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Abstract. Reachability analysis and simulation tools for high-level nets
spend a significant amount of the computing time in performing enabling
tests, determining the assignments under which transitions are enabled.
Unlike the majority of earlier work on computing enabled transition bind-
ings, the techniques presented in this paper are highly independent of the
algebraic operations supported by the high-level net formalism.
Performing enabling tests is viewed as a unification problem. A uni-
fication algorithm is presented and modifications to it are suggested.
One variant of the algorithm constructs finite unfoldings for nets with
unbounded domains. Some heuristics for optimising the enabling tests
are discussed and their usefulness is evaluated based on experiments.
The algorithms have been implemented in the reachability analyser
Maria.

Keywords: high-level Petri nets, reachability analysis, unification, un-
folding

1 Introduction

Constructing computer-readable models for systems resembles programming in
many aspects. High-level languages make it easier to create models or programs,
but analysing or executing them involves an overhead, since the operations in
the high-level specification have to be transformed to simpler operations that the
underlying computing machinery is able to perform. This can be done either in
one big preprocessing step that translates the whole input to a simpler language,
or in smaller steps that interpret the high-level operations one at a time, or by
performing a mixture of preprocessing and interpreting.

There are several approaches to analysing high-level Petri nets. Structural
techniques, such as determining invariants of a high-level net [10] and proving
some properties based on them, are typically applied by humans and therefore
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only work on relatively small, highly abstracted models. Many computer-aided
techniques are based on exhaustive state space exploration or reachability anal-
ysis, generating all states reachable from the initial state of the model.

Some reachability analyser tools work on low-level nets [15]. Such tools can
analyse high-level nets if these are unfolded, translated to low-level nets in a
preprocessing step. A straightforward unfolding, as the one defined for Algebraic
system nets in [10, Section 5.1], may yield places not connected to any transition,
or transitions whose input places will never become marked.

The unfolded net of a high-level net can be reduced by analysing the high-
level net and overestimating the set of reachable markings. The unfolded net
needs to contain only such places that can ever become marked according to the
estimate. Similarly, only those transitions that are connected to these places need
to be included in the unfolded net. Even when such reductions are applied, a
high-level model whose variables have large domains may yield an unmanageably
large unfolding, even if the full state space of the model is moderate.

Reachability analysis can also be performed on the high level. This is com-
putationally more complex than analysing low-level nets, since the transitions
may fire in different modes, depending on the values assigned to their variables.
Compared to unfolding, analysing models on the high level usually trades exe-
cution time for memory space. When a net is unfolded, its high-level transitions
are processed only once. When it is analysed on the high level, the transitions
must be “unfolded”, or interpreted in each state that is explored.

Our approach to the reachability analysis of high-level nets is a mixture of
preprocessing and interpreting. We perform a series of translations on the model
and set up auxiliary data structures that make it possible to use a simpler and
more efficient algorithm for performing enabling tests. The idea is to find efficient
static schedulings for input arc inscriptions and to apply computationally cheap
heuristics for pruning transitions that are disabled in a marking.

The notations in this paper is based on Algebraic system nets, defined by
Kindler and Völzer in [10]. They can be considered as a slightly more formal
version of coloured Petri nets [9]. The class of nets we consider is more generic
than the well-formed nets used by Chiola et al. [2], Gaeta [4] and Ilié et al. [7,8]
and others at least in the following aspects:

– data types are not limited to enumerations and tuples
– algebraic operations may be irreversible
– arcs may have variable-dependent weights or be multiset-valued

The coloured nets used by Sanders [16] are more generic than well-formed nets
but less generic than Algebraic system nets. His approach represents input arc
expressions as variables with constant multiplicity. Since Sanders performs en-
abling tests by solving constraint satisfaction problems, it is nontrivial to allow
the arcs in his formalism to have variable-dependent weights.

The formalism supported by our tool Maria is Algebraic system nets with
some extensions and limitations. The main limitations are that variables on input
arcs may not be multiset-valued, and all data types must have finite domains.
These limitations ensure that every model in our formalism can be unfolded to
a finite low-level net.
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1.1 Example: Changing Money

Figure 1 illustrates a situation that could happen near a coin-operated machine.
A customer comes to a cashier with a bank bill in his hand, asking “Could you
break this for me?” The cashier then changes the money to an equivalent amount
of money in smaller coins. In our algorithm, he always returns one type of coin,
e.g. ten 1© coins for 10 units of money, and not e.g. one 5© coin and five 1© coins.

✚✙
✛✘customer

1‘10
2‘5 ✚✙

✛✘cashier
3‘5
10‘1big > small

1‘big ✲
cashier✛

1‘small +
( big
small − 1

)
‘small

✛
customer ✲

Fig. 1. An algorithm for breaking money.

The model contains two places, customer and cashier, which represent the
money held by the two parties. The only transition of the model has two input
variables, big and small , the monetary values. A transition guard specifies that
the monetary value of big must be greater than that of the change coins small.

When the cashier receives a piece of money from the customer, he first chooses
one of his coins and then picks enough of them so that the monetary values
match. The output arcs of the transitions make use of special multiset-valued
variables, which are short-hand notation of our tool for more complex arc in-
scriptions. These variables refer to the multisets that the input arcs connected
to the corresponding places evaluate to. Thus, the cashier receives the coins the
customer took from his purse and vice versa.

As we shall see later, the definition of Algebraic system nets allows arbitrary
multiset-valued arc inscriptions. We could replace the complex inscription of
the arc running from the place cashier to the transition in Figure 1 with a
reference to a multiset-valued variable change, and replace the transition guard
with big =

∑
m change(m)m, requiring that no money is made or lost. Alas, this

kind of a definition could introduce a combinatorial explosion in the analysis.
On input arcs, our approach does not allow multiset-valued variables, but it
does support more complex multiset-valued terms, provided that they can be
evaluated based on variable bindings obtained from other arcs.

