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Abstract

Tools for state space exploration, or reachability analysers, work by incrementally con-
structing a set of reachable states. The applicability of these tools is limited by the vast state
space of real systems. One way to attack this problem are different reduction methods—
another approach is to come up with techniques for representing the set of reachable states
in a compact way.

The state—or marking—of a high-level Petri net can be viewed as a sequence of finite
multi-sets. A method for encoding markings containing structured values is described, and
a comparison to an earlier implementation is presented.
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1 Introduction

The limited amount of system memory is a major bottleneck in reachability analysis. Algo-
rithms for reachability analysis and model checking need to keep track of the states that have
been explored. In that way, they can detect cyclic behaviour and limit the investigation of suc-
cessors to truly new states.

There are some techniques that only manage the set of reachable states and utilise simi-
larities between the states. One of them, Binary Decision Diagrams [1, Chapter 5], has been
successfully applied mainly in the verification of digital circuits. Techniques applied on the
analysis of software systems include a state compaction method for product automata [5] and a
method known as Graph Encoded Tuple Sets [6].

One problem with these so called symbolic techniques is that inserting a state may involve
global changes, slowing down disk-based implementations. Another problem is that states have
no identities: there is no way to retrieve a state from the structure by specifying an index number.
Using such a structure for anything else than searching for states fulfilling a predicate or for
determining whether a particular state has been explored is tricky.

∗This research was financed by the National Technology Agency of Finland (TEKES), the Nokia Corporation,
the Helsinki Telephone Corporation and the Finnish Rail Administration.



Explicit techniques, which store each state separately, make it possible to navigate in the
generated reachability graph and to perform all sorts of queries on it afterwards. When the
states are stored separately, they can be assigned index numbers, and it is easy to encode events,
the edges of the reachability graph, as triples of two state numbers and a label identifying the
action.

This work describes an explicit technique, a method of encoding sequences of multi-sets in
a string of binary digits. Symbolic techniques appear promising, but we believe that explicit
techniques have an advantage in some applications, such as in the analysis of general software
systems, which cannot be characterised by simple laws and which make heavy use of structured
data types. Our method, implemented in MARIA [11], has turned out to yield up to an order of
magnitude smaller encodings than the method used in PROD [15], although MARIA allows the
user to define data types just like in programming languages.

Since our techniques are not specific to any particular class of high-level Petri nets, we try
to write in general terms. Even if all data types in MARIA have a finite domain, we shall see
that our approach can also handle infinite-domain data types, such as lists.

2 The Reachability Graph

The reachable state space of a model can be represented as a reachability graph, a directed graph
whose vertices correspond to reachable states and edges correspond to actions leading from one
state to another.

In high-level Petri nets, the states are calledmarkingsand the actions are calledtransition
instances. A transition instance consists of a high-level transition and an assignment for the
variables that appear in the arcs and guards connected to the transition.

2.1 Managing the State Space in the File System

Applying explicit analysis techniques to models comprising tens or hundreds of millions of
reachable states usually calls for the use of disk storage. Typical reachability analysis algorithms
require random access to the set of states explored so far. A similar structure is not required for
actions; for most purposes, they can be stored sequentially.

To optimise access to the stored states, one can calculate hash values of the states. When an
analysis algorithm wants to determine whether a particular state has been explored, it computes
a hash value of the state and searches for it in a memory-based data structure that maps hash
values to state numbers. Only if a hash value match is found, the disk address of the encoded
state is fetched from a directory file and the state is retrieved from a state file for comparison.

If the encoded states are very small, the memory-based map from hash values to state num-
bers may exceed the memory limit before the state file exceeds the size limit imposed by the
file system. This problem can be addressed by maintaining the map in a disk-based B-tree [13,
Ch. 18]. In that case, the system memory consumption remains bounded throughout the analy-
sis, unless some data structures for on-the-fly model checking are kept in the main memory.

The edges of the reachability graph, consisting of source and target state numbers and of an
encoded transition instance, are best stored in a separate file. Because the length of the encoded
transition instance may vary, also the length is encoded in the file.



2.2 Encoding the Edges and Vertices

2.2.1 Mapping Items to Bit Strings

In order to represent the vertices and edges of the reachability graph as sequences of binary
digits, we have to define how the entities they consist of are mapped to such sequences.

