
Maria: Modular Reachability Analyser

for Algebraic System Nets

Marko Mäkelä�

Helsinki University of Technology, Laboratory for Theoretical Computer Science
P.O.Box 9700, 02015 HUT, Finland

marko.makela@hut.fi

http://www.tcs.hut.fi/Personnel/marko.html

Abstract. Maria performs simulation, exhaustive reachability analysis
and on-the-fly LTL model checking of high-level Petri nets with fairness
constraints. The algebra contains powerful built-in data types and oper-
ations. Models can be exported to low-level Petri nets and labelled tran-
sition systems. Translator programs allow Maria to analyse transition
systems as well as distributed computer programs written in procedural
or object-oriented languages, or high-level specifications such as SDL.
Maria has been implemented in portable C and C++, and it is freely
available under the conditions of the GNU General Public License.

1 Introduction

1.1 Analysing High-Level Software Systems

There are many tools for analysing concurrent systems, but most of them are
only suitable for education or for analysing relatively simple, hand-made highly
abstracted models. At universities, many analysers have been developed just to
see whether a theoretical idea might work in practice, often analysing models
that do not directly have any roots in the real world. Commercial tool vendors
concentrate on executable code generation and on graphical user interfaces.

Verifying industrial-size designs with minimal manual effort is a challenge.
There may be no universal solution, but it is possible to list some requirements
for automated checking of distributed software systems.

High-level formalism. The formalism used by the reachability analyser or model
checker should have enough expressive power, so that high-level system descrip-
tions can be modelled in a straightforward way, without introducing any super-
fluous intermediate states caused by having to translate, e.g., message buffer
operations to non-atomic sequences of simpler operations.
� This research was financed by the Helsinki Graduate School on Computer Science
and Engineering, the National Technology Agency of Finland (TEKES), the Nokia
Corporation, Elisa Communications, the Finnish Rail Administration, EKE Elec-
tronics and Genera, and by a personal grant from Tekniikan Edistämissäätiö.

J. Esparza and C. Lakos (Eds.): ICATPN 2002, LNCS 2360, pp. 434–444, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Maria: Modular Reachability Analyser for Algebraic System Nets 435

Ease of use. Users should not need to be familiar with the formalism internally
used by the analyser. The user works in the domain he is used to, and a language-
specific front-end is responsible for hiding the underlying formalism:

– translate models to the internal formalism, abstracting from details that are
not necessary in analysis

– allow desired properties to be specified in the design domain
– display erroneous behaviour in the design domain

Efficient utilisation of computing resources. The tools used in the modelling
and verification process should be constructed in such a way that they work in a
variety of computer systems, ranging from personal computers to multiprocessor
supercomputers. The tools should not depend on the processor word length or
byte order, and they should be based on standardised interfaces, such as [28].
Memory management should be optimised for large numbers of states and events.

1.2 Representing State Spaces

Efficient algorithms for exhaustive state space enumeration need to determine
whether a state has been encountered earlier in the analysis. There are three
fundamentally different approaches for representing the set of covered states.

Symbolic Techniques represent the set with a dynamic data structure that
may be changed substantially when a state is added.

Explicit Techniques encode each state separately as a bit string.
Lossy Techniques transform states to hash signatures. In the event of a hash

collision, substantial parts of the state space may remain unexplored.

It may be difficult to combine symbolic techniques with efficient model check-
ing of liveness properties. Also, symbolic techniques have usually been imple-
mented for formalisms having relatively simple data types and operations.

Since Maria supports a very high-level formalism, including, among oth-
ers, operations on bounded queues, no efforts were made to implement symbolic
techniques. When the state space management is based on explicit or lossy tech-
niques, new operations on existing data types can be implemented independently.

1.3 Background

Maria [20] is the main product of a four-year research project that was carried
out during the years 1998–2001. One of the most important goals in the project is
to be able to directly analyse telecommunications protocols specified in SDL [29],
the CCITT Specification and Description Language. In fact, the experience from
Prod [26] and Emma [8] motivated the start of the whole project.

The goal was to develop a Petri net based state space exploration tool whose
inscription language facilitates straightforward translation of data types and con-
structs found in SDL and high-level programming languages. Despite its expres-
sive power, the Maria modelling language has a sound theoretical foundation.
The semantics has been defined in [17] in terms of Algebraic System Nets [10].