2 Basic Concepts

Before presenting our algorithm, we must define some basic concepts. We refer
the reader to [10, Section 3.1–3.2] for a more detailed introduction to Alge-
braic system nets and the underlying mathematical concepts. Our definition
of algebras has some extensions to the original. Evaluation errors are helpful
in tracking modelling errors. Our tool does not silently ignore transitions that
cannot be fired due to errors such as arithmetic overflow. Models with variable-
weight arcs may benefit from undefined variables. If a variable occurs only on
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arcs whose multiplicity evaluates to zero, it does not need to be defined in order
for the transition to be fired. Space limitations prohibit us from formally defining
another extension, short-circuit evaluation of if-then-else expressions.

Algebras and signatures. A signature SIG = 〈S,OP〉 consists of a finite set S
of sort symbols and a pairwise disjoint family OP = (OPa)a∈S+ of operation
symbols. A SIG-algebra A = 〈A, f〉 consists of a family A = (As)s∈S of sets and
a family f = (fop)op∈OP of total functions. Let ε �∈ A be an error symbol and
A′

s = As ∪ {ε}. For op ∈ OPs1...snsn+1, let fop : A′
s1

× · · · × A′
sn

→ A′
sn+1

such
that the image of the subset (A′

s1
× · · · ×A′

sn
) \ (As1 × · · · ×Asn

) equals ε; that
is, whenever an argument equals ε, so does the result. A set As of an algebra is
called a domain and a function fop is called an operation of the algebra.

In the following we assume that a signature SIG has the sort symbols
bool ,nat ∈ S and in each SIG-algebra the corresponding domains are Abool =
B = {true, false} and Anat = N = {0, 1, . . .}.

Variables and terms. For a signature SIG = 〈S,OP〉 we call a pairwise disjoint
family X = (Xs)s∈S with X ∩OP = ∅ a sorted SIG-variable set. A term, asso-
ciated with a particular sort, is built up from variables and operation symbols.
The set of SIG-terms over X of sort s is denoted by TSIG

s (X) and inductively
defined by:

1. If x ∈ Xs, then x ∈ TSIG
s (X).

2. If uk ∈ TSIG
sk

(X) for some k ∈ {1, . . . , n} and op ∈ OPs1...snsn+1 , then
op(u1, . . . , un) ∈ TSIG

sn+1
(X).

The set of all terms (of any sort) is denoted by TSIG(X). A term without
variables, a ground term, of sort s belongs to the set TSIG

s = TSIG
s (∅).

Evaluation of terms. For a signature SIG = 〈S,OP〉, a sorted SIG-variable
set X = (Xs)s∈S , and a SIG-algebra A = 〈(As)s∈S , (fop)op∈OP 〉, a mapping
β : X → A ∪ {ε} is an assignment for X iff for each s ∈ S and x ∈ Xs holds
β(x) ∈ As ∪ {ε} where ε �∈ A denotes an undefined variable. We canonically
extend β to a mapping β̄ : TSIG(X) → A ∪ {ε} by:
1. β̄(x) = β(x) for x ∈ X.
2. β̄(op(u1, . . . , un)) = fop(β̄(u1), . . . , β̄(un)) for op(u1, . . . , un) ∈ TSIG(X).

Let β∅ : ∅ → A ∪ {ε} be the unique assignment for the empty variable set.

2.1 Algebraic System Nets

Algebraic system nets are based on a special case of the algebras defined above.
We distinguish some ground-sorts and assign a bag-sort (a finite nonnegative
multiset sort) to each ground-sort. The domain associated with a bag-sort must
be a multiset over the domain of the corresponding ground-sort.
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Definition 1 (Bag-signature, BSIG-algebra). Let SIG = 〈S,OP〉 be a sig-
nature and BS ,GS ⊆ S. BSIG = 〈S,OP , bs〉 is a bag-signature iff bs : GS →
BS is a bijective mapping. An element of GS is called a ground-sort, an element
of BS is called a bag-sort of BSIG. A SIG-algebra A = 〈A, f〉 is a BSIG-algebra
iff for each s ∈ GS holds Abs(s) = BAG(As) = (As → N).

Definition 2 (Algebraic system net). Let BSIG = 〈S,OP , bs〉 be a bag-
signature with bag-sorts BS. An algebraic system net Σ = 〈N,A, X, i〉 over
BSIG consists of

1. a finite net N = 〈P, T, F 〉 where P ∩ T = ∅, F ⊆ (P × T ) ∪ (T × P ) and P
is sorted over BS, i.e., P = (Ps)s∈BS is a bag-valued BSIG-variable set,

2. a BSIG-Algebra A,
3. a sorted BSIG-variable set X disjoint from P ,
4. a net inscription i : P ∪ T ∪ F → TBSIG(X) such that

a) for each p ∈ Ps : i(p) ∈ TBSIG
s ,

b) for each t ∈ T : i(t) ∈ TBSIG
bool (X), and

c) for each t ∈ T and p ∈ Ps and f ∈ F with f = 〈p, t〉 (input arc) or
f = 〈t, p〉 (output arc) holds i(f) ∈ TBSIG

s (X).

For a place p ∈ P , the inscription i(p) is called the symbolic initial marking of
p; for a transition t ∈ T , the term i(t) is called the guard of t.

It is worth noting that Definition 2, replicated from [10, Definition 3] allows
multiset-valued operations and variables in arc inscriptions (annotations). The
Maria tool [11,12] makes use of both.1 Arcs with variable weights are useful
when modelling certain types of resource management.

The basic semantics of Algebraic system nets, including the firing rule, have
been defined by Kindler and Völzer in [10, Definitions 4–6].