Places and Transitions If we denote the set of the places of a Petri net model withP and
assume that there is a bijective mapping

oP : P →{0, . . . , |P |−1}

we can uniquely represent each place with a string ofdlog2 |P |e binary digits. If |P | ≤ 1, no
bits are required. The same applies for transitions, characterised by the setT and the orderoT .

Data Items A value of a finite-domain data typeD can be represented as adlog2 |D|e-digit
binary number, possibly spanning several machine words. This requires atotal order

<D ⊆ D ×D

for each data typeD. For simple types, such as integers and enumerations, defining the order is
straightforward. For structured types, such as tuples, tagged unions and fixed-length or variable-
length vectors, the order can be defined lexicographically, e.g. so that variable-length vectors
with less elements come first, and that the last component of a structure is the most significant
one. This has been implemented in MARIA also for nested structured types.

Once there is a total order among data items, we can define a mapping from the data items
to integers:

oD : D →{0, . . . , |D|−1} : d 7→ |{k∈ D ‖ k <D d}| .
It is easy to see that the mapping is bijective and that it preserves the order of the mapped items.
Because<D is a total order,D can be written as

D = {d0, . . . ,dn−1}

such thatdi−1 <D di for all 0 < i < n. Now oD maps eachdi , 0≤ i < n, to a unique value:

oD(di) = |{k∈ D ‖ k <D di}|
= |{d0, . . . ,di−1}|
= i.

SinceoD(di) = i, it holds thatoD(di) < oD(d j) if and only if i < j, or di <D d j . Thus,oD is an
order-preserving mapping.

MARIA allows the domains of data types to be restricted with type constraints, internally
represented as an ordered list of closed ranges. Our implementation ofoD(d) for constrained
types compares the valued to the endpoints of each range in the constraint and performs sub-
tractions and additions.

Mappings for unconstrained structured values are constructed through multiplication and
addition from mapped component values. This is similar to the technique represented in [2], but
we manage also deeply structured values and constraints consisting of several disjoint ranges.



Structured types can easily have a bigger number of distinct values than one machine word
can represent. Our implementation does not convert values of such types to a single binary
number, but it handles them component by component. For example, let there be a variable-
length vector type

D :=
k⋃

i=0

D i
e

D i
e := De×·· ·×De︸ ︷︷ ︸

i times

with |D| so big that it does not fit in a machine word. To convert a vector value〈d1, . . . ,di〉 ∈
D to a sequence of binary digits, our implementation encodesi as adlog2ke-bit number and
converts each elementd1, . . . ,di separately to a bit string. If also the element typeDe is a large
structured type, the elements are handled in a similar way; otherwise, the mappingoDe can be
applied.

Tagged unions are handled in an analogous way: First, the active component is identified
with a binary number. Then the encoded representation of the active component is appended
to the bit string. Tuples and fixed-length arrays are simpler, since the number and type of
components remain constant.

All data types that can be defined in MARIA have a finite domain. Also the variable-length
buffer data type is assigned a capacity, the maximum number of elements a buffer value can
contain. If there were any infinite-domain data types,1 they could be handled in a similar way
with large structured types. For instance, an unbounded string or linked list of an item typeD
can be represented by encoding each item separately and by using a special value for signalling
the end of the sequence. If|D| can be represented in a machine word, it can be used as the
special value. Otherwise, it is easiest to use one extra bit per data item as the end marker.

2.2.2 Encoding Edges

An edge of the reachability graph consists of two numbers identifying the source and target
states and of a transition instance consisting of a transition identifier and an assignment for the
variables required for firing the transition.

If there is no statistical information available on the transition enablings, the transitions can
be assumed to occur with equal probabilities. In that case, our representation of the transitions
t ∈ T with dlog2 |T |e-digit binary numbersoT (t) is close to the optimum defined by the entropy
of the system [14, Ch. 6–7].

When the variables of the transition instance are processed in a systematic order, it suffices
to encode only the values of the variables and to append them to the bit string representing the
label of the edge. Similarly, if the analyser generates all successors of a state in one step, it
suffices to store the source state number only once for a bunch of edges originating from the
state. Keeping track of the number of states generated so far allows the encoder to use less bits
for representing the state numbers.

