∑
k=1

Enk. (74)

These equations are derived in Appendix B.

We can update the responsibilities rnk without having to evaluate and store the
parameters γnk by noting that

r′nk =
eγnk+∆γnk∑K
l=1 e

γnl+∆γnl

=

∑K
l=1 e

γnl∑K
l=1 e

γnl+∆γnl

eγnk∑K
l=1 e

γnl

e∆γnk = cnrnke
∆γnk (75)

where r′nk is the new responsibility, ∆γnk is the change in the parameter γnk deter-
mined by line search in the direction of the negative gradient and cn is a normalizing
constant which makes sure that

∑K
k=1 r

′
nk = 1. Thus, cn can also be expressed in

the form cn = (
∑K

k=1 rnke
∆γnk)−1 and we can update the responsibilities using the

formula

r′nk =
rnke

∆γnk∑K
l=1 rnle

∆γnl

. (76)
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In order to use the natural gradient, we need to know the Riemannian metric tensor
G of the parameter space (m,γ). The matrix G is given by Equation (26) and is
derived in Appendix B. The resulting matrix is the block diagonal matrix

G =



A1

. . .

Ak 0
. . .

AK

B1

. . .

0 Bn

. . .

BN



(77)

where Ak = βkνkWk, Bn = −rTnrn + diag(rn) and rn is the nth row of the responsi-
bility matrix R except for element rnK , that is rn = [rn1 · · · rnK−1]. diag(a) is used
here to denote a square matrix which has the elements of vector a on its diagonal.

The inverse of matrix G required for the evaluation of the natural gradient is easily
calculated using Equation (29). We can now also motivate our earlier discussion
about the number of degrees of freedom in responsibilities. Had we considered the
number of degrees of freedom to be NK, the row vector rn would have consisted
of the whole nth row the the matrix R. This would have made the matrices Bn

singular and we would not have been able to evaluate the natural gradient.

4.5 Line Search

Performing line search in gradient-based algorithms and in the pattern search ac-
celeration of VB EM is not as trivial as it might first seem. In general, there is a
trade-off of performance and accuracy. The accuracy of the line search procedure
can be improved by increasing the number of cost function evaluations in the search
direction which increases the computation time of the procedure. While many line
search algorithms have been developed, there is no perfect solution and the selection
has to be made based on the problem at hand.

In this thesis, line search is based on quadratic polynomial interpolation. Therefore,
a second degree polynomial p(x) = ax2 + bx+ c is fitted to the cost function values
in the search direction, and the point xmin where the polynomial has its minimum
is used as the optimal step size. This point is given by [25]

xmin =
1

2

α23f(x1) + α31f(x2) + α12f(x3)

β23f(x1) + β31f(x2) + β12f(x3)
(78)

where f(x1), f(x2) and f(x3) are three known cost function values with step sizes
x1 < x2 < x3 in the search direction, αij = x2

i − x2
j and βij = xi − xj.



22

The advantage of this method is that in the best case scenario the cost function has
to be evaluated only three times in the search direction in order to find the optimal
step size. The problem is that in order to ensure that xmin is an interpolated
minimum of the polynomial p(x) the condition

f(x1) > f(x2) ∧ f(x2) < f(x3) (79)

has to be satisfied. If the condition is not satisfied the points x1, x2 and x3 have to be
adjusted accordingly. This can be done by performing interpolation or extrapolation
based on Equation (78). However, multiple safeguards have to be added in order to
make sure that the interpolated or extrapolated value is reasonable. For example,
if f(x1) > f(x2) ∧ f(x2) > f(x3) and we get xmin > x3 we can adjust the points so
that x2 ← x3 and x3 ← 2xmin.

4.6 Implementation Details

At least the following details have to be taken into account when implementing the
algorithms discussed above:

• The gradient-based algorithms have to be initialized with both initial param-
eters αk, βk, νk, mk and Wk as well as initial responsibilities rnk. This is
achieved by setting the parameters to some initial values followed by a VB
EM E-step giving us the initial responsibilities. Additionally, a VB EM M-
step updating all the parameters except for the means mk is performed before
using the gradient-based learning algorithm since otherwise the gradient ∇γC
would be zero on the first iteration.

• Numerical problems caused be the limited precision of floating point numbers
are likely to cause problems with the algorithms. It was found out the there
are three operations which are prone to numerical problems in the algorithms
discussed here. These are the evaluations of the logarithms ln rnk in Equations
(61) and (73) and the inversion of the matrices Bn in Equation (77). All these
operations are likely to cause problems with small responsibilities. While there
are many possible solutions to this kind of problems, the approach taken in
this thesis was to limit the responsibilities to always satisfy the inequation
rnk ≥ 10−10.

• From a performance point of view, it is reasonable to completely remove a
Gaussian component from the data structures if the responsibility it takes in
explaining the data becomes sufficiently small, that is Nk < δ. It was found
out that the value δ = 0.1 seems to work well for most datasets. It should also
be noted that the conjugate gradient algorithms have to be restarted with the
negative of the gradient when a component is removed.

• The algorithms were considered to have converged when Ck−1 − Ck < ε for
two consecutive iterations. Checking for the termination criterion for two
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iterations before terminating the algorithm is required because the conjugate
gradient algorithm can produce a search direction where the optimal step size
is λ = 0. The value ε = 10−8N is used in all the experiments unless otherwise
mentioned.

• As discussed above, there are different variants of the CG algorithms. In initial
testing, it was found out that the Polak-Ribiére-based CG outperformed the
Fletcher-Reeves-based CG in most cases. With NCG, it was also found out
that Equation (33) gave generally better results than Equation (18). There-
fore, all the experiments in Section 5 are conducted using the Polak-Ribiére
formula and the version of NCG where Equation (33) is used.

• Similarly, the performance of the pattern search acceleration of VB EM is
greatly affected by the frequency of pattern searches. It was found out that
performing the pattern search on every 8th iteration was a good compromise
in terms of algorithm performance.

• It is a natural choice to initially select the points where to evaluate the cost
function in line search to be x1 = 0 and x2 = x3

2
. However, the initial value

of x3 has to be somehow predetermined. It was found out that the following
choices for the first line search gave good results: x3 = 10 for VB EM with
pattern search, x3 = 0.002 for algorithms based on standard gradient and
x3 = 2 for algorithms based on natural gradient. After the first line search, the
gradient-based algorithms use two times the optimal step size of the previous
iteration as the value of x3.

• Because the number of variables in the gradient is large, the conjugate gra-
dient algorithms are restarted every

√
n iterations instead of the typically

recommended n iterations.
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5 Experiments

The algorithms for learning the mixture of Gaussians model discussed in Chapter 4
are experimentally studied and compared to each other in this chapter using both
artificial and real-world data. The experiment setup is outlined in Section 5.1. The
results of the experiments with artificial data are given in Section 5.2 followed by
Section 5.3 where the algorithms are applied to the task of image segmentation.

5.1 Experiment Setup

In the following experiments, all the datasets are scaled so that the data is within
the hypercube which has its center point in the origin of the space and a side length
of 2. For example, for a two dimensional dataset, this means that the data is within
the square [−1, 1] × [−1, 1]. The priors are set to the following values for all the
experiments: α0 = 1, β0 = 1, ν0 = D, W0 = 4

D
I and m0 = 0. These priors can

be interpreted to describe our prior beliefs of the model when we anticipate having
Gaussian components near the origin but are fairly uncertain about the number of
the components.

The initial number of components is set to K = 8 unless otherwise mentioned with
each component having a randomly generated initial mean mk drawn from a Gaus-
sian distribution with mean m = 0 and covariance Σ = 0.16I. Other distribution
parameters are initially set to the following values: αk = 1, βk = 10, νk = D and
Wk = 4

D
I for all k.