2.2 Unification Concepts

There are at least two ways to construct the set of assignments under which a
transition is enabled. One way is to construct all possible assignments for the
variables that occur in the arc inscriptions and in the guard of the transition,
and to prune those assignments under which the arc inscriptions and the guard
fail to fulfil the firing rule. This is the usual way when a net is unfolded; see
e.g. [10, Definition 13]. This approach does not work very well if the transitions
have a large (or infinite) number of possible assignments (firing modes), and the
transitions are enabled in only a few firing modes in the reachable states.

Fortunately, there is a more efficient approach for the case when the input
places of a transition are marked sparsely. The process of finding assignments or
substitutions under which two algebraic terms are equivalent is often referred to
as unification, e.g. [1, pp. 74–76]. In algebraic system nets, we can unify input arc
1 Maria allows multiset-valued variables on output arcs, where they refer to the mul-
tisets removed from the input places; see Figure 1.
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inscriptions with a marking of the net. In this case, a unifier is an assignment for
the transition variables under which the evaluations of the input arc inscriptions
are contained in the corresponding input place markings.

If the algebraic operations are not restricted, there might be prohibitively
many unifiers. For instance, consider the constant 2 ∈ N and the expression
x + y. If the variables x and y are known to be sorted over nat , then three as-
signments are possible unifiers: {〈x, 0〉, 〈y, 2〉}, {〈x, 1〉, 〈y, 1〉}, and {〈x, 2〉, 〈y, 0〉}.
If the constant was n, there would be n + 1 different unifiers. If either variable
was allowed to be negative, there would be infinitely many unifiers.

In order to avoid a combinatorial explosion, we have to restrict the set of
algebraic terms that the unification algorithm examines to find values for vari-
ables. A natural way of making this restriction is to limit the set of operations
the unification algorithm recognises in such a way that the choice of unifiers is
always unique. This rules out the operation + in our previous example.

We distinguish two classes of operations that are recognised by our algo-
rithm. Reversible unary operations, such as taking the successor of an element
in a sequence, can be “neutralised” by applying a reverse operation, such as
the predecessor operator. Other operations that the algorithm must know are
constructors that tie terms together. For instance, we want to be able to unify
the variables in the term 〈x, y〉 with the constants in the ground term 〈1, 2〉.
Definition 3 (Unifier candidate, assignment compatibility). Let SIG =
〈S,OP〉 be a signature with the variable set X, and let A = 〈A, f〉 be a SIG-
algebra with the error symbol ε �∈ A. Let OPc ⊆ OP be the set of constructor
operations, and let rop ⊆ (OP → OP) be the map of reversible unary operations
such that

∀op ∈ dom rop : ∃s, s′ ∈ S : op ∈ OPs s′ : ∀a ∈ As : frop(op)(fop(a)) = a.

Furthermore, let s, s′ ∈ S, x ∈ Xs and T ∈ TSIG
s′ (X). The variable x is said to

be unifiable from T , denoted x � T , if

1. T = x, or
2. for some op ∈ OPc and k ∈ {1, . . . , n}, T = op(T1, . . . , Tn) and x � Tk, or
3. for some op ∈ dom rop, T = op(T ′) and x � T ′.

Let T∅ ∈ TSIG
s′ and x � T . A unifier candidate x �T∅ T is inductively defined as

follows:

1. T∅, if T = x
2. x �Tk∅ Tk, if for some op ∈ OPc, T = op(T1, . . . , Tn), T∅ = op(T1∅, . . . , Tn∅),
k ∈ {1, . . . , n} and x � Tk, and there is no 1 ≤ j < k such that x � Tj,2 or

3. x �T ′
∅
T ′, if for some op ∈ dom rop, T = op(T ′) and x � T ′ for T ′

∅ =
rop(op)(T∅).

Let β : X → A. The terms T and T∅ are compatible under β, denoted T ∼β T∅,
if either
2 Requiring the smallest k to be chosen ensures that unifier candidates are unique.
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1. β̄(T ) = β̄∅(T∅), or
2. for some op ∈ OPc, T = op(T1, . . . , Tn) and T∅ = op(T1∅, . . . , Tn∅), and
Tk ∼β Tk∅ for k ∈ {1, . . . , n}, or

3. for some variable x in T , β(x) = ε.

Continuing our example, and assuming that the operation + is a constructor,
+ ∈ OPc, the definition yields no unifier candidates for x and y, if T is x + y
and T∅ is 2. If T∅ was 1 + 2, then we would have x �T∅ T equal to 1 and y �T∅ T
equal to 2. The terms are compatible under the assignment β = {〈x, 1〉, 〈y, 2〉}
constructed from these candidates, since x+ y ∼β 1 + 2.

Restrictions of Unification. An analyser implementation can considerably
restrict the set of operations supported by unification and the set of reversible
operations. Maria only looks for variables inside so-called constructor terms
which construct values of structured data types out of components. From the
constructor term 〈x, 〈y + 1, z〉〉, it could find unifier candidates for x and z, but
not for y, since y �� y + 1. It also performs constant folding by replacing ground
terms with equivalent nullary operators. It would transform the T∅ = 1 + 2 in
our above example to β̄∅(T∅) = 3.

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

1‘2
2‘4

left 〈1, 2〉
〈2, 1〉 middle 5‘2

2‘3
1‘4

right
����������1‘2y

✏✏✏✏✏✏✏✏✏✮ 3‘x + 1‘(x + 1)❄
1‘〈x, y〉

Fig. 2. A simple model for illustrating unification.

The operation collections OPc and dom rop in Definition 3 strongly affect
the set of unifiable variables. The more operations are contained in these sets,
the more unifier candidates are possible. Consider the model shown in Figure 2.
If multiplication by a constant belongs to the set of reversible operations, it is
possible to unify y from the term 2y by unifying y with the given ground term
(2 or 4) divided by 2.