1We restricted ourselves to finite types to avoid difficulties with verification algorithms that operate on unfolded
nets.



If the formalism allows some of the variables of an enabled transition to be undefined—
that is, if all arc expressions and gates can be evaluated without dereferencing a variable—the
encoder must use one bit for signalling whether the variable has been assigned a value.

All this data can be encoded into one sequence of binary digits. When the binary digit string
is written to a file, it is good to align it at a byte or machine word boundary.

In some applications, it is not necessary to store the labels of the edges, since they can be
reconstructed by analysing all enabled transition instances in the source state, and by finding the
instances that lead to the specified target state. This is computationally expensive, but if it only
has to be done when displaying to the user a counterexample path of at most a few hundred or
thousand steps, the cost of saving tens of megabytes of disk space might be only a few seconds
of wasted processor time.

2.2.3 Encoding Vertices

In the case of high-level Petri nets, the vertices of the reachability graph are markings. A
marking is a family of multi-sets, indexed by places. A multi-set over a set is a mapping from
the items of the set to the set of natural numbers,µ : A→N. Unlike normal sets, a multi-set may
contain more than one instance of an item. The number of times an itema∈ A is contained in
a multi-setµ is called themultiplicity µ(a). The union operation of normal sets can be extended
to multi-sets as an operation that adds multiplicities.

When the placesp ∈ P are mapped to numbersoP (p), the marking can be viewed as a
sequence of multi-sets. The multi-set at the positionoP (p) of the sequence corresponds to the
local marking of the placep.

A straightforward implementation encodes each multi-set in the sequence separately and
appends it to a bit string representing the marking. The details are shown in the following
section.

3 Storing Markings

Storing sequences of multi-sets in finite space involves a fundamental problem: the range of
a multi-setµ is the infinite set of natural numbers. An implementation in a finite-memory
computer must restrict the choice of the multiplicitiesµ(a) to a finite set, typically 0≤ µ(a) < 2n

with n = 16 orn = 32.
Since the multi-sets in the reachable markings of practical models usually map most items

to zero multiplicity, it makes sense to represent each multi-set as a sequence of pairs〈µ(a),a〉
havingµ(a) > 0.

An implementation that enforces a limit 0≤ µ(a) < 2n could encode the multiplicity of each
〈µ(a),a〉 pair in n binary digits and mark the end of the sequence with a string ofn zero bits.
Such a simple encoding requires(|P |+d)n bits for storing the multiplicities of a marking of a
|P |-place net containingd distinct tokens.



3.1 Representing Multiplicities

A multi-set µ over a setA can be characterised by two quantities: the cardinality, or the total
number of items

t = ∑
a∈A

µ(a)

and the number of distinct items

d = |{a∈ A‖ µ(a) > 0}| .

The cardinality can theoretically be any natural number, but a finite-memory implementation
limits it, typically 0≤ t < 2n for somen.

An user-definedcapacity constraint, a Boolean condition ont, can reduce the number of bits
required for representingt. If there arem different possibilities for the total number of tokens
in a place, the actual numbert can be represented usingdlog2me bits, since ak-digit binary
number can represent 2k different things.

Encoding the cardinalityt before the number of distinct itemsd has one advantage: it is
straightforward to see that 1≤ d ≤ t whent is nonzero. Therefore,d can be represented using
dlog2 te bits.

For the greatest multiplicityµmax in the multi-set it holds that⌈ t
d

⌉
≤ µmax≤ 1+ t−d.

If µmax is at its upper bound 1+ t−d, the otherd−1 distinct items must have a multiplicity of
1 in order for the total number of items to bet. Similarly, if µmax =

⌈
t
d

⌉
, the multiplicities of

the remaining items must be equal toµmax or µmax−1.
So, the greatest multiplicityµmax can always be represented with⌈

log2

(
2+ t−d−

⌈ t
d

⌉)⌉
binary digits. After decodingµmax, the decoder knows the remaining cardinalityt ′ = t −µmax

and the number of remaining distinct itemsd′ = d− 1. If the multiplicities are encoded in
descending order, the encoder always selects the greatest of the remaining multiplicities and
represents it using less and less bits.