Because different initial means can produce significantly different results in terms
of required CPU time and achieved cost function value, all the experiments are
repeated 30 times with different initial means.

5.2 Artificial Data

Figure 4 shows the artificial datasets used to compare the different algorithms.
Dataset 1 shown in Figure 4(a) consists of 5 Gaussian components drawn from a
real mixture of Gaussians using the Netlab library [17]. All the components are
spherical and the distance between the means of the center component and the
other components R can be changed. All the components have mixing coefficients
πk = 0.2 and the amount of data points is N = 1000 unless otherwise mentioned.
Dataset 2 shown in Figure 4(b) consists of three Gaussian components with different
covariances and mixing coefficients. This dataset is also generated using the Netlab
library and has N = 1000 data points. Dataset 3 shown in Figure 4(c) is a three
dimensional helix which, unlike the other datasets, is not drawn from a mixture of
Gaussians. It has N = 1000 data points.
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 4: Artificial datasets used in the experiments. Dataset 1 shown in Figure (a)
consists of data drawn from a mixture of Gaussians with five identical components.
The distance R between the center component and the other components can be
changed. The data shown has R = 0.3. Dataset 2 shown in Figure (b) consists of
data drawn from a mixture of Gaussians with three components while Dataset 3
shown in Figure (c) is a three dimensional helix.

5.2.1 Dataset 1

When different gradient-based algorithms are compared using Dataset 1 with R =
0.3, the results shown in Figure 5 are obtained. The curves shown are the median
cost function values as a function of CPU time for the different algorithms. It can
be seen that standard gradient and CG algorithms have problems locating even a
decent optimum. Using the natural gradient, the quality of the optimum can be
improved while NCG further improves the performance. It should be emphasized
that the time scale of Figure 5 is logarithmic. Therefore, standard gradient is over
100 times slower than NCG. In contrast to other experiments discussed here, this
experiment was conducted using the values N = 500, ε = 10−7N and the initial
number of components K = 5 in order to make the standard gradient converge in
a reasonable time. Out of these algorithms, only NCG is used in the experiments
that follow.

When the performance of NCG, VB EM and VB EM accelerated with pattern
searches is compared using Dataset 1 with R = 0.3, the results shown in Figure 6
are obtained. Figure 6(a) shows the median learning curves for the three different
algorithms. It can be seen that the performance of NCG and VB EM with pattern
searches is quite similar while the performance of VB EM is inferior to these two
algorithms. Figure 6(b) shows the results of the individual initializations. The
plotted values are the obtained final cost when the algorithm has converged and
the CPU time required to achieve this. As can be seen, most of the initializations
converge to a cost of just below 561 but there are a few exceptions to this, most
notably the best optimum is only found by a single NCG run and a single pattern
search run.
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Figure 5: Comparison of gradient-based algorithms using Dataset 1 with R = 0.3.
The learning curves are medians of 30 different initializations. Note that the time
scale is logarithmic.

Different algorithms can also be compared with different values of R. For each
value, the experiment was repeated 30 times with different initializations and the
CPU times shown in Figure 7 are the medians of these experiments. It can be seen
that with small values of R NCG outperforms VB EM while with large values of R
VB EM performs better. Curiously, VB EM with pattern searches seems to achieve
good results with all values of R. All algorithms achieved approximately the same
cost function values in this experiment so the CPU times shown can be compared
directly.

One of the most important features of an algorithm is how it performs as the number
of data points becomes larger. This was studied using Dataset 1 with R = 0.3 by
changing the number of data points N . For each value of N , the experiment was
repeated 30 times with different initializations. Figure 8 shows the median CPU time
per data point required for the convergence of the algorithms. Once again, there are
no big differences in the cost function values achieved by the algorithms so the CPU
times can be compared directly. It can be seen that NCG scales better than the
other algorithms as the number of data points grows. Especially the performance
of VB EM is greatly reduced with a large number of data points.
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(a) (b)

Figure 6: Comparison of algorithms using Dataset 1 with R = 0.3. Figure (a) shows
the median cost of 30 runs as a function of CPU time while Figure (b) shows the
final cost when the algorithms have converged and the corresponding CPU time for
all the 30 initializations.

Figure 7: The median total CPU time required for convergence as a function of R
in Dataset 1.
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Figure 8: The median total CPU time divided by the number of data points N as a
function of N using Dataset 1 with R = 0.3.

5.2.2 Dataset 2

Experimental results acquired when using Dataset 2 are shown in Figure 9. From
the median learning curves of Figure 9(a), it can be seen that the performance of the
algorithms is almost identical. Some differences can however be noted by looking at
Figure 9(b) which shows the CPU time and cost function value when the algorithms
have converged for all the 30 initializations. It can be seen that the best optimum is
achieved by 5 NCG runs compared to 3 for VB EM and only a single run for pattern
search.

5.2.3 Dataset 3

Using Dataset 3, the results shown in Figure 10 are acquired. It can be seen both by
looking at the learning curves of Figure 10(a) and the convergence results of Figure
10(b) that NCG clearly outperforms the other algorithms. It should be especially
noted that the best optima are only achieved by NCG.



29

(a) (b)

Figure 9: Comparison of algorithms using Dataset 2. Figure (a) shows the median
learning curves while Figure (b) shows the results of the individual initializations.

(a) (b)

Figure 10: Comparison of algorithms using Dataset 3. Figure (a) shows the median
learning curves while Figure (b) shows the results of the individual initializations.
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5.3 Image Data

In order to be able to compare the different algorithms using real-world data the
algorithms were applied to the task of image segmentation. The goal is to divide a
digital image into meaningful regions so that some characteristic of the image signif-
icantly changes on the boundary of two regions. This can be achieved, for example,
by fitting a mixture of Gaussians to the image data which is interpreted so that each
pixel of the image is a five dimensional data point with three color coordinates and
two spatial coordinates. Segmented regions of the image can then be constructed
using the responsibilities as a measure of which region each pixel should be part
of. It should be noted that in the variational approach the number of regions does
not have to be determined beforehand but is instead selected automatically during
learning. It should also be emphasized that there exists many other algorithms
more suitable for image segmentation than the ones used here. Image segmentation
is used here simply in order to easily obtain real-world data where the results of the
experiments are easily visualized.

The image datasets used are shown in Figure 11. Dataset 5 is a 100×66 pixel image
of a swan where the desired outcome of the segmentation is clearly the separation
of the swan and the background. Dataset 6 is a 200 × 133 pixel image of a rose
where the desired outcome of the segmentation is not as clear especially when the
background is considered.

(a) Dataset 4 (b) Dataset 5

Figure 11: Image datasets used in the image segmentation task.

5.3.1 Dataset 4

Comparison of NCG, VB EM and VB EM with pattern searches using Dataset 4
produces results shown on Figure 12. From the median learning curves of Figure
12(a), it can be seen that the initial convergence of NCG is faster than with the
other algorithms but nevertheless no big differences in the convergence speed to
the final optimum are observed. Examination of Figure 12(b), however, reveals an
interesting phenomenon. The best optimum is reached with 16 NCG runs out of a
total of 30 while both in the case of VB EM and pattern search only 3 runs reached
the best optimum. Although the difference in the best cost function value of -2.002
and the second best value of -1.999 is small, there is a big difference in the outcome
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of the segmentation task. This can be seen by plotting the responsibilities of each
Gaussian component in the final solution. This is done in Figure 13 where white
represents responsibility 1 and black responsibility 0. It can be seen that the best
optimum represents the desired solution of segmentation into two regions while the
second best optimum represents a situation where the image is segmented into three
regions.