We have not presented any algorithms yet, but we are about to face a some-
what philosophical question. Should a unification algorithm be able to find all
possible assignments that enable the transition, or does it suffice for the algo-
rithm to deal with real models, and report errors for cases it cannot handle?
An implementation that restricts the sets of supported operations is likely to be
more efficient and less prone to errors than one that tries to handle everything.
For instance, when making basic arithmetic operations reversible, one must take
care of arithmetic precision and exceptional situations.

Variables that are not unifiable by Definition 3 could be handled by nonde-
terministically picking values for them from their domains and by checking the
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terms for compatibility, but doing so is computationally expensive if the domains
are large or there are many such variables. It is easier to report “variables cannot
be unified” even though it might be possible to unify them. According to our
experience with practical models, this works pretty well. One can always gain
expressive power by replacing problematic terms with new variables and guards.

Splitting the Arcs. In typical models, arc expressions consist of elementary
multisets (single-item multiset constructor terms) combined with multiset sum-
mation. In order to improve the granularity of our algorithm, we write each input
arc inscription as a such combination of terms. Sanders refers to this as arc un-
folding [16, Section 3]. For instance, the rightmost arc of the model illustrated
in Figure 2 is split into two arcs, with the inscriptions 3‘x and 1‘(x+ 1).

The claim “any arc with a non-elementary multi-set may be ‘unfolded’ into
multiple arcs” by Sanders [16, Section 3] is difficult to fulfil if the arcs contain
multiset-valued variables or other multiset operations than the two we defined
above. Our approach does not restrict the set of multiset operations.

We distinguish three kinds of split arc inscriptions: ones that contain unifiable
variables, ones that can be evaluated under a partial assignment incrementally
constructed by our algorithm, and others. In Figure 2, the arcs 1‘〈x, y〉 and 3‘x
contain variables that our implementation can unify. Other inscriptions can be
arbitrary multiset-valued terms. What matters is that whenever the unification
algorithm finds a complete assignment, all arc inscriptions are compatible under
it with the ground terms corresponding to the given marking of the model.

3 The Unification Algorithm

Our unification algorithm performs a depth-first search on the input arc inscrip-
tions of the transition, split as described earlier. The algorithm is remarkably
simple, since it processes the arcs in a fixed order produced in static analysis.
Static analysis also determines which variables will be unified from which arc
inscriptions, and verifies that all variables can be unified.3

The input arc inscriptions are split into items Sk = 〈Tk, Xk, pk,mk〉 ∈
TBSIG(X)× P(X)× P × BAG(As), k ∈ {1, . . . , n} for some n, such that
– the variable sets Xk are pairwise disjoint: Xj ∩Xk = ∅ if j �= k
– no Tk refers to a variable outside

⋃n
j=1Xj : Tk ∈ TBSIG(

⋃n
j=1Xj)

– if Xk = ∅: Tk ∈ TBSIG(
⋃k−1

j=1 Xj)
– if Xk �= ∅: Tk = T ′

k‘T
′′
k and T ′

k ∈ TBSIG(
⋃k−1

j=1 Xj) and ∀x ∈ Xk : x � T ′′
k

– the input arcs of the transition and their inscriptions can be constructed
from all places pk and split inscriptions Tk via multiset summation

The last component, mk, is a place-holder for the multiset the term is supposed
to evaluate to. Our algorithm does not refer to it before initialising it; for con-
venience, we can assign it to the empty multiset here.
3 A variable unified from a variable-multiplicity arc may remain undefined if the mul-
tiplicity of the arc evaluates to zero.
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The input arcs of the only transition in Figure 2 can be split e.g. so that

S1 = 〈T1, X1, p1,m1〉 = 〈3‘x, {x}, right, ∅〉
S2 = 〈T2, X2, p2,m2〉 = 〈1‘〈x, y〉, {y},middle, ∅〉
S3 = 〈T3, X3, p3,m3〉 = 〈1‘(x+ 1), ∅, right, ∅〉
S4 = 〈T4, X4, p4,m4〉 = 〈1‘2y, ∅, left, ∅〉.

The first components of the tuples are the split arc inscriptions. The second
components are the “new” unifiable variables. Let us observe S2 a bit more
closely. We have X2 = {y}, although also x could be unified: x� 〈x, y〉. Including
x in X2 would violate the disjointness property, since x ∈ X1. In a sense, the
variable x will “already” be unified from S1. Also, the terms T3 and T4 are
“constant” since their variables can be unified from the earlier arcs S1 and S2.

3.1 The Basic Algorithm

Analyse arcs S1..Sn w.r.t. marking M
Analyse(S, n, M):
β ← (

⋃n
k=1 Xk)× {ε}

Analyse-Arcs(S, 1, n, M, β)

Analyse arcs Sk..Sn w.r.t. M and β
Analyse-Arcs(S, k, n, M, β):
if k = n then print β
else � Sk = 〈Tk, Xk, pk, mk〉

if Xk = ∅ then
Analyse-Constant(S, k, n, M, β)

else
Analyse-Variable(S, k, n, M, β)

Evaluate arc Sk

Analyse-Constant(S, k, n, M, β):
� Sk = 〈Tk, Xk, pk, mk〉
mk ← β̄(Tk)
if mk = ε then

print “undefined arc”, β, Tk

else
if M(pk) ≥ mk then

M ′ ←M
M ′(pk)←M(pk)−mk

Analyse-Arcs(S, k + 1, n, M, β)

Analyse arc Sk, augment β
Analyse-Variable(S, k, n, M, β):
� Sk = 〈Tk, Xk, pk, mk〉
� Tk = T ′

k‘T
′′
k

c← β̄(T ′
k)

if c = ε then
print “undefined multiplicity”, β, Tk

return
if c = 0 then

mk ← ∅
Analyse-Arcs(S, k + 1, n, M, β)

else
for each m : M(pk) ≥ c‘m do

mk ← c‘m
β′ ← β
for each x ∈ Xk do

β′(x)← (x �m T ′′
k )

if
∧k

j=1 Tj ∼β′ mj then
M ′ ←M
M ′(pk)←M(pk)−mk

Analyse-Arcs(S, k + 1, n, M ′, β′)

Fig. 3. The unification algorithm.