436 Marko Mäkelä

The first usable versions of the analyser were released in the summer of 1999.
Since then, Maria has been in extensive internal use, which has helped in finding
and correcting errors and performance bottlenecks. In 2001, a graphical user
interface for exploring state spaces and displaying query results was implemented
on top of GraphViz [3]. In the fall of 2001, Maria replaced Prod as the main
analysis tool in the education at our laboratory. On November 1, 2001, the tool
was officially released as version 1.0.

The word“modular” in Maria refers to the software design of the tool, which
makes it easy to incorporate different algorithms, front-ends and state storage
mechanisms. The work on refinements [14] demonstrates that Maria can be
used as a test-bed for new algorithmic ideas.

�
✒
✏
✑

�
✒
✏
✑

�
✒
✏
✑transition

system

SDL
(TNSDL)

Java
(subset)

Front
Ends

✲

✲

�
✧
✥
✦

�
✧
✥
✦

LTL
Formula

Maria
Model

✑✻
✏
❄

behaviour

requirements

Maria

✟✟✙✟✟✯
Graph Browser

✲export
�
✒
✏
✑transition

system
❍❍❍❥unfold�
✒

✏
✑place/transition

system

Fig. 1. The interfaces of Maria

2 Using Maria

Figure 1 illustrates the high-level interfaces of Maria. Models can be either
written by hand or translated from other formalisms. A translator that allows
Maria to model check parallel compositions of TVT [25] labelled transition
systems is available from the home page [20]. Translators from SDL and Java
are under development. The SDL translator [23] has been written from scratch,
while one Java translator is based on Bandera [2].

Maria accepts commands from files, from a command line and from a graph-
ical interface. Several modes of operation are supported:

– exhaustive reachability analysis with on-the-fly checking of safety properties
– interactive simulation: generate successors for states selected by the user
– interactive reachability graph exploration
– on-the-fly verification of liveness properties with fairness assumptions
– unfolding the model, optionally using a “coverable marking” algorithm [18]

The unfolding algorithms can output nets in the native input formats of
PEP [7] and LoLA [22], as well as in the native format of Prod.

Figure 2 shows a simplified version of the distributed data base manager
system, originally presented by Genrich and Lautenbach in [5]. The number of

Maria: Modular Reachability Analyser for Algebraic System Nets 437

typedef id[3] db_t;

typedef struct {

db_t first;

db_t second;

} db_pair_t;

place waiting db_t;

place performing db_t;

place inactive db_t: db_t d: d;

place exclusion struct {}: {};

place sent db_pair_t;

place recv db_pair_t;

place ack db_pair_t;

trans receive

in { place inactive: r;

place sent: { s, r }; }

out { place performing: r;

place recv: { s, r }; };

trans ack

in { place performing: r;

place recv: { s, r }; }

out { place inactive: r;

place ack: { s, r }; };

trans collect

in { place waiting: s;

place ack: db_t t (t != s): { s, t }; }

out { place inactive: s; place exclusion: {}; };

trans update

in { place inactive: s; place exclusion: {}; }

out { place waiting: s;

place sent: db_t t (t != s): { s, t }; };

Fig. 2. Distributed data base managers in the Maria language. The number of
data base manager nodes can be configured by modifying the first line

@0 3(3)

inactive: 0,1,2

@1 2(1)

inactive: 1,2

@5 2(1)

inactive: 1

@27 1(1)

inactive: 1,2

@13 1(2)

inactive: 2

@14 1(2)

inactive: 1,2

✲ ✲update
s:0

receive
r:2
s:0

❄

ack
r:2
s:0

✛ ✛ receive
r:1
s:0

ack
r:1
s:0

✻collect
s:0

Fig. 3. An error trace for the LTL formula <>place inactive equals empty
in the system of Figure 2. In this infinite execution, always at least one node is
inactive

438 Marko Mäkelä

modelled nodes can be changed by altering the first data type definition; Maria
allows aggregate inscriptions in the transitions collect and update.