(a) (b)

Figure 12: Comparison of algorithms using Dataset 4. Figure (a) shows the median
learning curves while Figure (b) shows the results of the individual initializations.

(a) Best, region 1 (b) Best, region 2

(c) 2nd best, region 1 (d) 2nd best, region 2 (e) 2nd best, region 3

Figure 13: Visual comparison of the best and the second best optimum found in
the case of Dataset 4. It can be seen that the second best optimum represents a
situation where the image is divided into three regions instead of the desired two
regions.
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5.3.2 Dataset 5

Results with Dataset 5 are shown in Figure 14. By looking at the learning curves
of Figure 14(a), it is clear that the median performance of VB EM and VB EM
with pattern searches is superior to NCG. On the other hand, Figure 14(b) reveals
that the best optimum of -1600 is only reached by a single NCG run while the best
cost function value reached by VB EM is -1400. The difference of these optima is
visualized in Figure 15 where it can be seen that the main difference is that NCG
has been able to distinguish the leaves to the left of the rose from the background.
Comparison of these optima is, however, much more difficult than in the case of the
previous dataset. It should also be noted that, unlike Dataset 4, there is a large
amount of different optima that the algorithms can converge into. This is a result
of the image of Dataset 5 being, as far as segmentation is concerned, much more
complex than the image of Dataset 4.

(a) (b)

Figure 14: Comparison of algorithms using Dataset 5. Figure (a) shows the median
learning curves while Figure (b) shows the results of the individual initializations.
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(a) Best, region 1 (b) Best, region 2 (c) Best, region 3 (d) Best, region 4

(e) Best, region 5 (f) Best, region 6 (g) Best, region 7 (h) Best, region 8

(i) 2nd best, region 1 (j) 2nd best, region 2 (k) 2nd best, region 3 (l) 2nd best, region 4

(m) 2nd best, region 5 (n) 2nd best, region 6 (o) 2nd best, region 7 (p) 2nd best, region 8

Figure 15: Visual comparison of the best and the second best optimum found in the
case of Dataset 5. It can be seen that the main difference of the optima is that in the
best optimum the leaves to the left of the rose in Figure (h) have been segmented
from the background.
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6 Discussion

By looking at the experimental results of Section 5, it can be said that NCG clearly
outperforms other gradient-based algorithms. This is in keeping with the previous
results using NCG [12]. It can also be said that NCG is highly competitive against
algorithms based on VB EM. While in many cases the median performance of NCG
is fairly close to algorithms based on VB EM, it seems to generally find the best
optimum more often than the other algorithms. With the current implementation,
it is up to the dataset which algorithm performs the best.

Although in some cases the pattern search acceleration of VB EM provides only
a subtle performance improvement, the results shown in Figure 7 suggest that the
pattern searches approach might perform well with a variety of datasets where one
of the other algorithms produces suboptimal results. Because of its easy derivation,
implementation and potential for great performance improvement, it is a worthwhile
way to improve the performance of existing VB EM implementations.

It might also be possible to further improve the performance of NCG. The CPU time
required by the algorithm is mainly spent on two things: on the evaluation of the
gradient and on performing the line search. Therefore, it would be worthwhile to
study how various other line search methods compare against the quadratic search
used here. It might also be possible to completely eliminate the need for a line
search by using a scaled conjugate gradient algorithm [15] with natural gradient.
Application of the natural gradient to other state-of-the-art nonlinear optimiza-
tion methods might also be a possible subject of future study. Another interesting
unexplored question is how the NCG algorithm would perform if line search was
conducted along a geodesic of the Riemannian manifold.

Further research is also required on determining exactly what kind of data is most
suitable for the NCG algorithm. It is known that EM-like algorithms are prone
to slow convergence in situations where the inference of latent variables is difficult,
such as in the case of the cluster data of Dataset 1 when the clusters are overlapping
[22]. Based on the results shown in Figure 7, it can be said that NCG seems to be
superior to VB EM in such cases. Interestingly, the pattern search method seems to
also remarkably improve the performance of VB EM with such data. Additionally,
the results shown in Figure 8 suggest that when the number of data points is large
it might be beneficial to use NCG although further experiments with other datasets
are needed to verify this.
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7 Conclusions

The aim of this thesis was to gain knowledge on the performance of the natural
conjugate gradient algorithm on learning models in the conjugate-exponential family.
When compared to the standard algorithm for performing variational inference in
this family of models, the VB EM algorithm, we acquired experimental data which
suggests that the NCG algorithm is highly competitive with VB EM when used
to learn the mixture of Gaussians model. Especially the quality of the optima
found using NCG seems to outperform VB EM in some cases. It should also be
emphasized that while being a fairly complex algorithm to derive and implement,
NCG generalizes to a much broader family of models than VB EM.

On the question of which one of the compared algorithms is the best choice for
variational learning of the mixture of Gaussians model, it is fairly easy to conclude
that given its simplicity and good performance across a wide range of datasets VB
EM accelerated with pattern searches is the best choice. However, with certain types
of data, NCG does provide better performance than the other algorithms, especially
when it comes to the quality of the optima.
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Appendix A: Probability Distributions

Dirichlet Distribution

The Dirichlet distribution is a multidimensional probability distribution whose prob-
ability density function is given by [5]

Dir(π|α) = C(α)
K∏
k=1

παk−1
k (A1)

where π = [π1 · · · πK ]T and α = [α1 · · ·αK ]T . Here the normalizing constant is given
by

C(α) =
Γ(α̂)∏K

k=1 Γ(αk)
(A2)

where Γ(·) is the gamma function and

α̂ =
K∑
k=1

αk. (A3)

The continuous random variable π of the Dirichlet distribution must satisfy the
constraints

0 ≤ πk ≤ 1, k = 1 . . . K (A4)

and
K∑
k=1

πk = 1, k = 1 . . . K. (A5)

In order for the Dirichlet distribution to be normalized, the parameters αk must also
satisfy the condition αk > 0. For Dirichlet distribution, it holds that E {πk} = αk/α̂.

Gaussian Distribution

The probability density function of a one dimensional Gaussian distribution is given
by the famous bell curve

N (x|µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(A6)

where the distribution is parametrized by the mean µ and the variance σ2 > 0.

The Gaussian distribution can be generalized to the case of multidimensional random
variables as follows [5]:

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(A7)
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where x is a D dimensional continuous random variable and the distribution is
parametrized by the mean µ and the symmetric, positive definite covariance matrix
Σ. The inverse of the covariance matrix Λ = Σ−1 is called the precision matrix
which is also symmetric and positive definite. For the multidimensional Gaussian
distribution, it holds that E {x} = µ as one would expect by analogy to the one
dimensional case.

Wishart Distribution

The Wishart distribution arises in Bayesian inference as the conjugate prior of the
precision matrix of the multidimensional Gaussian distribution. Its probability den-
sity function is given by [5]

W(Λ|W, ν) = B(W, ν)|Λ|(ν−D−1)/2 exp

(
−1

2
Tr(W−1Λ)

)
(A8)

where

B(W, ν) = |W|−ν/2
(

2νD/2πD(D−1)/4

D∏
i=1

Γ

(
ν + 1− i

2

))−1

. (A9)

The Wishart distribution is parametrized by a symmetric, positive definite matrix
W of order D×D and the degrees of freedom parameter ν > D− 1. The following
results apply to the expectation and entropy of the Wishart distribution:

E {Λ} = νW (A10)

E {ln |Λ|} =
D∑
i=1

ψ

(
ν + 1− i

2

)
+D ln 2 + ln |W| (A11)

H{Λ} = − lnB(W, ν)− ν −D − 1

2
E {ln |Λ|}+

νD

2
(A12)

where ψ(·) denotes the digamma function defined by Equation (50).
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Appendix B: Derivation of Equations for Section

4.4

In this appendix, we will derive Equations (71) and (72) which are needed for the
evaluation of the gradient ∇m,γ C of the cost function (60) with respect to the means
mk and the parameters γnk. We will also derive the Riemannian metric tensor given
in Equation (77). We will be using the cyclic property of traces

Tr(ABC) = Tr(CAB) = Tr(BCA) (B1)

as well as the chain rule for several variables

f(x(t))⇒ ∂f

∂t
= (∇xf)T

∂x

∂t
. (B2)

We will also need the following lemma.

