
Efficiently Verifying Safety Properties with Idle Office Computers

Marko Mäkelä∗

Laboratory for Theoretical Computer Science
Helsinki University of Technology

Espoo, Finland,
Email: marko.makela@hut.fi

Abstract

Assuring the quality of safety-critical software systems requires
more rigorous methods than testing. Model checking by ex-
haustive state space enumeration, “testing all executions,” is an
alternative, but the use of state and memory reduction tech-
niques makes runtime a major limiting factor. We describe a
simple parallel version of a state space enumeration algorithm
that utilises the unused computing power of office worksta-
tions while not congesting their memories. In an experiment
with a complex data link protocol, our implementation of the
algorithm achieves close to linear speedups on a heterogeneous
network of workstations.

Keywords: model checking, distributed algorithm,
state space enumeration

1 Introduction

Complex protocols or distributed software systems
are often verified by examining all reachable global
states of a system from a specified set of initial states.
Depending on the way in which the system has been
described and on the type of properties that are to
be verified, different methods can be applied. This
article focuses on verifying safety properties, check-
ing if the system can reach a “bad” state or if a finite
execution of the system violates a desired property.

Search algorithms for verifying safety properties
are built around a data structure that represents a
set of encountered states. When the search starts,
the set corresponds to the initial states. At the end,
the set contains all the reachable states of the system.

Symbolic methods represent the set of reachable
states with a modifiable Boolean function that maps
assignments of state variables to truth values. A
constant function of “false” represents the empty set.
When the set grows, the function is modified to map
the state variable assignments representing the added
states to “true”. As adding states may make the func-
tion independent of some variables, the representation
of the function can shrink even though the set grows.
The biggest disadvantage of symbolic methods is that
their peak memory usage greatly depends on how the
system has been specified and partitioned (Ciardo,
Lüttgen & Siminiceanu 2000, Table 3). Also, it is
difficult to apply symbolic methods to complex data
types, which are essential in software systems.

∗This research was financed by the Helsinki Graduate School
on Computer Science and Engineering, by Jenny and Antti Wihuri
Fund, and by Academy of Finland (Project 47754).

Copyright c©2002, Australian Computer Society, Inc. This paper
appeared at the Workshop on Software Engineering and Formal
Methods, Adelaide, Australia, June 2002. Conferences in Re-
search and Practice in Information Technology, Vol. 12. C. Lakos
and R. Esser, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

In exhaustive state space enumeration, the reach-
able states of a model are enumerated by evaluating
all possible successor states of the known states of the
model. In the beginning of the search, only the ini-
tial state is known. At the end, all reachable states
of the model are known. To ensure that the search
completes, the successors of each state should be eval-
uated only once. One way of ensuring this is to store
each state in a table that grows during the search.
The total memory usage of the table is the product of
the number of reachable states and the average length
of the state vectors, plus the bookkeeping overhead.
In order to speed up state look-ups, a mapping of
hash signatures of states to indices in the table can
be maintained.

Stern and Dill (Stern & Dill 1997) mention three
changes that allow more complex models to be anal-
ysed via state space enumeration. First, the state
space can be reduced while ensuring that errors will
be detected. Second, the state set can be approxi-
mated with hashing techniques, potentially causing
errors to go undetected. Third, the exploration time
can be reduced by applying parallel processing.

This paper describes a scalable safety property
checker that is based on exhaustive state space enu-
meration. The search can be distributed both on
multiprocessor systems and on networks of ordinary
workstations. Our implementation of the algorithm
uses standard programming interfaces (IEEE 2001)
and performs notably well on a heterogeneous net-
work of office workstations.

Our benchmark for the safety checker is the radio
link control (RLC) protocol of the third-generation
mobile telephone system. A verbatim translation of
the protocol specification (ETSI 2000) into an alge-
braic system net (Kindler & Völzer 2001) in the mod-
elling language of Maria (Mäkelä 2002) comprises over
20,000 lines of text. Displaying a state vector of the
model in readable form to the user requires around
8,000 characters or nearly 500 lines of text. The in-
ternal storage requires 170–200 bytes. All variations
of the model have more than 700 transitions and 100
places. It is practically impossible to unfold this high-
level model to a place/transition system, since the
protocol makes heavy use of complex data types, such
as queues of unions of large structures. Also, it is im-
practical to tell Maria to compile the model to ma-
chine executable code in order to speed up analysis,
as a compilation run usually lasts over half an hour.
If there is a trivial modelling error that the high-level
net interpreter of Maria finds in a minute, compiled
code will find it it in a few seconds, but only after the
compiler has completed its job.