One use of Maria is to verify liveness properties, such as the (incorrect)
claim that in all executions starting from the initial state, all data base nodes
are simultaneously active at some point of time. Error traces can be simplified
by telling Maria to only show the markings of certain places. The error trace
in Figure 3 hides everything except the place named inactive.

3 Advanced Features

3.1 Powerful Algebraic Operations

The built-in algebraic operations in Maria were designed to have enough expres-
sive power for modelling high-level programs. In addition to the basic constructs
familiar from programming languages such as C, there are operations for:

– managing items in bounded buffers (queues and stacks)
– basic multi-set operations (union, intersection, difference, mappings)
– aggregation: multi-set sums, existential and universal quantification

Aggregation over a dynamic range of indexes is a particularly powerful construct,
because it allows arc expressions to be highly parameterisable. In Figure 2, the
transition update models a broadcast operation with multi-set summation. For
instance, when the variable s equals 3, the formula db_t t (t!=s): {s,t} ex-
pands to the multi-set {s,1},{s,2}, or {3,1},{3,2}. If the first line of Figure 2
is modified to model n data base nodes, the multi-set will have n − 1 elements.

Basic algebraic operations check for exceptional conditions, such as integer
arithmetic errors, queue or stack overflows or underflows, and constraint viola-
tions. The data type system is very sophisticated, and it is possible to arbitrarily
restrict the set of allowed values even for structured types.

3.2 Optional C Code Generation

Transforming Maria models to executable libraries is a nontrivial task, be-
cause operations on multi-sets, queues, stacks and tagged unions have no direct
counterparts in the C programming language. In addition, all code must be in-
strumented with guards against evaluation errors and constraint violations.

The use of the compilation option [16] can speed up all operations except
unfolding. Interpreter-based operation is useful in interactive simulations or when
debugging a model, because the overhead of invoking a compiler is avoided.

3.3 Unifying Transition Instances and Markings

The unification algorithm that Maria uses for determining the assignments
under which transitions are enabled has been documented in [18]. In Maria,

Maria: Modular Reachability Analyser for Algebraic System Nets 439

this depth-first algorithm has been implemented in such a way that enabled
transition instances are fired as soon as they are found.

The interpreter-based implementations of the combined transition enabling
check and firing algorithm use a search stack, while the compiler-based variant
integrates the search stack in the program structure as nested loops.

3.4 Efficient State Space Management

Maria represents the states of its models in two different ways. The expanded
representation is used when determining successor states and performing com-
putations. Long-term storage of explored states is based on a condensed repre-
sentation, a compact bit string whose encoding has been documented in [15].

By default, Maria manages reachability graphs (reachable states and events)
in disk files. Keeping all data structures on disk has some advantages:

– the analysis can be interrupted and continued later
– the generated reachability graph can be explored on a different computer
– memory capacity is not a limit: a high-level model with 15,866,988 states

and 61,156,129 events was analysed in 5MB of RAM (and 1.55GB of disk)

File system access can be notably slow even on systems that have enough memory
to buffer all files. In some cases, more than half of the execution time of the
analyser can be spent in determining whether a state has been visited. Enabling
an option for memory-mapped file access reduces the analysis times of certain
models to a sixth of the original. Unfortunately, with this option, the 4GB
address space of 32-bit systems is becoming a barrier. Really complex models
can be analysed only with traditional file access, or with a 64-bit processor.

Optionally, Maria approximates the set of reachable states with a memory-
based hash table. This option can be useful in cursory analysis of deadlocks and
safety properties and for obtaining lower bounds for state space sizes.

3.5 Model Checking with Fairness Constraints

The on-the-fly LTL model checker in Maria takes into account both weak and
strong fairness on the algorithmic level instead of adding it to the LTL specifica-
tion. When a model has many fairness constraints, this can lead to exponential
savings in time and space. To this end, the net class of the analyser includes con-
structs to flexibly express fairness constraints on transitions. To our knowledge,
this is the first model checker of its kind for high-level Petri nets.

The model checking procedure [12,13] proceeds in an on-the-fly manner pro-
cessing one strongly connected component of the product state space at a time.
By detecting the presence of strong fairness constraints, the procedure tries to
use generalised Büchi automata when possible to avoid the more complex task
of checking the emptiness of Streett automata.

Generating short counterexamples when both weak and strong fairness are
present can be quite challenging. Experiments with the algorithm that Maria
uses have been reported in [12].

