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Abstract. Multivariate machine learning techniques provide an alternative to the rapidity gap
method for event-by-event identification and classification of diffraction in hadron-hadron colli-
sions. Traditionally, such methods assign each event exclusively to a single class producing classi-
fication errors in overlap regions of data space. As an alternative to this so called hard classification
approach, we propose estimating posterior probabilities of each diffractive class and using these
estimates to weigh event contributions to physical observables. It is shown with a Monte Carlo
study that such a soft classification scheme is able to reproduce observables such as multiplicity
distributions and relative event rates with a much higher accuracy than hard classification.
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INTRODUCTION

Diffraction is usually identified based on large rapidity gaps (LRG) although it is

widely acknowledged that this requirement alone leads to insufficient separation be-

tween diffractive and non-diffractive events. This is due to long range correlations that

may destroy the LRG. In fact, the gap survival probability S2 of single diffractive events

at LHC energies is only of the order of 10% [1]. Additionally, because of fluctuations

in hadronization, also the non-diffractive background contains a non-negligible amount

of LRG events [2]. Moreover, a rapidity gap may just be an experimental artifact due

to high detection thresholds. Hence, in order to achieve more efficient identification of

diffraction, alternatives to a simple cut on ∆η should be investigated.

In this paper, we study the use of multivariate classification algorithms for identifica-

tion of diffraction and also discriminating between single diffractive and double diffrac-

tive events. Such an approach does not explicitly look for rapidity gaps, but instead

considers the full event topology in an optimal manner. That is, instead of heuristically

determining the type of events to look for, such algorithms are able to learn the event

characteristics providing the best discriminative power based on a suitably selected train-

ing set of labeled events.

Most classification algorithms perform a mapping of each observation into a single

class. We call these hard classification algorithms, examples of which are neural net-

works and support vector machines. In our case, hard classification corresponds to clas-

sifying each event as either single diffractive, with the diffractive system on the left



(SDL) or the right side (SDR), double diffractive (DD) or non-diffractive (ND)1. As

there is inherent mixing between these classes, such an approach is bound to produce

classification errors in the overlap regions of the data space. This is especially the case

with DD events which often exhibit characteristics similar to SD and ND events. For

this reason, instead of considering a single class only, we propose estimating the prob-

abilities for each event to belong to each of the classes. We then use these probabilities

to weigh the contribution of an event to physical observables. In the spirit of [4], we call

such an approach soft classification.

SOFT CLASSIFICATION METHODOLOGY

In this work, we estimate the posterior probability of an event xxx to belong to class Ci

using the k nearest neighbors (kNN) algorithm2 for which p(Ci|xxx) = ki/k, where ki is the

number of observations from class Ci among the k nearest neighbors of xxx in the training

set [5]. The nearest neighbors are found using the Euclidean distance although other

distance metrics can be used as well. In addition to soft classification, kNN can also

be used for hard classification in which case the class is selected based on the highest

posterior probability.

Because of an effect known as curse of dimensionality, the performance of the kNN

algorithm can be significantly improved by reducing the dimensionality of the data. To

this end, we use the linear discriminant analysis (LDA) algorithm which is a dimension-

ality reduction algorithm for labeled data [5]. It performs a mapping xxx 7→ WWWxxx from the

original D-dimensional space into a subspace with dimensionality d = C− 1, where C

is the number of classes. The matrix WWW is chosen such that the distance between the

classes is maximized and the spread of each class is minimized.

SOFT CLASSIFICATION OF DIFFRACTION

To study the feasibility of soft classification for distinguishing between the different

diffractive classes, we generated a sample of
√

s = 7 TeV minimum bias events using

PYTHIA6 with the D6T tune [6]. The sample contained SDL, SDR, DD and ND events

in ratios determined by the MC tune. Starting from this generator level information,

we calculated energy deposits and charged particle multiplicities registered by the IP5

detectors at the LHC based on their geometric acceptances. By dividing the CMS central

tracker into 3 η bins and T1 and T2 on both sides into 2 bins, multiplicity was recorded

in 11 η bins. The same amount of bins was also used for energy deposits corresponding

to division of the central calorimeters into 3 bins, HF on both sides into 2 bins and a

single bin each for CASTOR and the Zero Degree Calorimeters (ZDC) on both sides of

the interaction point. In the case of the ZDC, only the energy of neutral particles was

recorded. No thresholds or other detector effects were included in the simulations. By