The analysis of the RLC protocol (Tynjälä, Lep-
pänen & Luukkala 2002) concentrates on safety prop-
erties, as the Maria liveness property checker (Latvala
2001) is practically limited to systems having at most
some millions of reachable states, while the RLC pro-
tocol model can reach tens of millions of states, de-

mailto:marko.makela@hut.fi

pending on the configuration. One source of capac-
ity problems are the edges of the reachability graph,
which are needed for checking liveness properties.
Safety checking does not need to know about the
edges until an erroneous state is found and a path
to the error needs to be reproduced. Even then, it
is sufficient to have access to a “spanning tree” of the
reachability graph rather than all its edges. Also, it is
unnecessary to store the names and parameters of the
transitions leading from a state to another, as these
can be recomputed if an error is found.

1.1 Related Work

The idea of speeding up explicit state space explo-
ration by utilising multiple processors is not new.
Parallel processing can be applied at different levels
of the exploration algorithm.

TrailBlazer (Holzmann & Smith 2001) distributes
the verification procedure at the highest possible level
by invoking several independent runs of the protocol
verifier Spin on dedicated computing servers. This is
very efficient when checking multiple models or prop-
erties are at the same time, since the only communi-
cations between the front-end computer and the com-
puting servers take place when verification processes
are started or completed. However, the approach does
not speed up the analysis of a single property in a sin-
gle model.

Lorentsen and Kristensen (Lorentsen & Kristensen
2001) experimented with a state reduction method
based on symmetries. Each state is mapped to a
canonical representative. This processor intensive
subtask of the state space exploration algorithm was
distributed to a set of computing servers. According
to (Lorentsen & Kristensen 2001, Table 2), this dis-
tributed algorithm was able to utilise up to 4 or 5
slave processors at 80 % efficiency. The performance
of this method depends heavily on the model being
analysed: in particular, if symmetry reductions can-
not be applied, only one processor will be utilised.

Parallel Murϕ, a distributed version of the Murϕ
model checker for a guarded-command language, was
implemented on a dedicated computing cluster. The
algorithm (Stern & Dill 1997) is symmetric; the set of
explored states is distributed among the nodes. Each
node “owns” a part of the state space. The owner of
a state is determined by computing a hash signature
of the state and mapping it to a node identifier. In
the reported experiment (Stern & Dill 1997, Table
2), 84 % of the computing power of the 32-processor
cluster was utilised.

We take a different approach. Instead of employ-
ing expensive supercomputers or dedicated comput-
ing clusters, we use the idle processing time of regular
office computers. Normal interactive use of such com-
puters is not affected by low-priority background pro-
cesses, as long as they do not consume much memory.
When the state collections—the explored and the un-
processed states—are maintained on a central server,
the worker processes need little memory. In our ex-
periments, up to 12 processors were utilised at over
90% efficiency.

1.2 Outline

The rest of this paper is organised as follows. Sec-
tion 2 presents a basic algorithm for checking safety
properties by explicit state space enumeration. Par-
allel versions of the algorithm are discussed in Sec-
tion 3. Section 4 presents experimental results for
our benchmark model, and Section 5 gives some con-
cluding remarks.

2 Explicit State Space Enumeration

2.1 A Basic Algorithm

Algorithm 1 is the basic procedure for checking safety
properties. It has two parameters: the initial state
s0 of the system, and the state transformation rules,
a relation that maps a given state s to the set
successors(s) of its successor states. The function
error(s) identifies erroneous states.

Algorithm 1 Verify a safety property by explicit
state space enumeration.

S := ∅ // empty set of processed states
Q := 〈s0〉 // buffer of unprocessed states
while Q 6= 〈〉 do

s := Q.remove()
for all s′ ∈ successors(s) do

if s′ 6∈ S then
if error(s′) then show trace from s0 to s′
S := S ∪ {s′};Q.insert(s′)

The search algorithm makes use of two data struc-
tures: the set of states it has explored, and a collection
of states that are waiting to be processed. It must be
possible to insert items into the set and to check if the
set contains a given item. The collection must sup-
port insertion and removal of items, and emptiness
check. If the collection is a queue, then the search
proceeds breadth first, guaranteeing that a shortest
path to an error is found first.