This encoding of multiplicities appears to be quite compact even when capacity constraints
are not used. For representingd = 5 multiplicities, the simple encoding described in Section2.2
would use 6n bits. The optimised encoding needsn bits for representing the cardinality. As-
suming that it is 8, the number of distinct tokens is encoded in 3 bits. The greatest multiplicity
lies between

⌈8
5

⌉
= 2 and 8−5+1 = 4; therefore it can be represented with 2 bits. Clearly, the

improved encoding requires less thann+3+5·2 = n+13 bits. The difference between 6n and
n+13 is tangible already whenn = 16.

Our encoding scheme for multiplicities is a variable-length code. In the best case, when
d = 1 or d = t, our code only requiresdlog2 te bits for representingd—no further bits are
required for representing the multiplicities. Figure1 compares the performance of our code
against a fixed-length code that maps multiplicity distributions to a zero-based index numbers.
For instance, there are 7 different multiplicity distributions for multi-sets of cardinality 5, if the
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Figure 1: Number of Bits Required for Representing Multiplicities

multiplicities are sorted in descending order: 5, 41, 32, 311, 221, 2111, 11111. Each distribution
can be represented by adlog27e-bit number.

The average bit consumption of our code is slightly more than two times the size required
by the fixed-length code. The result is not so bad, since the fixed-length code is computationally
much more expensive than our method. Also, the reachable markings in typical Petri net models
tend to consist of ordinary sets—an optimal case for our code.

3.2 Representing Empty Multi-Sets

In many practical models, there is a substantial number of empty places in most reachable
markings. With our optimised multiplicity encoding, an empty place requiresdlog2me bits of
storage, if there arem different possibilities for the total number of tokens in the place.

As it is rather uncommon to define tight capacity constraints in models, representing the
cardinalities typically requires one machine word per place. If the machine word length isn
bits, we would still need|P |n bits for representing an empty marking. There ought to be a more
compact encoding for empty places.

Our solution is to start the encoded marking with the number of empty placesne, 0≤ ne≤
|P |. This requiresdlog2(|P |+1)e binary digits. There are(

|P |
ne

)
=

|P |!
ne! (|P |−ne)!

ways to pick a subset ofne empty places from the set of all|P | places. It is possible to enumerate
these subsets and to represent each of them as a binary number with⌈

log2

(
|P |
ne

)⌉
digits. It is easy to see that this code occupies at most|P | bits, since the total amount of all
subsets of the setP

|P |

∑
ne=0

(
|P |
ne

)



evaluates to exactly 2|P |. For |P |= 1 we have 1+1= 21, and assuming that the claim holds for
a set of magnitude|P |, it follows that

|P |+1

∑
ne=0

(
|P |+1

ne

)
=

(
|P |+1

0

)
+

|P |

∑
ne=0

(
|P |+1
ne+1

)

= 1+
|P |

∑
ne=0

(
|P |
ne

)
+

|P |−1

∑
ne=0

(
|P |

ne+1

)
= 1+2|P |+(2|P |−1)

= 2|P |+1.

Instead of constructing this kind of a fixed-length code, we developed and implemented in
MARIA a simple variable-length encoding scheme, which we shall present below.

3.2.1 A Variable-Length Code

Clearly, if the number of empty placesne happens to be 0 or|P |, there is only one way to select
the subset, and it can be identified by a zero-length code. In the following, we assume that
0 < ne < |P |.

If 1
2 |P |< ne< |P |—that is, there are more empty places than nonempty ones—then it makes

sense to explicitly represent the identity of the nonempty places. The encoding we have defined
so far identifies each placep∈ P with an index number 0≤ oP (p) < |P |, and it encodes the
multi-sets associated with the places in ascending order of index numbers.