Lemma 1. Let x and b be D dimensional column vectors and C a square matrix
of the order D ×D. Then it holds that

∇x(x + b)TC(x + b) = (C + CT )(x + b). (B3)

Proof. For the quadratic form (x + b)TC(x + b) it holds that

(x + b)TC(x + b) =
D∑

m=1

D∑
n=1

Cmn(x + b)m(x + b)n =

D∑
m=1

D∑
n=1

Cmn(xm + bm)(xn + bn).

Thus, the derivative with respect to variable xi is

∂

∂xi
(x + b)TC(x + b)

=
∂

∂xi

D∑
m=1

D∑
n=1

Cmn(xm + bm)(xn + bn)

=
∂

∂xi

D∑
n=1,n6=i

Cin(xi + bi)(xn + bn) +
∂

∂xi

D∑
m=1,m 6=i

Cmi(xm + bm)(xi + bi)

+
∂

∂xi
Cii(xi + bi)(xi + bi)

=
D∑

n=1,n 6=i

Cin(xn + bn) +
D∑

m=1,m 6=i

Cmi(xm + bm) + 2Cii(xi + bi)

=
D∑
n=1

Cin(xn + bn) +
D∑

m=1

Cmi(xm + bm)
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=
D∑
n=1

(Cin + Cni)(xn + bn)

=
D∑
n=1

(Cin + CT
in)(xn + bn)

=
D∑
n=1

(C + CT )in(x + b)n.

It follows that

∇x(x + b)TC(x + b) =


∂x1

...
∂xi

...
∂xD

 (x + b)TC(x + b) = (C + CT )(x + b).

It immediately follows from Equation (B3) that if C is symmetric, it holds that

∇x(x + b)TC(x + b) = 2C(x + b). (B4)

Derivation of ∇mk
C

Let us first derive Equation (71). Consider the terms of the cost function (60) which
depend on parameter mk

Cmk
=

1

2
Nkνk(xk −mk)

TWk(xk −mk) +
1

2
β0νk(mk −m0)TWk(mk −m0).

As a parameter of the Wishart distribution, the matrix Wk is symmetric and thus

∇mk
C

=∇mk
Cmk

=
1

2
Nkνk∇mk

(mk − xk)
TWk(mk − xk) +

1

2
β0νk∇mk

(mk −m0)TWk(mk −m0)

=NkνkWk(mk − xk) + β0νkWk(mk −m0)

=νkWk(Nk(mk − xk) + β0(mk −m0))

which gives us Equation (71).

Derivation of ∂γij
C

Derivation of Equation (72) is a more difficult task. Let us first consider the terms
of the cost function (60) that have dependence on the softmax parameters γnk, n =
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1 . . . N, k = 1 . . . K

Cγ =
N∑
n=1

K∑
k=1

rnk ln rnk −
N∑
n=1

K∑
k=1

rnk ln π̃k −
1

2

K∑
k=1

Nk

{
ln Λ̃k −

D

βk
− νk Tr(SkWk)

− νk(xk −mk)
TWk(xk −mk)−D ln 2π

}
=

N∑
n=1

K∑
k=1

rnk(ln rnk − ln π̃k)−
1

2

K∑
k=1

Nk

{
ln Λ̃k −

D

βk
− νk Tr(SkWk)

− νk(xk −mk)
TWk(xk −mk)−D ln 2π

}
.

It should be emphasized that due to Equations (45), (46) and (47) also Nk, xk and
Sk depend on γnk. Now, let us make the following definitions:

Cγ1 =
N∑
n=1

K∑
k=1

rnk(ln rnk − ln π̃k)

Cγ2 =
K∑
k=1

Nk

{
ln Λ̃k −

D

βk
− νk Tr(SkWk)− νk(xk −mk)

TWk(xk −mk)−D ln 2π

}
.

With this notation, Equation (72) is given by

∂C
∂γij

=
∂Cγ
∂γij

=
∂Cγ1
∂γij

− 1

2

∂Cγ2
∂γij

. (B5)

Let us first derive an expression for ∂γij
Cγ1 . By using the definition of the softmax

parametrization (68), we get

∂Cγ1
∂γij

=
∂

∂γij

N∑
n=1

K∑
k=1

eγnk∑K
l=1 e

γnl

(
γnk − ln

K∑
l=1

eγnl − ln π̃k

)

=
∂

∂γij

K∑
k=1

eγik∑K
l=1 e

γil

(
γik − ln

K∑
l=1

eγil − ln π̃k

)

=
∂

∂γij

1∑K
l=1 e

γil

K∑
k=1

eγik

(
γik − ln

K∑
l=1

eγil − ln π̃k

)

=

(
∂

∂γij

1∑K
l=1 e

γil

)
K∑
k=1

eγik

(
γik − ln

K∑
l=1

eγil − ln π̃k

)

+
1∑K

l=1 e
γil

∂

∂γij

K∑
k=1

eγik

(
γik − ln

K∑
l=1

eγil − ln π̃k

)
.
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Here we can evaluate

∂

∂γij

1∑K
l=1 e

γil

= − eγij

(
∑K

l=1 e
γil)2

and

∂

∂γij

K∑
k=1

eγik

(
γik − ln

K∑
l=1

eγil − ln π̃k

)

=
∂

∂γij

{
K∑
k=1

eγikγik −
K∑
k=1

(
eγik ln

K∑
l=1

eγil

)
−

K∑
k=1

eγik ln π̃k

}

=
∂

∂γij
eγijγij −

∂

∂γij

(
K∑
k=1

eγik ln
K∑
l=1

eγil

)
− eγij ln π̃j

=eγij + eγijγij −

(
∂

∂γij

K∑
k=1

eγik

)
ln

K∑
l=1

eγil −
K∑
k=1

eγik
∂

∂γij
ln

K∑
l=1

eγil − eγij ln π̃j

=eγij + eγijγij − eγij ln
K∑
l=1

eγil −
K∑
k=1

eγik
1∑K

l=1 e
γil

eγij − eγij ln π̃j

=eγij

(
γij − ln

K∑
l=1

eγil − ln π̃j

)
.

We can now write

∂Cγ1
∂γij

=− eγij

(
∑K

l=1 e
γil)2

K∑
k=1

eγik

(
γik − ln

K∑
l=1

eγil − ln π̃k

)
+

eγij∑K
l=1 e

γil

(
γij − ln

K∑
l=1

eγil − ln π̃j

)

=− eγij∑K
l=1 e

γil

K∑
k=1

eγik∑K
l=1 e

γil

(
ln

eγik∑K
l=1 e

γil

− ln π̃k

)
+

eγij∑K
l=1 e

γil

(
ln

eγij∑K
l=1 e

γil

− ln π̃j

)

=− rij
K∑
k=1

rik(ln rik − ln π̃k) + rij(ln rij − ln π̃j). (B6)

Let us now consider the derivative

∂Cγ2
∂γij

=
∂

∂γij
Nj

{
ln Λ̃j −

D

βj
− νj Tr(SjWj)− νj(xj −mj)

TWj(xj −mj)−D ln 2π

}
+

∂

∂γij

K∑
k=1,k 6=j

Nk

{
ln Λ̃k −

D

βk
− νk Tr(SkWk)− νk(xk −mk)

TWk(xk −mk)−D ln 2π

}
.