Our unification algorithm is presented in Figure 3. The computation is ini-
tiated by invoking Analyse with the split input arc inscriptions S and their
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amount n and a markingM : P → BAG(A) of the net. The computation step of
the depth-first search is divided into two alternatives: processing a “constant”
arc (arc with no new bindable variables), and obtaining new variable bindings
from an arc.

An Example. Continuing our running example from Figure 2, the call toAnal-
yse on the initial marking of the model proceeds as follows. The assignment is
initialised to β = {〈x, ε〉, 〈y, ε〉}, and control is passed to Analyse-Arcs and
further to Analyse-Variable. The multiplicity of T1 = 3‘x evaluates to c = 3.
Now Analyse-Variable loops over all items in the marking of right whose
multiplicity is at least 3. It turns out that m = 2 is the only choice.

A new assignment with β′(x) = 2 is computed. Since all terms unified so
far are compatible under this assignment, the multiset mk is reserved from the
marking and the control is transferred to Analyse-Arcs, which passes it again
to Analyse-Variable to handle the next term, 1‘〈x, y〉. Both tokens in the
place middle are tried, but only 〈2, 1〉 passes the compatibility check with x.
Therefore, the assignment is transformed to β′ = {〈x, 2〉, 〈y, 1〉}.

The remaining two arcs are handled by Analyse-Constant, which ensures
that there are enough tokens for them. Finally, Analyse-Arcs prints out the
assignment. At this point, the marking passed to it equals the original marking
minus the evaluations of the input arcs under the assignment. The algorithm
starts to backtrack. Since there were no other feasible choices in either active
instance of Analyse-Variable, the algorithm terminates.

Some Remarks. For the sake of simplicity, the illustrated procedures do not
cover guards. In our implementation, guards are split to terms combined via
logical conjunction. Whenever all the variables of a guard term become defined
(due to assignments to β′(x) in Analyse-Variable), the term is evaluated. If
the guard evaluates to false, the algorithm backtracks, just like it does in case
a term Tk becomes incompatible. If an evaluation error occurs, the algorithm
displays the assignment for diagnostics and backtracks.

ProcedureAnalyse-Variable evaluates the multiplicity of a term Tk. When
the multiplicity evaluates to zero, the variables in Xk remain undefined. As a
result of this, the completed valuations displayed byAnalyse-Arcsmay contain
undefined variables. This is not a problem if these variables are never evaluated
due to short-circuit evaluation. Otherwise an error may occur when the transition
is fired and its output arcs are evaluated. Also, before firing a transition, our
implementation ensures that the guard evaluates to true.4

Correctness. The calling hierarchy of the algorithm is straightforward. The
main procedure Analyse invokes Analyse-Arcs, which passes control to ei-
4 Traditionally, “don’t care” variables are assigned a nondeterministic choice of values
from their domains. This generates unnecessary transition instances with identical
behaviour. To avoid this, we assign these variables the special value ε.
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ther Analyse-Constant or Analyse-Variable, which in turn call Analyse-
Arcs. Each recursive call to Analyse-Arcs increments k, and the recursion
terminates at k = n.

The assignment passed to Analyse-Arcs initially maps each variable to the
undefined value. The only place where the assignment is modified is in Analyse-
Variable, where only previously undefined variables can be assigned.5

When Analyse-Arcs is invoked with k = n, the evaluation of the arc in-
scriptions under the gathered assignment is a subset of the marking passed to
Analyse. This follows from two facts. Firstly, whenever the algorithm unifies an
inscription and a multiset, it ensures that the marking contains the multiset and
removes the multiset from the marking used for unifying further inscriptions.

Secondly, all split arc inscriptions are evaluated and ensured to match the
multiset assigned to them. The procedure Analyse-Constant evaluates the
split arc inscription under the assignment gathered so far. In the procedure
Analyse-Variable, the relationship between arc inscriptions and markings is
restricted by the compatibility check

∧k
j=1 Tj ∼β′ mj . At the deepest call to

Analyse-Variable, all variables have been assigned, and the compatibility
check is equivalent to

∧k
j=1 β̄

′(Tj) = β̄′(mj).
To be sure that the algorithm finds all assignments or reports errors, we must

investigate the conditions under which it backtracks without reporting anything.
The procedures Analyse and Analyse-Arcs do not backtrack. Analyse-
Constant does backtrack when an input place would have an insufficient mark-
ing, when the test M(pk) ≥ mk fails. Analyse-Variable silently backtracks
when the arc inscriptions unified so far would be incompatible under the assign-
ment, causing the test

∧k
j=1 Tj ∼β′ mj to fail. Clearly, all assignments under

which transitions are enabled must pass these tests. Therefore, the algorithm
finds all relevant assignments.

3.2 Firing Transitions

At the moment when Analyse-Arcs displays a completed valuation β, the
marking M passed to it is exactly the original marking passed to Analyse,
minus the evaluations of the input arc inscriptions under β. Transition firing
can be integrated to our enabling test algorithm by just replacing the print
statement with something that binds the rest of the variables6 and adds the
evaluations of the output arcs to M .

Our current implementation of the algorithm combines enabling tests with
firing. This is useful when all immediate successors of a state are to be generated,
since there is no need to explicitly store the assignments. Also, if input and
output arcs have similar inscriptions, some output arc inscriptions may have

5 The variables are previously undefined, since the variable sets Xk are required to be
pairwise disjoint.

6 In our implementation, output arc inscriptions may make use of nondeterministically
bound variables and multiset-valued variables that represent the tokens removed
from the input places.
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already been evaluated on the input side, and applying an optimisation technique
called common subexpression elimination can save computations.