The smallest index numberi1 of a nonempty place must be in the range

0 = l1 ≤ i1 ≤ h1 = ne

since there are at mostne empty places in the beginning of the sequence. So,i1, the index
number of the first nonempty place, can be stored usingdlog2(h1− l1 +1)e binary digits. What
about the following nonempty placesik+1? It holds that

ik+1 ≥ lk+1 = ik +1,

since the indices are processed in ascending order. It is easy to see that there areik− (k−1)
empty places beforeik, sinceik is thekth smallest index of a nonempty place. Thus, of the
places followingik, ne− (ik− (k−1)) are empty, and for the upper limithk+1 ≥ ik+1 we have

hk+1 = lk+1 +ne− (ik− (k−1))
= ik +1+ne− ik +k−1

= ne+k.

Sinceh1 = ne, it is easy to see thathk+1 = hk +1.
Similarly, if 0 < ne≤ 1

2 |P |, we represent the indices of empty places. This is analogous to
the previous case; we just start withh1 = |P |−ne.

This technique is illustrated in Figure2, which demonstrates a case with 13 places, 6 of
which are to be identified. The one with the smallest indexi1 must fulfill the condition 0≤ i1 ≤
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7. A fixed-length code representingi1 takes 3 bits. Unfortunately for us,i1 is at the smallest
possible position, and the range for the next index is of the same size: 1≤ i2 ≤ 8. Sincei2
occurs almost at the end of its range, the uncertainty over the position of the remaining indices
reduces. Our approach requires 1 bit for storingi3 andi4. After i4 has been stored, no further
bits are required. Our encoding uses a total of 8 bits for identifying the empty places. The

fixed-length code would use
⌈
log2

(13
6

)⌉
= 11 bits for this case.

In the worst case, when allm places to be identified occur in the firstm positions, our ap-
proach requires the same number of bits for representing each index, a total ofmdlog2(m+1)e
bits. In the best case where the first index occurs at the end of its range, the total requirement
drops todlog2(m+1)e bits.

3.2.2 Keep it Simple

Figure3 compares the space consumption of our variable-length encoding scheme against the
fixed-length code discussed in the beginning of this section. We have seen that the fixed-length
code never uses more thandlog2(|P |+1)e+ |P | binary digits. Its average bit consumption is

log2(|P |+1)+
1

|P |+1

|P |−1

∑
ne=1

⌈
log2

(
|P |
ne

)⌉
.

The average space consumption of our variable-length code appears to be more than one bit
per place. Even if our implementation made use of fractional bits, the worst case for|P | = 20
would require almost 39 bits, nearly two bits per place. This raises a thought: Why not use
exactly one bit per place for marking empty places? The decoder would not even need to know
the number of empty places in advance, which allows us to save furtherdlog2(|P |+1)e bits.

This simple code can easily be optimised further for places having a capacity constraint. No
signalling bit is required for places that are constrained to be nonempty. Also, if it is possible
to represent the cardinality using no more than, say, 2 bits, the emptiness bit can be omitted.

A further optimisation can be made regarding places with no capacity constraints. In prac-
tice, places in Petri nets are likely to contain a small number of tokens. Using a shorter repre-
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sentation for small cardinalities seems to make sense. Above we have suggested a code of at
most 1 bit for representing the cardinalityt = 0. This code can only tell whethert = 0 or t > 0.
In the latter case, more bits are required for encoding the exact value oft. Our implementation
in MARIA uses 4 more bits for representing the values 1≤ t ≤ 8, 10 for 9≤ t ≤ 264, 19 for
265≤ t ≤ 65800, and 4+n bits for representing the values 65801≤ t < 2n.

3.3 Redundant Places

Certain commonly applied modelling practices introduce redundancy in the markings of Petri
net models. Some of it can be removed by transforming the net to an equivalent one, but not
everything. For instance, if there are no inhibitor arcs in the formalism, it is difficult to remove
complement places.

All practical models are likely to contain redundant places. The state encoder would perform
better if it could somehow omit all redundant places from the encoded marking. The only
problem is that there must be a mechanism for computing the contents of redundant places
when decoding the marking.

MARIA solves the problem by allowing the initialisation expressions of places to refer to
the markings of other places. When a marking is about to be added to the reachability graph,
the encoder ensures that there is no controversy in the initialisation expressions of redundant
places, and issues an error message if there is. Thus, these user-supplied “invariants” can be
viewed as an additional safety check supplied by the analyser, just like capacity constraints and
checks in the expression evaluator.