(B7)
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We will first derive an expression for the first one of these two terms

∂

∂γij
Nj

{
ln Λ̃j −

D

βj
− νj Tr(SjWj)− νj(xj −mj)

TWj(xj −mj)−D ln 2π

}
=

(
∂

∂γij
Nj

)
{. . . }+Nj

∂

∂γij
{. . . }. (*)

Using Equation (45) we can write

∂

∂γij
Nj

=
∂

∂γij

N∑
n=1

rnj

=
∂

∂γij

N∑
n=1

eγnj∑K
l=1 e

γnl

=
∂

∂γij

eγij∑K
l=1 e

γil

=
eγij∑K
l=1 e

γil

−

(
eγij∑K
l=1 e

γil

)2

=rij − r2
ij. (*)

We can further write

∂

∂γij

{
ln Λ̃j −

D

βj
− νj Tr(SjWj)− νj(xj −mj)

TWj(xj −mj)−D ln 2π

}
=− νj

∂

∂γij
Tr(SjWj)− νj

∂

∂γij
(xj −mj)

TWj(xj −mj). (*)

Here we can write using the symmetry of the matrix Wj as well as Equations (B2)
and (B4)

∂

∂γij
(xj −mj)

TWj(xj −mj)

=
(
∇xj

(xj −mj)
TWj(xj −mj)

)T ∂xj
∂γij

=(2Wj(xj −mj))
T ∂xj
∂γij
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=2(xj −mj)
TWj

∂xj
∂γij

.

Using Equation (46), the derivative of xj is given by

∂xj
∂γij

=
∂

∂γij

1

Nj

N∑
n=1

rnjxn

=

(
∂

∂γij

1

Nj

) N∑
n=1

rnjxn +
1

Nj

∂

∂γij

eγij∑K
l=1 e

γil

xi

=−
rij − r2

ij

N2
j

N∑
n=1

rnjxn +
rij − r2

ij

Nj

xi

=
rij − r2

ij

Nj

(xi − xj).

Combining these results we get

∂

∂γij
(xj −mj)

TWj(xj −mj) = −2
rij − r2

ij

Nj

(xj −mj)
TWj(xj − xi). (*)

Returning to the derivative ∂γij
Tr(SjWj), we can use the linearity of the trace along

with Equations (47) and (B1) to write

∂

∂γij
Tr(SjWj)

=
∂

∂γij
Tr

(
1

Nj

N∑
n=1

rnj(xn − xj)(xn − xj)
TWj

)

=
∂

∂γij

1

Nj

N∑
n=1

rnj Tr((xn − xj)(xn − xj)
TWj)

=
∂

∂γij

1

Nj

N∑
n=1

rnj Tr((xn − xj)
TWj(xn − xj))

=
∂

∂γij

1

Nj

N∑
n=1

rnj(xn − xj)
TWj(xn − xj)

=−
rij − r2

ij

N2
j

N∑
n=1

rnj(xj − xn)TWj(xj − xn)

+
1

Nj

∂

∂γij

N∑
n=1

rnj(xj − xn)TWj(xj − xn). (*)
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The derivative here is given by

∂

∂γij

N∑
n=1

rnj(xj − xn)TWj(xj − xn)

=
∂

∂γij
rij(xj − xi)

TWj(xj − xi) +
∂

∂γij

N∑
n=1,n 6=i

rnj(xj − xn)TWj(xj − xn)

=

(
∂

∂γij
rij

)
(xj − xi)

TWj(xj − xi) + rij
∂

∂γij
(xj − xi)

TWj(xj − xi)

+
N∑

n=1,n6=i

rnj
∂

∂γij
(xj − xn)TWj(xj − xn)

=

(
∂

∂γij

eγij∑K
l=1 e

γil

)
(xj − xi)

TWj(xj − xi) +
N∑
n=1

rnj
∂

∂γij
(xj − xn)TWj(xj − xn)

=(rij − r2
ij)(xj − xi)

TWj(xj − xi)− 2
rij − r2

ij

Nj

N∑
n=1

rnj(xj − xn)TWj(xj − xi). (*)

Combining the results marked with (*), we get

∂

∂γij
Nj

{
ln Λ̃j −

D

βj
− νj Tr(SjWj)− νj(xj −mj)

TWj(xj −mj)−D ln 2π

}
=(rij − r2

ij)

{
ln Λ̃j −

D

βj
− νj Tr(SjWj)− νj(xj −mj)

TWj(xj −mj)−D ln 2π

}
− νjNj

{
−
rij − r2

ij

N2
j

N∑
n=1

rnj(xj − xn)TWj(xj − xn) +
rij − r2

ij

Nj

(xj − xi)
TWj(xj − xi)

− 2
rij − r2

ij

N2
j

N∑
n=1

rnj(xj − xn)TWj(xj − xi)− 2
rij − r2

ij

Nj

(xj −mj)
TWj(xj − xi)

}
=(rij − r2

ij)

{
ln Λ̃j −

D

βj
− νj Tr(SjWj)− νj(xj −mj)

TWj(xj −mj)−D ln 2π

}
+ (−νjrij + νjr

2
ij)

{
(xj − xi)

TWj(xj − xi)− 2(xj −mj)
TWj(xj − xi)

− 1

Nj

N∑
n=1

rnj(xj − xn)TWj(xj − xn)− 2
1

Nj

N∑
n=1

rnj(xj − xn)TWj(xj − xi)

}
.

(B8)

We will next consider the second term of Equation (B7). Keeping in mind that
k 6= j, we can write

∂

∂γij

K∑
k=1,k 6=j

Nk

{
ln Λ̃k −

D

βk
− νk Tr(SkWk)− νk(xk −mk)

TWk(xk −mk)−D ln 2π

}
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=
K∑

k=1,k 6=j

∂

∂γij
Nk{. . . }

=
K∑

k=1,k 6=j

(
∂

∂γij
Nk

)
{. . . }+

K∑
k=1,k 6=j

Nk
∂

∂γij
{. . . }. (*)

Equation (45) now gives us

∂

∂γij
Nk

=
∂

∂γij

N∑
n=1

eγnk∑K
l=1 e

γnl

=
∂

∂γij

eγik∑K
l=1 e

γil

=− eγikeγij

(
∑K

l=1 e
γil)2

=− rijrik. (*)

We can also write

∂

∂γij

{
ln Λ̃k −

D

βk
− νk Tr(SkWk)− νk(xk −mk)

TWk(xk −mk)−D ln 2π

}
=− νk

∂

∂γij
Tr(SkWk)− νk

∂

∂γij
(xk −mk)

TWk(xk −mk). (*)

Here the latter derivative is given by

∂

∂γij
(xk −mk)

TWk(xk −mk)

=2(xk −mk)
TWk

∂xk
∂γij

where the derivative of xk is given by

∂xk
∂γij

=
∂

∂γij

1

Nk

N∑
n=1

rnkxn

=

(
∂

∂γij

1

Nk

) N∑
n=1

rnkxn +
1

Nk

∂

∂γij

eγik∑K
l=1 e

γil

xi

=
rijrik
N2
k

N∑
n=1

rnkxn −
rijrik
Nk

xi
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=
rijrik
Nk

(xk − xi).