3.3 Unfolding

With slight modifications, the enabling test algorithm can also be used for un-
folding Algebraic system nets to compact Place/Transition nets. Doing so has
at least the following advantages:

– simple modifications: easy implementation, small chance of errors
– smaller unfolded net:

– no unconnected places
– sometimes finite unfoldings for nets with infinite domains

There are two unfolding options in Maria: reduced and traditional. The latter
option essentially implements the traditional definition of unfolding, e.g. [10,
Definition 13], generating all possible assignments for all transitions. It doesn’t
generate all low-level places, though; only places that are connected to a low-level
transition or are initially marked are generated.

The reduced unfolding option works by maintaining a set of low-level places
that can ever be marked. This set is represented as a markingM of the high-level
net. For all places p ∈ P that contain tokens m in the marking, M(p)(m) ≥ 0,
there exists a low-level place 〈p,m〉. This marking is constructed incrementally,
starting from the initial marking of the net.

The multiset containment comparisonsM(pk) ≥ mk in Analyse-Constant
and Analyse-Variable are modified so that they ignore the exact multiplici-
ties: M(pk) � mk if and only if for each d such that mk(d) > 0, it holds that
M(pk)(d) > 0.

Once the modified algorithm completes an assignment β of a transition t, it
must unfold the input and output arcs of the transition. Our implementation
accomplishes this by constructing two collections of multisets for the high-level
input and output arcs:M−(p) := β̄(i(〈p, t〉)) andM+(p) := β̄(i(〈t, p〉)). For each
value d such that M−(p)(d) > 0, it constructs a low-level input arc of weight
M−(p)(d) from the low-level place 〈p, d〉 to the low-level transition 〈t, β〉. The
output arcs are constructed in similar way. The marking M is augmented with
M+. The algorithm keeps unfolding the high-level transitions in different modes
until no new items are introduced in M .

When applied to the net illustrated in Figure 1, this algorithm yields the
place/transition system illustrated in Figure 4, no matter how big domains the
high-level places have. It can be easily seen that if the initial marking of this
net contains n different tokens, the unfolded net can have at most 2n places and
1
2 (n

2 + n) transitions.
It should be noted that also the reduced unfolding may be unmanageably

large even if the high-level system has a small state space. A minimal unfolding
(with no dead places or transitions) could be extracted from the full reachabil-
ity graph of the high-level system by constructing only those low-level places
that ever become marked and those transitions that ever fire. In the case of
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Fig. 4. A reduced unfolding of the net presented in Figure 1.

Figure 4, the reduced unfolding is also a minimal unfolding, since all transitions
are enabled in the initial state and there cannot be dead places or transitions.

4 Optimisation Techniques

The first unification algorithm implemented inMaria was very dynamic. It even
rewrote input arc expressions on the fly, expanding multiset summations whose
limits may depend on other variables. The first optimisation step was to expand
quantifications in the parsing stage, transforming dynamic limits to variable-
dependent multiplicities, so that the arc expressions remained static during the
analysis. This improved the overall performance of the tool by 15–20 percent.
At the same time, we started to make experiments with executable code gener-
ation [14]. Using the C program code generated by our current implementation
usually shortens the analysis times to less than a third of the times consumed
by the interpreter written in C++.

Previously presented algorithms, such as [7,8,16], dynamically schedule the
input arcs. When we replaced dynamic scheduling with static scheduling in our
implementation, we noticed a significant performance boost, 20–30 percent. This
is mainly due to less bookkeeping, as the variables are always unified in the same
order.7 Dynamic scheduling may provide shortcuts for simulators that randomly
pick one assignment for firing a transition without generating all assignments.

4.1 Representing Multisets

It is important to choose the right data structures for representing multisets in
the enabling test algorithm. It appears that we are not the first ones to come up
with binary search trees. Haagh and Hansen [6, Chapter 3] suggest using a form
of balanced binary trees.

Our implementation uses two representations for markings: encoded (used for
storing states) and expanded (for computations). The expanded representation is
7 Variables that are unifiable from several variable-multiplicity arcs and no constant-
multiplicity arcs form an exception. Our implementation attempts to unify them
from each arc having nonzero multiplicity.
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a binary search tree whose keys are multiset items and values are multiplicities.
When a multiset is decoded from the state storage, only items with nonzero
multiplicity are added. When items are removed from the tree, their multiplicities
are set to zero. Since single items are never removed from the multiset, there is
no need for costly balancing operations.

According to our experiments, using unbalanced trees is faster than using
red-black trees if the places contain a small number of distinct tokens in the
reachable markings. Even though unbalanced trees easily degenerate to linked
lists, and searches may have to process n nodes instead of �log2 n�, the savings in
insertions dominate for small values of n. Our executable code generator contains
an option for enabling or disabling red-black trees.

4.2 Static Heuristics: Sorting the Arcs

We use multisets in two remarkably different ways. Analyse-Constant (Fig-
ure 3) performs one containment comparison on a multiset and calls Analyse-
Arcs zero or one times. Analyse-Variable may iterate through all items in a
multiset and invoke Analyse-Arcs for any number of them.

Let us assume that our enabling test algorithm is invoked on a sequence of
n arcs, k of which are constant. Furthermore, let us assume that all multisets
contain m distinct items. If the constant arcs are processed first, the search
tree will consist of a linear sequence of k calls to Analyse-Constant followed
by a tree of Analyse-Variable invocations. There will be at most k +mn−k

recursive calls to Analyse-Arcs. The other extreme, analysing constant arcs
as late as possible, yields at most (k + 1)mn−k recursive calls.