4 An Example

Figure4 illustrates a high-level Petri net model of a distributed data base management system,
originally presented by Genrich, Lautenbach and Jensen [3, 9]. In the initial marking of the
model, all places exceptexclusion and inactive are empty. The latter place is initialised with
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Figure 4: Model of a Distributed Data Base Management System

a multi-set sum of the items in the setD representing the data base servers. In other words, all
data base servers are inactive in the initial state of the model.

It is fairly easy to see that whenD is finite, the reachable state space of the model is finite.
The model is also bounded: the placeswaiting andexclusion contain at most one token, the
placeinactive contains at most|D| tokens, and the other places may contain at most|D| −1
tokens.

4.1 Encoding the Initial Marking

The initial marking has 3 nonempty places:unused , inactive andexclusion . These places are
actually redundant: The placeunused and the arcs attached to it could be removed from the
model without affecting its behaviour. The placeexclusion is kind of complementary to the
placewaiting , andinactive contains all those items ofD not contained in the placeswaiting
andupdating . Utilising this information, our scheme would encode the initial marking in 5
bits, one for each non-redundant place, signalling that the places are empty.

If our encoding scheme is told nothing about the redundancy, it uses a total of|P | = 8 bits
for identifying the three nonempty places.

The cardinality of the multi-set associated with the placeinactive is t = d = |D|. If there
is a capacity constraint 0≤ t ≤ |D|, these two quantities can be encoded indlog2(|D|+1)e+
dlog2 |D|e bits; otherwise,nc(|D|)+ dlog2 |D|e bits are required wherenc tells how many bits
our variable-length code for cardinalities takes:

nc(t) =


4 if 1 ≤ t ≤ 8
10 if 9≤ t ≤ 264
19 if 265≤ t ≤ 65800
4+n if 65801≤ t < 2n



All items in the multi-set forinactive have the multiplicity 1. Although the items in the multi-
set represent the whole setD, our encoder represents each value separately, using|D| dlog2 |D|e
bits.

For the placeexclusion , we havet = 1. This leaves no choice for the number of distinct
tokens, which is also 1. Encoding the item takes no bits, since the data type associated with
the place has only one value—the empty tuple〈〉. If there is a capacity constraint that dictates
0≤ t ≤ 1, one bit is enough for encoding the multi-set. Otherwiset is represented with 4 binary
digits, since it is in the range 1≤ t ≤ 8.

The placeunused is initially marked with a multi-set of the cardinalityt = |D|2−|D|. The
reachable markings of the model appear to fulfill the capacity constraintt = 1+ |D|2−2|D|∨
t = |D|2− |D| for this place. This capacity constraint allowst to be represented in one bit.
The encoder does not know that the number of distinct items isd = t; it assumes 1≤ d ≤ t
and therefore representsd as adlog2 te-digit binary number. Each item in the multi-set requires
d2log2 |D|e bits of storage, assuming that the model uses an unconstrained data type for storing
the pairs.2 Later we shall see that representing this redundant multi-set substantially increases
the space requirements. In the following summary, we consider a model where this place has
been removed.

To summarise, the initial marking—excluding the placeunused —fits in 11+ nc(|D|) +
(|D|+1)dlog2 |D|e bits when no capacity constraints or redundancy information are exploited.
With tight capacity constraints, only 8+ dlog2(|D|+1)e+ (|D|+ 1)dlog2 |D|e bits are re-
quired. The difference 3+ nc(|D|)−dlog2(|D|+1)e is always positive in our implementa-
tion, sincenc(t) > dlog2 te. For |D| = 10, utilising the capacity constraints saves 9 bits. When
the redundancy information is utilised, the initial marking (where all non-redundant places are
empty) can be encoded in only 5 bits, independent of|D| andn.

4.2 Encoding All Reachable Markings

Our scheme for encoding markings has been implemented in MARIA [11, 12], a reachability
analyser for Algebraic System Nets [10] with user-definable finite-domain structured data types.
We compare the performance of MARIA with PROD [15], a reachability analyser for a kind of
Predicate/Transition Nets [4].

Tables1 and2 illustrate the performance of our state encoding scheme. We analysed the
model dbm.net distributed with PROD without and with unfolding, and three variants of a
corresponding model with MARIA : without and with capacity constraints, and with redundant
places indicated.