This basic algorithm can be varied in several ways.
There can be several initial states. The search can ter-
minate at the first encountered error, or it can display
an execution trace from the initial state to each faulty
state, or all execution traces to each faulty state.

The implementation of this algorithm in Maria op-
erates on two kinds of models: algebraic system nets
as such, or synchronised with a finite state automaton
that corresponds to a safety property expressed in a
subset of linear temporal logic. There are four kinds
of erroneous states:

1. states that satisfy a “reject” or “deadlock” for-
mula,

2. accepting product states of a system and a prop-
erty,

3. states that cannot be compacted due to a vio-
lation of a capacity constraint or a proposed in-
variant, and

4. states that cannot be computed due to an evalu-
ation error, such as arithmetic overflow or buffer
underflow.

2.2 Probabilistic Storage

In probabilistic verification techniques, the set of ex-
plored states is approximated by not storing the state
vectors themselves, but by computing and storing
short hash signatures of them. In this way, the set
can be “stored” in much smaller amount of memory.

The disadvantage of probabilistic methods is that
new states can be mistaken for explored ones, mean-
ing that entire branches of the state space can re-
main uncovered. The probability of missing erroneous
states can be reduced by repeating the search with a
different hash signature function.

Unfortunately, representing the state set in less
space does not shrink the list of unprocessed states.
In the worst case, the list may need to hold all reach-
able states of the system simultaneously. To avoid
memory shortages, Spin has a “stack cycling” op-
tion (Holzmann 1999) for keeping portions of the list
on disk.

2.3 Explicit Storage

Algorithm 1 will explore all reachable states of the
model if all membership tests on the state set suc-
ceed. One way of guaranteeing this is to represent
the set as a table. Membership tests can be sped up
by maintaining a mapping from hash signatures of
state vectors to indices into the table.

The lossless state set storage in Maria maintains
the state table and the hash map in two disk files.
The state table is a string of compacted state vectors,
which are sequences of bytes. The map is a B-tree
from hash signatures to offsets in the state table file.

As the look-up structure and the state table are
typically accessed in random order, it would be
better to keep them in main memory rather than
on disk. However, Maria supports memory map-
ping (IEEE 2001, Section 2.8.3.2) of random access
files. The overhead is negligible compared to dy-
namically allocated memory, as no system calls are
made unless the file needs to be grown. To reduce
the amount of these calls, Maria always doubles the
allocated file size when more space is needed.

When Maria uses this type of state set storage, it
presents the collection Q of unprocessed states in less
memory by not storing state vectors but offsets into
the state table.

2.4 Error Trace Generation

Typically, verification tools are used in order to prove
that a system is free of errors—that it behaves ac-
cording to its specification. It is often adequate to
stop the analysis when the first error is found. The
work of a verification tool is only half done when an
erroneous state is found. If there are millions of reach-
able states, merely displaying the erroneous state to
the user is as frustrating as reporting “there is an er-
ror in your system, but I won’t tell you how to get
there.” A counterexample trace is a sequence of model
actions that leads from the initial state to the error.

The information needed for producing error traces
should be stored in as little space as possible, so that
most of the available memory can be used for accom-
modating the set of encountered states and the collec-
tion of unprocessed states. Not all information needs
to be stored in advance—when an error is detected,
the omitted information can be recomputed. This al-
lows the verification of larger systems and more com-
plex properties.

Efficient production of a counterexample trace, a
shortest execution to an erroneous state,1 requires a
function that maps each state s′ in the trace to the
state from which s′ was obtained in Algorithm 1: s =
ancestor(s′), such that s′ ∈ successor(s). All states
on the counterexample trace can be enumerated by
repetitively applying this function on the ancestor s
of the error state s′ until the initial state s0 is reached.

Algorithm 1 does not maintain such a function ex-
plicitly. When the unprocessed states Q are arranged
as a stack and the operation s := Q.remove() is split
into two, so that s is read from Q before entering
the inner loop and removed from Q after the loop,
the contents of the stack Q almost supplies a coun-
terexample trace from s0 on its bottom to s on its
top. If a state on the explored path from s0 to s′
has multiple successors, Q may contain states that do
not belong to the counterexample trace. These states
can be identified by tagging each state in Q with its
distance from s0.