The proportion of these numbers of iteration steps is

k +mn−k

(k + 1)mn−k
=

k

k + 1
1

mn−k
+

1
k + 1

≈ 1
k + 1

,

and the approximation is pretty good already for m = 2. Thus, if there are k
constant arcs, it is about k times slower to analyse them at the leaves of the
search tree than at the root. The difference becomes even more significant if the
transition only has a few enabled instances in each marking and most instances
of Analyse-Constant backtrack. The earlier this can happen, the better.

The problem, finding an optimal static scheduling that minimises the number
of Analyse-Arcs calls, becomes more complicated when we consider the fact
that Analyse-Constant can handle non-ground terms that can be evaluated
under the assignment generated so far. Intuitively, an optimal scheduling should

– minimise the number of arcs from which variables are unified, and
– minimise the worst-case number of multiset iterations, and
– schedule the remaining arcs as early as possible in such an order that the
algorithm is most likely to backtrack early.

Especially the last requirement is difficult to fulfil in static analysis. We apply
Gaeta’s “Less Different Tokens First” policy [4, Section 5.1] and compute the
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maximum numbers of distinct items in the input places. A multiset associated
with a place whose domain is BAG(As) can have at most |As| distinct items.8

Let us shortly return to our example from Figure 2. If we assume that the
domain sizes of the places left, middle and right are d, d2 and d for some d >
1, then the scheduling we presented in the beginning of Section 3 is not very
optimal. In the worst case, it iterates through d items in right and d2 items in
middle, at most d of which can pass the compatibility requirements. Analyse-
Arcs can be invoked 1 + d(1 + d(1 + 2)) = 3d2 + d + 1 times, and Analyse-
Variable may scan up to d+ d3 multiset items. Scheduling the term 1‘(x+ 1)
before 1‘〈x, y〉 would reduce the maximum number of invocations to 1 + d(1 +
1 + d(1 + 1)) = 2d2 + 2d + 1. The same number of multiset items need to be
scanned in the worst case, but if analysing the term 1‘(x + 1) fails every time,
the d3 scans for 1‘〈x, y〉 can be avoided.

Gaeta divides input arc expressions to three categories: simple, complex and
guarded. We use four categories: closed arcs (arcs that may only depend on
already unified variables), constant-multiplicity arcs with unifiable variables,
variable-multiplicity arcs with unifiable variables, and other arcs.

We have implemented a depth-first search algorithm for splitting the input
arc inscriptions as described in the beginning of Section 3. Since the algorithm
has exponential complexity with regard to the number of split arcs containing
unifiable variables, we programmed a special condition that terminates the search
when a solution is found with more than five arcs containing unifiable variables.

Our algorithm uses three cost functions. The primary cost function is the
number of variables that will be unified from variable-multiplicity arcs. The
secondary cost function is a sum of costs c2(Sk) for each arc Sk = 〈Tk, Xk, pk,mk〉
defined as

c2(Sk) =
{
0 if Xk �= ∅∑k−1

j=1 [Xk �= ∅] if Xk = ∅

where the square brackets map truth values to 0 and 1. Thus, for closed arcs,
the secondary cost is the number of preceding non-closed arcs. Minimising this
cost ensures that all closed arcs will be scheduled as early as possible.

As a shortcut, our algorithm prioritises closed arcs over arcs with unifiable
variables. Every time the algorithm picks an arc with unifiable variables, some
of the remaining arcs may become closed. Only after the closed arcs run out,
the algorithm picks the next arc with unifiable variables. If the only arcs left are
in the “other” category, the search backtracks. If no complete schedulings are
found, a unification error will be reported.

The third and last cost function is the maximum number of iterations possible
with the scheduling. For each split arc Sk = 〈Tk, Xk, pk,mk〉, we define

c3(Sk) =
{
m(pk) if Xk �= ∅
1 if Xk = ∅

8 If the multiset is associated with a maximum cardinality, then it is another limit.
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where m(pk) denotes the maximum possible number of distinct tokens in the
place pk. The total cost is defined as

c3(S1) · (1 + c3(S2) · (1 + c3(S3) · (1 + · · ·)))
where the term (1 + · · ·) after the last cost c3(Sn) is replaced with 1.
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Fig. 5. Minimising Search Trees with Cost Functions

Figure 5 demonstrates the relation between the secondary and ternary cost
functions. It illustrates the maximal search trees imposed by four different or-
derings for three split arcs, one of which is constant. The constant arc is the
only contributor to the secondary cost, and scheduling it first minimises the
secondary cost. The total ternary cost is the maximum number of recursive in-
vocations to Analyse-Arcs, denoted in the figure with opaque circles. The
scheduling presented on the right implies the smallest tree, 9 nodes.

The algorithm selects a scheduling that has the minimum primary cost, num-
ber of variables unified from variable-multiplicity arcs. If there are several such
schedulings, then the one with the least secondary cost is selected. If that selec-
tion is not unique, then one with the smallest ternary cost is chosen.

As a finishing touch for the found static scheduling, our algorithm sorts
contiguous sequences of closed terms in such a way that arcs whose places have
the smallest number of distinct tokens are scheduled first. This enforces Gaeta’s
“Less Different Tokens First” policy.

4.3 Dynamic Heuristics

Caching. Ilié and Rojas suggest in [8, Section 3.4] that to speed up a simulator,
one could build up a cache that maps input place markings of transitions to sets
of enabling assignments. In our experiments, it turned out that in exhaustive
reachability analysis, this kind of cache is only useful when there are a large
number of states in which the input places of a transition are marked in exactly
the same way.

In simulations of timed nets, where exactly the same states are visited over
and over again, using such caches may pay off if the bookkeeping overhead
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(comparing and duplicating input place markings and copying associated sets
of enabling assignments) is smaller than the cost of computing the enabling
assignments from the scratch. This depends on the implementation, on the size
and the scheduling policy of the cache and on the model.