440 Marko Mäkelä

For translating temporal properties to generalised Büchi automata Maria
invokes an external tool that is a highly optimised implementation of the algo-
rithm presented in [4]. Since the translator works as a textual filter, it can be
easily replaced with an implementation of another algorithm.

4 Performance and Applications

4.1 Distributed Dynamic Channel Allocation

One of the first systems that was analysed with Maria is a model of a radio
channel allocation algorithm [21].

The sophisticated data type system and the aggregation operations of the
modelling language allowed to write the model in a very compact way, and
many modelling errors were quickly found in interactive simulation runs.

4.2 Verbatim Modelling of a Large SDL Specification

An important goal of Maria was to be able to handle models of industrial-
size distributed systems. The most complex system that has been analysed with
Maria so far is the complete radio link control (RLC) protocol of the third-
generation mobile telephone system UMTS. The ETSI standard [27] describes
this protocol in English, and the description is accompanied with 74 pages of
informative graphical SDL diagrams that contain some inaccuracies and errors.

Each SDL statement was mechanically translated into a high-level net tran-
sition, generating hundreds of transitions. As one of the main functions of the
protocol is to disassemble and reassemble data packets, the transmitted messages
had to be modelled in detail. For one version of the model, Maria encodes each
reachable marking of the 142 high-level places in 167–197 bytes.

Timers were modelled in an abstract way, because the formalism of Maria
cannot describe time, but only the order in which events occur. Each timer was
translated to a Boolean flag that indicates whether the timer is active. When a
timer is activated, the flag is set. Resetting the timer clears the flag. Whenever
the flag is set, a timeout can occur.

The parameters of the protocol model include message queue lengths, the
domains of sequence numbers, and the type of communication channels. Both a
reliable and a lossy channel have been analysed, but so far, the protocol has not
been analysed on a channel that would duplicate or reorder messages. With the
analysed initial parameters, the model has up to tens of millions of reachable
states. LTL model checking has been applied on configurations that have less
than 100,000 reachable states. The results will be reported in [24].

4.3 Benchmark: Distributed Data Base Managers

Although Maria has a higher-level modelling language than Prod, using it does
not imply a noticeable performance penalty. In the contrary, Maria usually uses
less memory (or disk) than Prod, and sometimes it consumes less processor time.

Maria: Modular Reachability Analyser for Algebraic System Nets 441

We have translated the Prod model of 10 distributed data base servers
(sample file dbm.net) to Maria format (file dbm.pn in the Maria distribution).
Figure 2 is a simplification of this model; among other things, it excludes capacity
constraints and invariants that allow more compact representation of markings.

When Prod was invoked with a reasonably large -b parameter, it generated
the 196,831 states and 1,181,000 arcs of the 10-server model in 262 seconds of
user time and 10 seconds of system time. The 700MHz Pentium III system had
enough available memory to buffer the 69 megabytes of generated graph files.

We analysed the equivalent model in Maria with the compilation option
enabled. The analysis produced 22 megabytes of graph files in 130 seconds of user
time and less than 1 second of system time. The improvement can be attributed
to better state space encoding and to utilising a memory-mapped interface [28,
Section 2.8.3.2] for accessing graph files.

5 Availability

Maria is freely available as source code from the home page [20] under the
conditions of the GNU General Public License. No registration is required.

It should be possible to compile the analyser for any environment that fully
supports the C and C++ programming languages. Some features are, however,
only present on Unix-like systems. The tool has been tested on GNU/Linux, Sun
Solaris, Digital UNIX, SGI IRIX, Apple Mac OS X and Microsoft Windows.

6 Conclusion and Future Work

Maria helps the analysis of industrial-size systems in multiple ways:

– by providing a theoretically sound modelling language that is suitable for
describing high-level software systems,

– as an interactive simulator and visualiser of distributed systems, and
– as a “model checking back-end” for various formalisms ranging from labelled

transition systems to SDL

Currently, Maria does not support any state space reduction methods.
Some algorithms on symmetry reduction [9] are being implemented. It has been
planned to adapt partial order reduction methods [6] to Maria.