Unfortunately, using a search stack (depth-first
search) may produce unnecessarily long counterex-
ample traces. Breadth-first search, implemented by

1The shortest path to the error may not be unique. It is often
practical to display only one trace to the user if an error is found.

arranging Q as a queue, produces shortest paths, but
the function ancestor(s) cannot be computed with the
information that is present in the queue. Stern and
Dill (Stern & Dill 1997) propose an addition to the
algorithm: whenever a state s′ is inserted into Q, it
is also appended to an auxiliary file together with the
position of its ancestor s in the said file. The col-
lection Q must associate each unprocessed state with
these file positions. This auxiliary file provides the
mapping ancestor(s) for producing error traces.

Maria implements the above mentioned scheme.
It applies a variable-length code to reduce the size of
the file. Small offsets are represented with one byte,
bigger ones with two bytes, and so on. Furthermore,
when the state set is stored as a table (Section 2.3),
the trail file will contain offsets to the table instead
of state vectors.

Writing the counterexample recovery information
to a file does not significantly affect the performance,
since sequential file access is fast. Only when a
counterexample trace is produced, random access is
needed. Even at that point, the input/output over-
head may be insignificant, if discovering the actions
that lead from one state to another in the trace takes
a long time.

3 Parallel Processing

An execution time profiler is a good tool in alleviating
performance bottlenecks. It points out those parts of
the program code where most of the execution time
is spent. We have profiled a run of safety property
analysis of the RLC protocol model (Tynjälä et al.
2002). Well over 90 percent of the time is spent in the
model interpreter that computes compacted successor
states of a state.

Normally, one would compile the model to exe-
cutable code that bypasses the interpreter, but it is
not reasonable in this case, as the 500 kilobytes of
high-level Maria modelling language are translated to
almost 800,000 lines or 20 megabytes of low-level C
program code. Especially when the model is under
development, it would be frustrating to wait thirty
minutes for the compilation to find a trivial error that
the interpreter would have found instantly.

3.1 A Client–Server Algorithm

Algorithm 2 Client process for verifying a safety
property by exhaustive state space enumeration.

do until server terminates
s := getState() // remote procedure
S′ := ∅
for all s′ ∈ successors(s) do

if error(s′) then report(s′) // remote procedure
else S′ := S′ ∪ {s′}

putStates(S′) // remote procedure

Algorithm 3 Server process for verifying a safety
property by exhaustive state space enumeration.

S := ∅ // empty set of processed states
Q := 〈s0〉 // buffer of unprocessed states
do until all clients wait for getState() to finish

serve client requests
remote procedure getState():

return Q.remove()// atomically wait until Q 6= 〈〉
remote procedure report(s′):

show trace from s0 to s′

remote procedure putStates(S′):
for all s′ ∈ S′ \ S do

S := S ∪ {s′}; Q.insert(s′)

Our distributed version of Algorithm 1 is presented
in Algorithms 2 and 3. The message exchange be-
tween clients and the server is abstracted as remote
procedure invocations.

The implementation of this distributed algorithm
in Maria uses two variants of stream-oriented POSIX
sockets (IEEE 2001, Section 2.10). Local domain
sockets are used on multi-processor systems, while
TCP/IP sockets are applied when clients are executed
on multiple computers.

The remote procedure calls are an abstraction of
our implementation, where the server has one input
and one output buffer per client. When a client in-
vokes report(s′) or putStates(S′), it sends a byte se-
quence to the server and does not await any response.
When the client invokes getState(), it does not send
anything, but it waits for a byte sequence from the
server. To avoid latency problems, the client has an
input queue for getState() data, and the server tries
to keep its queue Q of unprocessed states empty by
distributing its contents evenly to the clients. The
server uses entirely non-blocking input and output; a
client may block when it runs out of states or when
it flushes its output buffer when invoking report(s′).

3.2 Dynamic Load Balancing

Office networks tend to be heterogeneous, since com-
puters are installed at different times, and newer com-
puters tend to be more powerful. Also, some com-
puters are in heavier use than others, and thus the
amount of available processing power varies. The
static load balancing mechanism of Parallel Murϕ
does not work very well in such environments.

The load balancing mechanism of our client–server
algorithm is simple: a fast computer will communi-
cate with the server more often than a slower one and
thus receive and explore more states per time unit.

3.3 Termination Detection

Occasionally, the collection Q of unprocessed states
may become empty. When a client invokes getState()
and Q is empty, the server puts the client on a waiting
list and waits for putStates(S′) calls that could fill up
Q. When all registered clients are on the waiting list,
the server decides that all states have been processed
and tells the clients to terminate.