Thus, we can write

∂

∂γij
(xk −mk)

TWk(xk −mk) = 2
rijrik
Nk

(xk −mk)
TWk(xk − xi). (*)

In accordance with our previous discussion, we can also write

∂

∂γij
Tr(SkWk)

=
∂

∂γij

1

Nk

N∑
n=1

rnk(xk − xn)TWk(xk − xn)

=
rijrik
N2
k

N∑
n=1

rnk(xk − xn)TWk(xk − xn)

+
1

Nk

∂

∂γij

N∑
n=1

rnk(xk − xn)TWk(xk − xn). (*)

The derivative here is given by

∂

∂γij

N∑
n=1

rnk(xk − xn)TWk(xk − xn)

=
∂

∂γij
rik(xk − xi)

TWk(xk − xi) +
∂

∂γij

N∑
n=1,n6=i

rnk(xk − xn)TWk(xk − xn)

=

(
∂

∂γij

eγik∑K
l=1 e

γil

)
(xk − xi)

TWk(xk − xi) + rik
∂

∂γij
(xk − xi)

TWk(xk − xi)

+
N∑

n=1,n 6=i

rnk
∂

∂γij
(xk − xn)TWk(xk − xn)

=− rijrik(xk − xi)
TWk(xk − xi) +

N∑
n=1

rnk
∂

∂γij
(xk − xn)TWk(xk − xn)

=− rijrik(xk − xi)
TWk(xk − xi) + 2

rijrik
Nk

N∑
n=1

rnk(xk − xn)TWk(xk − xi). (*)

Combining the results marked with (*) gives us

∂

∂γij

K∑
k=1,k 6=j

Nk

{
ln Λ̃k −

D

βk
− νk Tr(SkWk)− νk(xk −mk)

TWk(xk −mk)−D ln 2π

}

=
K∑

k=1,k 6=j

−rijrik
{

ln Λ̃k −
D

βk
− νk Tr(SkWk)− νk(xk −mk)

TWk(xk −mk)−D ln 2π

}
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+
K∑

k=1,k 6=j

−νkNk

{
rijrik
N2
k

N∑
n=1

rnk(xk − xn)TWk(xk − xn)− rijrik
Nk

(xk − xi)
TWk(xk − xi)

+ 2
rijrik
N2
k

N∑
n=1

rnk(xk − xn)TWk(xk − xi) + 2
rijrik
Nk

(xk −mk)
TWk(xk − xi)

}

=
K∑

k=1,k 6=j

−rijrik
{

ln Λ̃k −
D

βk
− νk Tr(SkWk)− νk(xk −mk)

TWk(xk −mk)−D ln 2π

}

+
K∑

k=1,k 6=j

νkrijrik

{
(xk − xi)

TWk(xk − xi)− 2(xk −mk)
TWk(xk − xi)

− 1

Nk

N∑
n=1

rnk(xk − xn)TWk(xk − xn)− 2
1

Nk

N∑
n=1

rnk(xk − xn)TWk(xk − xi)

}
.

(B9)

By combining the results (B7), (B8) and (B9), we get

∂Cγ2
∂γij

=rij

{
ln Λ̃j −

D

βj
− νj Tr(SjWj)− νj(xj −mj)

TWj(xj −mj)−D ln 2π

}
− νjrij

{
(xj − xi)

TWj(xj − xi)− 2(xj −mj)
TWj(xj − xi)

− 1

Nj

N∑
n=1

rnj(xj − xn)TWj(xj − xn)− 2
1

Nj

N∑
n=1

rnj(xj − xn)TWj(xj − xi)

}

−
K∑
k=1

rijrik

{
ln Λ̃k −

D

βk
− νk Tr(SkWk)− νk(xk −mk)

TWk(xk −mk)−D ln 2π

}

+
K∑
k=1

νkrijrik

{
(xk − xi)

TWk(xk − xi)− 2(xk −mk)
TWk(xk − xi)

− 1

Nk

N∑
n=1

rnk(xk − xn)TWk(xk − xn)− 2
1

Nk

N∑
n=1

rnk(xk − xn)TWk(xk − xi)

}

=rijAj − νjrijBij −
K∑
k=1

rijrikAk +
K∑
k=1

νkrijrikBik (B10)

where we have defined

Aj = ln Λ̃j −
D

βj
− νj Tr(SjWj)− νj(xj −mj)

TWj(xj −mj)−D ln 2π

and

Bij =(xj − xi)
TWj(xj − xi)− 2(xj −mj)

TWj(xj − xi)
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− 1

Nj

N∑
n=1

rnj(xj − xn)TWj(xj − xn)− 2
1

Nj

N∑
n=1

rnj(xj − xn)TWj(xj − xi).

Note that

Tr(SjWj) =
1

Nj

N∑
n=1

rnj(xj − xn)TWj(xj − xn)

and due to Equations (45) and (46)

1

Nj

N∑
n=1

rnj(xj − xn)TWj(xj − xi)

=

(
1

Nj

N∑
n=1

rnj(xj − xn)T

)
Wj(xj − xi)

=

(
1

Nj

N∑
n=1

rnj(xj − xn)

)T

Wj(xj − xi)

=

(
1

Nj

N∑
n=1

rnjxj −
1

Nj

N∑
n=1

rnjxn

)T

Wj(xj − xi)

=

(
1

Nj

xjNj − xj

)T
Wj(xj − xi)

=0.

Thus, Bij simplifies to

Bij =(xj − xi)
TWj(xj − xi)− 2(xj −mj)

TWj(xj − xi)− Tr(SjWj).

We can now combine the results (B5), (B6) and (B10) to get

∂C
∂γij

=rij

(
K∑
k=1

−rik(ln rik − ln π̃k) + (ln rij − ln π̃j)−
1

2
(Aj − νjBij) +

K∑
k=1

1

2
rik(Ak − νkBik)

)

=rij

(
ln rij − ln π̃j −

1

2
(Aj − νjBij)−

K∑
k=1

rik

{
ln rik − ln π̃k −

1

2
(Ak − νkBik)

})
.

Here we can write

ln rik − ln π̃k −
1

2
(Ak − νkBik)

= ln rik − ln π̃k −
1

2

(
ln Λ̃k −

D

βk
− νk Tr(SkWk)− νk(xk −mk)

TWk(xk −mk)−D ln 2π
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− νk(xk − xi)
TWk(xk − xi) + 2νk(xk −mk)

TWk(xk − xi) + νk Tr(SkWk)

)
= ln rik − ln π̃k −

1

2

(
ln Λ̃k −

D

βk
−D ln 2π

− νk((xk −mk)
TWk(xk −mk)− 2(xk −mk)

TWk(xk − xi) + (xk − xi)
TWk(xk − xi))

)
.

Because it holds for symmetric matrices M that

(a− b)TM(a− b)− 2(a− b)TM(a− c) + (a− c)TM(a− c)

=(a− b)TM(a− b)− (a− b)TM(a− c)− (a− b)TM(a− c) + (a− c)TM(a− c)

=(a− b)TM((a− b)− (a− c)) + (−(a− b)T + (a− c)T )M(a− c)

=(a− b)TM(c− b) + (b− c)TM(a− c)

=((c− b)TM(a− b))T − (c− b)TM(a− c)

=(c− b)TM(a− b)− (c− b)TM(a− c)

=(c− b)TM((a− b)− (a− c))

=(c− b)TM(c− b),

we can further simplify this to give

ln rik − ln π̃k −
1

2
(Ak − νkBik)

= ln rik − ln π̃k −
1

2

(
ln Λ̃k −

D

βk
−D ln 2π − νk(xi −mk)

TWk(xi −mk)

)
.