The model checker in Maria could treat safety properties in a more efficient
way. Instead of interpreting the reachability graph, the property and their prod-
uct as Büchi or Streett automata, it could interpret them as finite automata and
thus avoid the costly loop checks. A translation from LTL to finite automata has
been given in [11]. Recent developments in this area are documented in [19].

The present version of Maria displays counterexamples as directed graphs
whose nodes are reachable states in the model and edges are transition instances
leading from a state to another. In many applications, it would be more intuitive
to illustrate executions with message sequence charts [30]. In order for this to
work nicely, a mechanism for specifying mappings from transition instances to
messages and from markings to MSC conditions must be implemented.

442 Marko Mäkelä

Acknowledgements

The LTL model checker algorithm in Maria was originally implemented by
Timo Latvala. The design of Maria has been influenced by feedback from Nisse
Husberg, Teemu Tynjälä, Kimmo Varpaaniemi and others. The author would
also like to express his thanks to the anonymous referees for their comments.

References

1. José-Manuel Colom and Maciej Koutny, editors, Application and Theory of Petri
Nets 2001, 22nd International Conference, ICATPN 2001, volume 2075 of Lecture
Notes in Computer Science, Newcastle upon Tyne, England, June 2001. Springer-
Verlag. 443

2. James. C. Corbett, Matthew. B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Păsăreanu, Robby, and Hongjun Zheng. Bandera: Extracting finite-state models
from Java source code. In Carlo Ghezzi, Mehdi Jazayeri and Alexander Wolf,
editors, Proceedings of the 22nd International Conference on Software Engineering,
pages 439–448, Limerick, Ireland, June 2000. ACM Press, New York, NY, USA.
436

3. Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software: Practice and Experience,
30(11):1203–1233, September 2000. 436

4. Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Proceedings of the 15th Work-
shop Protocol Specification, Testing, and Verification, Warsaw, June 1995. North-
Holland. 440

5. Hartmann J. Genrich and Kurt Lautenbach. The analysis of distributed systems by
means of Predicate/Transition-Nets. In Gilles Kahn, editor, Semantics of Concur-
rent Computation, volume 70 of Lecture Notes in Computer Science, pages 123–146,
Evian, France, July 1979. Springer-Verlag, 1979. 436

6. Patrice Godefroid, Doron Peled and Mark Staskauskas. Using partial-order meth-
ods in the formal validation of industrial concurrent programs. IEEE Transactions
on Software Engineering, 22(7):496–507, July 1996. 441

7. Bernd Grahlmann. The state of PEP. In Armando M. Haeberer, editor, Algebraic
Methodology and Software Technology, 7th International Conference, AMAST’98,
Amazonia, Brazil, volume 1548 of Lecture Notes in Computer Science, pages 522–
526, Manaus, Brazil, January 1999. Springer-Verlag. 436

8. Nisse Husberg and Tapio Manner. Emma: Developing an industrial reachability
analyser for SDL. In World Congress on Formal Methods, volume 1708 of Lecture
Notes in Computer Science, pages 642–661, Toulouse, France, September 1999.
Springer-Verlag. 435

9. Tommi Junttila. Finding symmetries of algebraic system nets. Fundamenta Infor-
maticae, 37(3):269–289, February 1999. 441

10. Ekkart Kindler and Hagen Völzer. Flexibility in algebraic nets. In Jörg Desel
and Manuel Silva, editors, Application and Theory of Petri Nets 1998: 19th In-
ternational Conference, ICATPN’98, volume 1420 of Lecture Notes in Computer
Science, pages 345–364, Lisbon, Portugal, June 1998. Springer-Verlag. 435

Maria: Modular Reachability Analyser for Algebraic System Nets 443

11. Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. In
Nicolas Halbwachs and Doron Peled, editors, Computer Aided Verification: 11th

International Conference, CAV’99, volume 1633 of Lecture Notes in Computer
Science, pages 172–183, Trento, Italy, July 1999. Springer-Verlag. 441

12. Timo Latvala and Keijo Heljanko. Coping with strong fairness. Fundamenta In-
formaticae, 43(1–4):175–193, 2000. 439

13. Timo Latvala. Model checking LTL properties of high-level Petri nets with fairness
constraints. In [1], pages 242–262. 439