3.4 Resource Management

Compared to a symmetrically distributed peer-to-
peer algorithm, the client–server algorithm is easier
to manage, as n worker processes need only n connec-
tions instead of n · (n − 1). Starting the distributed
state space exploration does not require any special
software. The server process and the client processes
can be started with ordinary shell commands.

The server handles client requests one at a time.
When no requests are pending, the server waits for
new client connections and incoming data from old
clients. Because of this, new clients can join the com-
putation at any time. Clients can also exit the com-
putation safely by not invoking getState() once they
have processed a state. In our implementation of the
algorithm, the server maintains copies of the client-
side input queues. In the event of a communication
error, the connection is closed and the states that the
failing client was processing are distributed to the re-
maining clients.

The server can host a user interface and show ac-
curate progress measures (numbers of explored states
and events). The computation can be interrupted eas-
ily. When the server terminates, clients will terminate

as soon as they attempt to exchange the next batch
of states with the server.

4 Results

The benchmark of our distributed safety property ver-
ification algorithm is a complete model (Tynjälä et al.
2002) of the radio link control protocol (ETSI 2000)
of third-generation mobile telephone networks. With
the chosen parameters, the model has 19,890 reach-
able states and 23,233 arcs.

We explored the protocol on a 128-processor SGI
Origin 2000 in 32-bit mode and on a selection of
GNU/Linux computers in a 100 Mb/s local area net-
work. The first column of Table 1 indicates the speed
of the sequential algorithm,2 and Table 2 shows the
average execution time of the parallel algorithm.

The two fastest computers in our office network
are 160 % faster than a single processor of the super-
computer. The socket interface is efficient: running a
server and a client process on the Athlon is about 5 %
slower than running the sequential algorithm. On the
SGI, the distributed algorithm with one client utilises
about 99% of the theoretically available power.

The processor utilisation factor declines, as clients
are added. We define this factor as the ratio between
the execution time of the sequential algorithm and the
execution time of a distributed algorithm times the
number of worker clients. With six clients on the su-
percomputer, the utilisation factor is 258 s/(6 ·53 s) ≈
81%, which means that a fifth of the computing re-
sources is wasted. For up to 3 clients, the figure is
close to 100%. This is due to the relatively small
branching factor of the model: at times, the collec-
tion of unprocessed states is almost empty, and clients
have to wait for getState() calls to complete.

Of the workstations in the local area network,
clients #1 and #2 process the state space in 100 s us-
ing the sequential algorithm, while clients #3 and #4
use 183 s and clients #5, #6 and #7 need 304 s. For 2
clients, we get a factor of (54 s·2/100 s)−1 ≈ 93%. For
3 clients, the factor is (42 s · (2/100 s + 1/183 s))−1 ≈
94%, and so on. For up to six clients, the communi-
cation overhead eats only about eight percent of the
computing power. With seven clients, the processor
on one client is utilised for only about half the time.

Our distributed algorithm performs best when
all clients are constantly employed, that is, their
getState() queues do not become empty until the
whole state space has been explored. In other words,
the model being analysed should be

• rather nondeterministic, so that most states have
several successors, or

• complex, so that the execution time of the veri-
fication is dominated by computing the function
successors(s).

Clearly, the RLC model fulfils the latter condi-
tion, but its state space is rather deterministic,
23, 233/19, 890 ≈ 1.17 successors per state. Luckily,

2The second column of Table 1 is explained in Section 4.1.

Processor Type Time
AMD Athlon, 1 GHz 100 s 210 s
Intel Pentium III, 450MHz 183 s 361 s
Intel Pentium II, 266 MHz 304 s 591 s
MIPS R12000, 300 MHz 258 s 517 s

Table 1: Time to explore the RLC model with Algo-
rithm 1 and with path compression.

Computer Type Wall-Clock Time
N.o. Clients (n): 1 2 3 4 5 6 7

2 Athlon + 2 P III + 3 P II 105 s 54 s 42 s 35 s 32 s 29 s 28 s
95% 93% 94 % 92 % 91% 92 % 88 %

n ·MIPS R12000 261 s 132 s 89 s 70 s 59 s 53 s 46 s
99% 98% 97 % 92 % 87% 81 % 80 %

Table 2: Time to explore the RLC model with Algorithm 3 and n copies of Algorithm 2.

r r
r r r r r r r r r r r r r

r r r r r r r r r r r r r
r
r r

r r
r
r
r

-¢¢̧ ¢¢̧
AAU AAU

AAU
¢¢̧

----------------------©©*

©©*

HHj

HHj
2 16 38

r
r

r

r

r

r
r
r
r¶

µ- -

- -

»»»»»»»»:XXXXXXXXz¨
§

¨
§

-
-
-
-

Figure 1: The first 39 levels of the RLC state space
without and with path compression.

the state space branches rather early, as Figure 1 il-
lustrates. The first three successors are computed by
only one client, but from there on the analysis can
employ another client process. At level 39, there is
work for four clients.