The figures in Table2 are for models where the redundant placeunused has been removed.
The space consumption drops to less than a fifth when this place is omitted. A natural explana-
tion is that this place has a complementary character: it contains a large number of tokens in all
reachable markings. If PROD or MARIA used the initial marking as a reference when encoding
other markings, the differences between the two tables would be considerably smaller.

The figures do not include the space required for the graph directory. In PROD, it consists of
a fixed header and of a record of 8 machine words—typically 32 bytes—per state. In MARIA ,
the directory is a table of hash values and file offsets. On a 32-bit system with 32-bit file offsets,

2This number would drop todlog2(|D|2− |D|)e if we defined the domain of the place to be a multi-set over
(D ×D)\

⋃
s∈D{〈s,s〉} instead ofD ×D.



Table 1: Reachability Graph Sizes for the Distributed Data Base Model

Model Size Encoded State Space in Bytes
|D| States PROD (unfolded) MARIA (cap.) (red.)
1 2 19 3 4 2 2
2 7 99 29 28 15 9
3 28 645 844 223 168 86
4 109 3,925 1,745 1,403 1,090 414
5 406 21,519 10,151 8,439 7,487 2,396
6 1,459 107,967 54,307 46,109 42,292 10,807
7 5,104 505,297 280,229 208,807 198,599 43,569
8 17,497 2,239,617 1,296,227 908,810 873,816 168,089
9 59,050 9,507,051 5,605,363 4,423,852 4,308,020 738,397
10 196,831 38,972,539 23,134,18718,006,540 17,685,747 2,683,381

Table 2: Reachability Graph Sizes for the Model Excluding the Placeunused

Model Size Encoded State Space in Bytes
|D| States PROD (unfolded) MARIA (cap.) (red.)
1 2 17 3 4 2 2
2 7 76 21 21 14 9
3 28 389 139 150 111 86
4 109 1,848 761 724 543 414
5 406 8,113 3,651 3,565 3,159 2,396
6 1,459 33,548 16,045 15,725 14,266 10,807
7 5,104 132,693 76,067 60,786 55,683 43,569
8 17,497 507,400 357,219 233,702 217,213 168,089
9 59,050 1,889,585 1,511,227 998,945 952,558 738,397
10 196,831 6,889,068 6,009,8873,559,389 3,526,147 2,683,381



the bookkeeping overhead is 8 bytes per encoded state.
When there is no capacity constraint, our implementation represents the cardinality of a

multi-set using a variable-length code, which occupies 1+4 bits more than one machine word
in the worst case. The other extreme is a capacity constraint that allows only one value for the
total number of tokens. Defining a capacity constraint can thus save more than one machine
word for each non-empty place in the marking.

We also translated a variant of theISDN-DSS1 protocol model [8] from PROD to MARIA

format. The encoded representation of the 20,084 states takes 37.2 bytes per state in PROD

(38.3 for an unfolded model) and 9 in MARIA , or 13.7 if no capacity constraints are defined.
The run-time overhead of our encoding method is negligible, as our implementation makes

heavy use of automatically generated, dynamically linked C code. When analysing the above
mentionedISDN-DSS1 model, the analyzer spends less than 4 percent of its total time in the en-
coder. This can partially be explained by the relatively large number of places and transitions in
the model, which shifts the bottleneck to transition instance analysis. When analysing different
variations of the data base model, we experienced that encoding states takes 9–22 percent of the
total time. The worst figure was obtained for a model that included the redundant placeunused
and supplied a marking-dependent initialisation expression for it.

5 Conclusion and Future Work

We have presented a scheme for condensed explicit storage of markings of high-level Petri nets,
representing the multiplicities of multi-set items in a compact way. Even though our scheme
does not utilise any similarities between or inside markings in any way, an implementation of
it performs up to an order of magnitude better than a previously implemented scheme even for
simple models.

Our idea of usingdlog2 |D|e binary digits for representing multi-set items belonging to a
finite setD assumes that each item occurs with equal probability. This is often not the case with
practical models, and it would be worth investigating how well Holzmann’s ideas on recursive
indexing and compression training runs [7] could be combined with our approach.
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