When we now define

Eik = rik

{
ln rik − ln π̃k −

1

2

(
ln Λ̃k −

D

βk
−D ln 2π − νk(xi −mk)

TWk(xi −mk)

)}
and

Fi =
K∑
k=1

Eik,

we can write

∂C
∂γij

= Eij − rij
K∑
k=1

Eik = Eij − rijFi

which finally gives us Equation (72).
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Derivation of the Riemannian metric tensor G

We will now proceed to derive the Riemannian metric tensor G of Equation (77).
The elements gij of matrix G are given by Equation (26) where the approximate
distribution q(θ,Z|ξ) is given by Equations (40), (41) and (42), namely

q(Z,π,µ,Λ) =
N∏
n=1

K∏
k=1

rznk
nk q(π)

K∏
k=1

q(µk,Λk). (B11)

It should be noted that because we are taking the gradient with respect to only the
means mk and the softmax parameters γnk, the approximate distribution of Equation
(B11) is regarded as a function of only the parameters γnk, n = 1 . . . N,K = 1 . . . K−
1 and the elements of the mean vectors mdk, d = 1 . . . D, k = 1 . . . K. Because of the
factorization of Equation (B11) is holds that

ln q(Z,π,µ,Λ) =
N∑
n=1

K∑
k=1

znk ln rnk + ln q(π) +
K∑
k=1

ln q(µk,Λk). (B12)

Now we can immediately see that

− ∂2 ln q(Z,π,µ,Λ)

∂mdk1∂γnk2
= 0

− ∂2 ln q(Z,π,µ,Λ)

∂md1k1∂md2k2

= 0, k1 6= k2

− ∂2 ln q(Z,π,µ,Λ)

∂γn1k1∂γn2k2

= 0, n1 6= n2

and thus the matrix G becomes block diagonal with K square blocks of size D×D
corresponding to the means mk and N square blocks of size (K − 1) × (K − 1)
corresponding to the responsibilities of each observation.

Let us proceed to derive the diagonal blocks of matrix G. It holds that

ln q(µk,Λk)

= lnN (µk|mk, (βkΛk)
−1) + lnW(Λk|Wk, νk)

=− D

2
ln 2π − 1

2
ln |(βkΛk)

−1| − βk
2

(µk −mk)
TΛk(µk −mk) + lnW(Λk|Wk, νk)

and thus

− ∂2 ln q(Z,π,µ,Λ)

∂md1k∂md2k

=− ∂2

∂md1k∂md2k

ln q(µk,Λk)

=
βk
2

∂2

∂md1k∂md2k

(µk −mk)
TΛk(µk −mk)
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=
βk
2

∂

∂md1k

∂

∂md2k

(µk −mk)
TΛk(µk −mk)

=βk
∂

∂md1k

D∑
i=1

(Λk)d2i(mk − µk)i

=βk
∂

∂md1k

(Λk)d2d1(md1k − µd1k)

=βk(Λk)d2d1
=(βkΛk)d2d1

where we have used similar reasoning for the expression of the derivative of the
quadratic form (µk−mk)

TΛk(µk−mk) as in the derivation of Equation (B3). The
corresponding element of matrix G is then given by

Eq(Z,π,µ,Λ)

{
−∂

2 ln q(Z,π,µ,Λ)

∂md1k∂md2k

}
=Eq(Z,π,µ,Λ) {(βkΛk)d2d1}
=Eq(µk,Λk) {(βkΛk)d2d1}

=

∫
µk,Λk

(βkΛk)d2d1N (µk|mk, (βkΛk)
−1)W(Λk|Wk, νk)dµkdΛk

=

∫
Λk

(βkΛk)d2d1W(Λk|Wk, νk)dΛk

=βkνk(Wk)d1d2

where the expectation over the Wishart distribution is given by Equation (A10).
Consequently, the matrices Ak in Equation (77) are given by Ak = βkνkWk.

Similarly, when k1 6= k2

− ∂2 ln q(Z,π,µ,Λ)

∂γnk1∂γnk2

=− ∂

∂γnk1

∂

∂γnk2

K∑
k=1

znk ln rnk

=− ∂

∂γnk1

∂

∂γnk2

(
K∑
k=1

znkγnk −
K∑
k=1

znk ln
K∑
l=1

eγnl

)

=
∂

∂γnk1

∂

∂γnk2

K∑
k=1

znk ln
K∑
l=1

eγnl

=
∂

∂γnk1

∂

∂γnk2
ln

K∑
l=1

eγnl

=
∂

∂γnk1

eγnk2∑K
l=1 e

γnl

=− eγnk1eγnk2

(
∑K

l=1 e
γnl)2
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=− rnk1rnk2 .

Because the responsibilities are not random variables but parameters

Eq(Z,π,µ,Λ)

{
−∂

2 ln q(Z,π,µ,Λ)

∂γnk1∂γnk2

}
= Eq(Z,π,µ,Λ) {−rnk1rnk2} = −rnk1rnk2 , k1 6= k2.

When k1 = k2 = k, we get

− ∂2 ln q(Z,π,µ,Λ)

∂γnk∂γnk

=
∂

∂γnk

eγnk∑K
l=1 e

γnl

=eγnk
∂

∂γnk

1∑K
l=1 e

γnl

+
1∑K

l=1 e
γnl

∂

∂γnk
eγnk

=−

(
eγnk∑K
l=1 e

γnl

)2

+
eγnk∑K
l=1 e

γnl

=− r2
nk + rnk

and

Eq(Z,π,µ,Λ)

{
−∂

2 ln q(Z,π,µ,Λ)

∂γnk∂γnk

}
= Eq(Z,π,µ,Λ)

{
−r2

nk + rnk
}

= −r2
nk + rnk.

Thus, the matrices Bn of Equation (77) are given by Bn = −rTnrn + diag(rn) where
rn = [rn1 · · · rnK−1].
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Appendix C: Suomenkielinen yhteenveto

Bayesilainen päättely on stokastinen menetelmä, joka mahdollistaa todennäköisyyk-
sien antamisen jonkin suureen erilaisille arvoille perustuen käyttäjän ennakko-odo-
tuksiin eli priorijakaumaan. Näin saatua todennäköisyysjakaumaa kutsutaan poste-
riorijakaumaksi. Koneoppimisessa bayesilaista päättelyä käytetään estimoimaan da-
taa kuvaavan mallin parametreja. Tällöin bayesilaisen päättelyn ydinajatus voidaan
kiteyttää Bayesin kaavaan

p(θ,Z|X,M) =
p(X|θ,Z,M)p(θ,Z|M)

p(X|M)
, (C1)

jossa θ on malliparametrit, Z latentit muuttujat eli jokaiseen havaintoon liittyvät
muuttujat, joita ei voida havaita suoraan, X havaittu data ja M mallioletukset.
Yhtälön vasen puoli on posteriorijakauma, joka kertoo todennäköisyyden eri mal-
liparametreille θ ja latenteille muuttujille Z, kun ollaan havaittu data X ja datan
kuvaamiseen käytetään mallia M. Kun posteriorijakaumasta otetaan odotusarvo,
voidaan bayesilaista päättelyä siten käyttää mallin M sovittamiseen dataan X.

Bayesilaisen päättelyn keskeinen ongelma on kuitenkin, että monesti laskut johtavat
integraaleihin, joiden laskeminen on hankalaa. Esimerkiksi yhtälön (C1) oikean puo-
len nimittäjässä olevaa jakaumaa p(X|M) ei pystytä useimmissa tosielämän tilan-
teissa laskemaan analyyttisesti. Jakauma voidaan määrittää numeerisesti käyttäen
Monte Carlo -integrointia, mutta tämä on monissa tilanteissa liian hidasta. Useim-
mat perinteiset approksimaatiot taas ylisovittavat mallin dataan. Tässä työssä tar-
kastellaan vaihtoehtoista, viime aikoina suosituksi noussutta approksimatiivista baye-
silaisen päättelyn menetelmää, joka tunnetaan nimellä variaatio-Bayes-oppiminen
(variational Bayesian learning) [11, 3, 5]. VB-oppimisessa todellinen posteriorija-
kauma korvataan toisella jakaumalla q, jonka poikkeamaa todellisesta posteriorija-
kaumasta kuvataan Kullback–Leibler-divergenssiin perustuvalla kustannusfunktiol-
la. Mitä pienempi kustannusfunktion arvo on, sitä paremmin approksimatiivinen
jakauma q kuvaa todellista posterioria. Kun jakauman q funktionaalista muotoa
rajoitetaan sopivasti, voidaan kustannusfunktion arvo laskea analyyttisesti.