1 See [3] for a feasibility study of such a classification scheme.
2 We also experimented with more advanced soft classification methods such as kernel density estimation
and non-linear discriminant analysis but they gave no advantage over kNN.
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-15 -10 -5 0 5 10 15

η
/d

 c
h

 
d

N

0

500

1000

1500

2000

2500

3000

3500

4000

Pythia6

Soft kNN

Hard kNN

Neural Network

η
-15 -10 -5 0 5 10 15

C
la

s
s

if
ie

d
 -

 P
y

th
ia

6

-500

0

(b) Double diffractive

FIGURE 1. Charged particle multiplicity distributions for diffractive events when event categories are

determined using different classification schemes. The distribution for the right side single diffraction is

essentially a mirror image of the left side distribution shown here. The plots allow comparison between

correctly labeled data (PYTHIA6), soft classification (soft kNN) and hard classification (hard kNN and

neural network). At central rapidities, hard classification underestimates all the diffractive contributions

while soft classification is able to better reproduce the correct distributions. The accuracy of all the

algorithms is impaired at large |η |, where information from only the ZDC detector is available.

computing also the scalar sum of pT and the invariant mass of charged particles within

|η | < 2.5, each event was represented by 24-dimensional data vector xxx.

The MC sample was divided into training, validation and test sets each containing

50000 events followed by a normalization with the mapping xi 7→ log(xi + 1). After

further normalization for mean and variance, the dimensionality of the events was

reduced to 3 using LDA. The optimal value of the parameter k for this data was found

based on maximization of efficiency on the validation set. The kNN algorithm was

then used to perform both soft and hard classification of the test set. As an additional

benchmark, we also trained an MLP neural network [5] with 10 hidden nodes on a single

hidden layer to perform hard classification of the same test set.

The classification results were then used to reconstruct the multiplicity distributions

of the different event types. The obtained diffractive distributions shown in Figure 1

indicate that soft classification is able to better reproduce the correct distributions than

hard classification. Note also that both hard classification algorithms produce very

similar outputs while the results of soft classification are qualitatively different from

this. Similar results were also obtained for the ∑ pT distribution. We also observed that

the relative event rates estimated using the soft kNN algorithm are very accurate (see

Table 1) and clearly better than the ones given by the hard methods.



TABLE 1. Relative event rates and their deviations from PYTHIA6 with the dif-

ferent classification schemes. Soft kNN is able to estimate the rates with a very high

accuracy while both hard classification algorithms overestimate the non-diffractive

contribution and underestimate all the diffractive classes.

ND DD SDR SDL

PYTHIA6 67.84 13.00 9.72 9.44

Soft kNN 67.66 (-0.18) 13.07 (+0.07) 9.78 (+0.06) 9.48 (+0.04)

Hard kNN 70.13 (+2.29) 11.67 (-1.33) 9.52 (-0.20) 8.67 (-0.77)

Neural network 69.67 (+1.83) 12.15 (-0.85) 8.97 (-0.75) 9.20 (-0.24)

CONCLUSIONS

We propose a probabilistic multivariate approach called soft classification for identifica-

tion and classification of diffraction. The results obtained using the soft kNN algorithm

on a generator level MC sample show that the approach accurately reproduces physical

observables. Soft classification could hence serve as an alternative to the rapidity gap

method. The main drawback of the approach is its dependency on the selection of the

training set which makes the classification MC dependent. The severity of this depen-

dence is a subject of an ongoing study, the preliminary results of which suggest that soft

classification is more robust against a misspecified training set than the hard methods.

In some cases, it might also be possible to use data-driven methods for constructing

the training set. The natural next step of the study is to employ detector level MC and

eventually perform a full physics analysis using real data.
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