We experimented with an artificial model, one of whose transitions had n
input arcs from a place holding n tokens, with a total of n! enabled assignments.
For n = 7, generating the 5040 assignments took several thousands of times
longer than a cache look-up. In more realistic models, we witnessed differences
of at most a few percent. In many models, such as the dining philosophers [3] or
the distributed data base management system [5], all cache look-ups failed. Due
to this experience, we decided to eliminate the cache altogether and to integrate
transition firings with enabling tests. This improved the execution times by about
ten percent.

Cardinality Tests. Gaeta [4, Section 4.3] has implemented heuristics for de-
tecting when a transition is disabled. He keeps track of the number of tokens in
each input place. If a place contains less tokens than a transition would consume,
the transition cannot be enabled and the search for enabling assignments can be
avoided.

Our implementation of the cardinality test needs to consider arcs with vari-
able multiplicity. Their multiplicities are assumed to be zero. Since the heuristics
is implemented in generated code, the comparisons can be omitted if they are
known to hold. InMaria models, it is possible to speed up analysis by specifying
conditions on the amounts of tokens places may hold in reachable markings.

4.4 Some Experimental Results

Maria uses an explicit technique for maintaining the set of reachable states and
the transition instances leading from one state to another. Everything related
to the reachability graph is kept in disk files [13]. Because of this, the analyser
spends most of its execution time checking whether an encoded state exists in
the reachability graph. In our tests, Maria has generated full state spaces of
converted Prod [18] models in 0.5 to 1 times the Prod speed. One explanation
for the slowness is thatMaria detects evaluation errors and supports much more
powerful algebraic operations than Prod, which makes optimisations in the C
code generation difficult. Also, it is possible to use probabilistic verification with
Maria. When no arcs are stored and a reachability set is maintained in memory,
the tool performs an order of magnitude faster.

Analysing the biggest state space so far with Maria, a translation of a
radio link control protocol specified in SDL consisting of 15,866,988 states and
61,156,129 events, took 5 megabytes of memory and 1.55 gigabytes of disk space,
most of which was consumed by the arc inscriptions and double links stored with
the reachability graph. The analysis was completed in less than nine hours on a
266MHz Pentium II system.

Table 1 lists some models we have analysed and unfolded in Maria. All
models except “rlc” are distributed with the tool. There are three figures for
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Table 1. Unfoldings and State Spaces of Selected Models

Folded Unfolded Reduced Minimal State Space
Model |P | |T | |P | |T | |P | |T | |P | |T | states arcs
dining(10) 2 3 40 30 40 30 40 30 6,726 43,480
dbm(5) 8 4 111 60 96 50 96 50 406 1,090
dbm(10) 8 4 421 220 391 200 391 200 196,831 1,181,000
sw(1,1) 12 9 41 422 35 288 35 54 164 352
sw(2,2) 12 9 2,048 1,087,382 729 239,478 129 688 2,640 7,716
sw(6,6) 12 9 – – – – 9,805 145,464 1,774,716 7,127,688
resource 4 3 336 8,158 193 4,610 111 45 538,318 4,136,459
rlc 18 104 708 14,736 114 1,429 – – 15,866,988 61,156,129

unfolded net sizes. The first column is for “traditional” unfoldings, excluding
unconnected places; the second is for unfoldings reduced with our method, and
the third is for minimal unfoldings obtained from the reachability graph.

The model named “resource” solves a resource allocation problem. On our
system, Maria generates its full reachability graph in 26 minutes, using 3
megabytes of memory and 85.7 megabytes of disk space. With the default capac-
ity limit, LoLA consumes 4 minutes less time but about 530 megabytes more
memory on the reduced unfolding of this model. We tried to tighten the capacity
limit to save memory but failed, because the limit is global for all places.

Reduced unfoldings work best for models with a sparse state space, i.e. only
a fraction of the possible states are actually reachable. For some theoretically
pleasing symmetric models, our reduced unfolding does not gain much.

We have the feeling that models of communication protocols, especially those
translated from a high-level programming language, have sparse state spaces.
The sliding window protocol model we experimented with (“sw” in Table 1) is a
good example of this. Already with very small window sizes its traditional un-
foldings become unmanageably large. Even the reduced and minimal unfoldings
are not very helpful for larger window sizes. This is because all buffer reads and
writes in the model are atomic, which reduces the reachability graph but makes
the unfolding explode.

5 Conclusion and Future Work

Earlier work on performing enabling tests for high-level nets appears to be lim-
ited to nets whose arc inscriptions have constant weights. According to Kindler
and Völzer [10], it is difficult to model distributed network algorithms under
such limitations. They present Algebraic system nets as a solution, but do not
define any algorithms for analysing these nets on the high level.

We viewed enabling tests for high-level nets—constructing the set of assign-
ments under which a transition is enabled in a given marking—as a unification
problem, matching multiset-valued terms and subsets of constant multisets. Our
approach avoids the combinatorial explosion inherent in this problem by dis-
allowing multiset-valued variables on input arc inscriptions, by restricting the
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set of operations recognised by the unification algorithm, and by requiring that
variable-dependent weights and arbitrary multiset-valued terms can be evaluated
based on variable bindings gathered from other terms.

Our reachability analyserMaria supports queues and stacks on the data type
level. Powerful operations, such as removing multiple items from the middle of a
queue, make it easy to construct compact high-level models. Experiments show
that it is often infeasible to unfold such models in the traditional way. Special
constructs for translating large blocks of atomic operations in high-level nets
into behaviour-equivalent compact low-level nets are subject to further research.

The presented unification algorithm processes terms in a fixed order. A
method for statically ordering the terms in a close to optimal way was presented,
and some optimisations to the algorithm were discussed. Some of the presented
techniques may be best suited for exhaustive analysis tools; their applicability
in simulators was not tested.

A new method for unfolding high-level nets based on a kind of “coverable
marking” was presented. The method often produces considerably smaller un-
foldings than the common approach of iterating over all domains.
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