14. Glenn Lewis and Charles Lakos. Incremental state space construction for coloured
Petri nets. In [1], pages 263–282. 436

15. Marko Mäkelä. Condensed storage of multi-set sequences. In Workshop on the
Practical Use of High-Level Petri Nets, Århus, Denmark, June 2000. 439

16. Marko Mäkelä. Applying compiler techniques to reachability analysis of high-
level models. In Hans-Dieter Burkhard, Ludwik Czaja, Andrzej Skowron and
Mario Lenz, editors, Workshop Concurrency, Specification & Programming 2000,
Informatik-Bericht 140, pages 129–141. Humboldt-Universität zu Berlin, Germany,
October 2000. 438

17. Marko Mäkelä. A reachability analyser for algebraic system nets. Research re-
port A69, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, June 2001. 435

18. Marko Mäkelä. Optimising enabling tests and unfoldings of algebraic system nets.
In [1], pages 283–302. 436, 438

19. Marko Mäkelä. Efficiently verifying safety properties with idle office computers.
Unpublished manuscript. 441

20. Marko Mäkelä. Maria. On-line documentation, http://www.tcs.hut.fi/maria/.
435, 436, 441

21. Leo Ojala, Nisse Husberg and Teemu Tynjälä. Modelling and analysing a dis-
tributed dynamic channel allocation algorithm for mobile computing using high-
level net methods. International Journal on Software Tools for Technology Trans-
fer, 3(4):382–393, 2001. 440

22. Karsten Schmidt. LoLA: A low level analyser. In Mogens Nielsen and Dan Simpson,
editors, Application and Theory of Petri Nets 2001, 21st International Conference,
ICATPN 2000, volume 1825 of Lecture Notes in Computer Science, pages 465–474,
Århus, Denmark, June 2000. Springer-Verlag. 436

23. André Schulz and Teemu Tynjälä. Translation rules from standard SDL to Maria
input language. In Nisse Husberg, Tomi Janhunen and Ilkka Niemelä, editors,
Leksa Notes in Computer Science: Festschrift in Honour of Professor Leo Ojala,
Research Report 63, Helsinki University of Technology, Laboratory for Theoretical
Computer Science, Espoo, Finland, October 2000. 436

24. Teemu Tynjälä, Sari Leppänen and Vesa Luukkala. Verifying reliable data trans-
mission over UMTS radio interface with high level Petri nets. Unpublished
manuscript. 440

25. Antti Valmari et al. Tampere Verification Tool.
http://www.cs.tut.fi/ohj/VARG/. 436

26. Kimmo Varpaaniemi, Jaakko Halme, Kari Hiekkanen and Tino Pyssysalo. PROD
reference manual. Technical Report B13, Helsinki University of Technology, Digital
Systems Laboratory, Espoo, Finland, August 1995. 435

27. Universal Mobile Telecommunications System (UMTS); RLC protocol specification
(3GPP TS 25.322 version 3.5.0 Release 1999). ETSI TS 125 322 V3.5.0 (2000-12).
European Telecommunications Standards Institute, December 2000. 440

http://www.tcs.hut.fi/maria/
http://www.cs.tut.fi/ohj/VARG/

444 Marko Mäkelä

28. Standard for Information Technology—Portable Operating System Interface. IEEE
Std 1003.1-2001. Institute of Electrical and Electronics Engineers, New York, NY,
USA, December 2001. 435, 441

29. CCITT Specification and Description Language (SDL). Recommendation Z.100.
International Telecommunication Union, Geneva, Switzerland, October 1996. 435

30. Message Sequence Chart (MSC). Recommendation Z.120. International Telecom-
munication Union, Geneva, Switzerland, November 1999. 441

	Maria: Modular Reachability Analyser for Algebraic System Nets
	Introduction
	Analysing High-Level Software Systems
	Representing State Spaces
	Background

	Using Maria
	Advanced Features
	Powerful Algebraic Operations
	Optional C Code Generation
	Unifying Transition Instances and Markings
	Efficient State Space Management
	Model Checking with Fairness Constraints

	Performance and Applications
	Distributed Dynamic Channel Allocation
	Verbatim Modelling of a Large SDL Specification
	Benchmark: Distributed Data Base Managers

	Availability
	Conclusion and Future Work