Kun jakaumaa q rajoitetaan olettamalla malliparametrit ja latentit muuttujat riip-
pumattomiksi satunnaismuuttujiksi, päädytään niin sanottuun VB EM -algoritmiin
(variational Bayesian expectation maximization). VB EM on paljon tutkittu ja laa-
jalti käytössä oleva syklinen algoritmi, mutta valitettavasti se soveltuu vain rajoi-
tetun malliperheen oppimiseen. Erityisesti niin sanotun konjugaattieksponentiaali-
perheen ulkopuolisten mallien oppimisessa on pääsääntöisesti käytettävä muita me-
netelmiä.

Vaihtoehtoinen tapa suorittaa VB-oppimista on valita jakaumalle q jokin muoto ja
minimoida kustannusfunktio käyttäen sopivaa epälineaarista optimointimenetelmää.
Näistä menetelmistä yksinkertaisin on gradienttimenetelmä, jossa jakauman q pa-
rametriavaruudessa liikutaan kustannusfunktion negatiivisen gradientin suuntaan.
Menetelmää voidaan parantaa huomioimalla edellinen päivityssuunta, jolloin saa-
daan konjugaattigradienttimenetelmä.



56

Perinteiset gradienttimenetelmät pitävät kuitenkin kaikkia jakauman q parametre-
ja tasavertaisina, vaikka todellisuudessa niillä voi olla hyvinkin erilainen vaikutus
jakauman muotoon. Esimerkiksi Gaussin jakauman keskiarvon ja varianssin vaiku-
tus jakauman muotoon on huomattavan erilainen. Gradienttimenetelmää voidaankin
tehostaa tulkitsemalla parametriavaruus kaareutuneeksi Riemannin monistoksi laa-
kean euklidisen avaruuden sijaan. Tällöin perinteinen gradientti korvataan luonnolli-
sella gradientilla. Kun luonnollista gradienttia sovelletaan konjugaattigradienttime-
netelmään, saadaan luonnollinen konjugaattigradienttialgoritmi (natural conjugate
gradient, NCG) [12].

NCG:tä on tähän mennessä tutkittu käyttäen monimutkaista epälineaarista tila-
avaruusmallia (nonlinear state space model, NSSM), jonka oppimisessa se oli huo-
mattavasti muita gradienttipohjaisia menetelmiä tehokkaampi. NSSM:n monimut-
kaisuuden vuoksi NCG:tä ei kuitenkaan voitu verrata VB EM:ään. Tässä kandidaa-
tintyössä tämä vertailu suoritetaan käyttäen Gaussin mikstuuriksi kutsuttua mal-
lia, joka on usean moniulotteisen Gaussin jakauman lineaarikombinaationa saatava
konjugaattieksponentiaaliperheen malli, jonka oppimiseen VB EM:n tiedetään so-
veltuvan hyvin. Tätä varten työssä johdetaan ja implementoidaan NCG-algoritmi
Gaussin mikstuurin oppimiseen.

Gaussin mikstuurin tapauksessa VB EM -algoritmi toimii siten, että ensin päivitetään
latenttien muuttujien jakaumaa eli tietoa siitä, mistä Gaussin jakaumasta kukin
havainto on peräisin. Tätä kutsutaan E-askeleeksi. Tätä seuraavassa M-askeleessa
päivitetään malliparametrien jakaumaa eli Gaussin jakaumien keskiarvoja, kova-
rianssimatriiseja ja painoarvoja. Näin jatketaan, kunnes algoritmi konvergoi eli kus-
tannusfunktion arvo ei enää muutu. VB EM:ää voidaan nopeuttaa yhdistämällä
peräkkäisten E- ja M-askelten päivityssuunnat ja suorittamalla viivahaku näin saa-
tavaan suuntaan. Tämän jälkeen suoritetaan muutama VB EM -päivitys, joita seu-
raa jälleen viivahaku. Tätä kutsutaan pattern search -menetelmäksi [13]. Tässä
työssä tutkitaan myös, miten pattern search -menetelmän käyttö vaikuttaa VB
EM:n toimintaan Gaussin mikstuurin oppimisessa.

Työn kokeellisessa osiossa algoritmien toimintaa verrataan käyttäen sekä keinote-
koista dataa että todellisen maailman kuvadataa. Kokeiden perusteella käytetyllä
datalla on suuri vaikutus algoritmien toimintaan. Esimerkiksi käytettäessä data-
joukkoa, jonka datapisteet muodostavat kolmiulotteisen spiraalin, saadaan kuvan C1
mukaiset tulokset. Kuvassa C1(a) on esitetty kustannusfunktion mediaani laskenta-
ajan funktiona kullakin algoritmilla, kun taas kuvassa C1(b) on esitetty yksittäisten
laskenta-ajojen saavuttamat lopulliset kustannusfunktion arvot ja näiden saavut-
tamiseen vaadittu laskenta-aika. Kokeet toistettiin 30 kertaa, sillä, kuten kuvas-
ta C1(b) nähdään, satunnaisesti valituilla alkuarvoilla on suuri vaikutus algorit-
mien saavuttamaan lopputulokseen. Tällä datalla NCG saavutti keskimäärin ly-
hyemmässä laskenta-ajassa paremman lopputuloksen kuin muut algoritmit. Pattern
search -menetelmä vuorostaan paransi VB EM:n nopeutta.

Myös muilla tutkituilla datajoukoilla saavutettiin vastaavanlaisia tuloksia: Pattern
search -menetelmä paransi lähes poikkeuksetta VB EM:n nopeutta. NCG:n nopeus
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(a) (b)

Kuva C1: Algoritmien vertailua käytettäessä kolmiulotteista spiraalidataa. Kuvassa
(a) on esitetty oppimiskäyrät eli kustannusfunktion mediaani laskenta-ajan funktio-
na eri algoritmeilla. Kuvassa (b) on vuorostaan esitetty eri laskenta-ajojen saavut-
tamat lopputulokset.

oli useimmissa kokeissa erittäin kilpailukykyinen VB EM -pohjaisten algoritmien
kanssa. Parhaissa tapauksissa NCG löysi nopeammin parempia optimeita kuin muut
algoritmit. Toisaalta eräillä kuvadatajoukoilla NCG:n suorituskyky oli selvästi VB
EM:ää huonompi. Gradienttipohjaisista algoritmeista NCG osoittautui ylivoimai-
sesti parhaaksi, kuten NSSM:stä saatujen tulosten perusteella voitiin olettaa. Työn
yhteenvetona voidaankin todeta, että käytetty data määrää sen, mikä tutkituista
algoritmeista soveltuu tilanteeseen parhaiten. Pattern search -menetelmällä nopeu-
tettu VB EM osoittautui varmatoimiseksi ja hyväksi vaihtoehdoksi erittäin monella
tutkitulla datajoukolla, joten näiden kokeiden perusteella se olisi ensisijainen al-
goritmivalinta Gaussin mikstuurin oppimiseen. Tästä huolimatta sopivilla datajou-
koilla NCG voi olla selvästi muita algoritmeja parempi erityisesti parhaan optimin
löytämisessä.