4.1 Improving Scalability with Reductions:
Path Compression

To reduce the state spaces of models of distributed
software systems, we implemented a path compression
option that eliminates deterministic behaviour:

Algorithm 4 Algorithm 2 with path compression.
do until server terminates

s := getState();S′′ := ∅
compress :

S′ := ∅
for all s′ ∈ successors(s) do

if error(s′) then report(s′)
else S′ := S′ ∪ {s′}

if |S′| = 1 and s′ 6∈ S′′ then
s := s′;S′′ := S′′ ∪ {s}; go to compress

putStates(S′)

In this modified algorithm, the client does not invoke
putStates(S′) or getState(), as long as it is exploring
a non-branching chain of states. The modified algo-
rithm can significantly reduce a state space, but it can
also require more processor time. Every time there is
a branch to the middle of a sequential state chain, the
states in the chain are explored again.

Figure 1 illustrates how Algorithm 4 affects the
RLC state space. The original subgraph of 56 states
and 79 arcs is reduced to 9 states and 10 arcs. In this
case, the branching factor decreases from 79/56 to
10/9. For the whole state space, the factor improves
from 23, 233/19, 890 ≈ 1.17 to 9, 677/5, 236 ≈ 1.85.

The auxiliary state set S′′ in Algorithm 4 is needed
for detecting cyclic behaviour in the non-branching
chains of states. When a state with one successor
is encountered, the successor will be explored only
if it has not occurred earlier along the path being
compressed. Obviously, the modified algorithm will
visit all reachable states of the system; it just omits
some of them from the main set of states S. Thus, all
safety properties can be checked with this algorithm.
It is more complicated to preserve other properties,
such as liveness, as Miller and Katz (Miller & Katz
1999) have shown.

For the RLC model, the path compression algo-
rithm computes 45,238 successor states instead of the
original 23,233. Enabling path compression in the
sequential algorithm approximately doubles the pro-
cessor time requirement, as can be seen in the second
column of Table 1. The good news is that with path
compression, the analysis of this model can be dis-
tributed more efficiently to a larger number of proces-
sors, as a comparison between Tables 2 and 3 shows.

4.2 Performance on Simple Models

When exploring a high-level model where computing
the successor relation clearly dominates the execution
time, the processor time requirement of the server
process (Algorithm 3) is negligible, as our implemen-
tation of the server deals with compacted states. One
might wonder how well our distributed algorithm per-
forms on a lower-level model where the speed of the
server process and the network capacity might be-
come limiting factors.

The distributed data base management algorithm
that was presented by Jensen (Jensen 1981) as a
Coloured Petri Net has one parameter, the number of
peer nodes. With 8 nodes, the model has a branching
factor of 81, 664/17, 497 ≈ 4.66, and with 9 nodes,
the factor is 314, 946/59, 050 ≈ 5.33. The times in
Table 4 demonstrate that the larger instance of the
model utilises the processors better, scaling well for
up to 11 or 12 processors.

5 Conclusion

State and memory reduction techniques have shifted
the bottleneck of verification by explicit state space
enumeration. The biggest limitation is no longer the
memory consumption, but the execution time.

In many organisations, there is a huge capacity in
the personal computers that are sitting idle most of
the time, serving only interactive users. Users would
not notice if their computers ran small background
processes at low priority. An efficient parallel algo-
rithm that minimises the inter-processor traffic can
use almost all available processing power for useful
computations.

The presented method can be applied to create a
distributed version of any explicit state space verifi-
cation tool for checking safety properties, since it is
compatible with techniques that reduce the number
of states or the memory consumption of the explored
state set, such as the path compression method.

According to our measurements, the implementa-
tion of the algorithm in Maria (Mäkelä 2002) adapts
well to heterogeneity and dynamically changing load
of the processors, as well as to dynamic machine con-
figuration changes.

Acknowledgements

The author would like to thank the anonymous refer-
ees and Charles Lakos for their helpful comments, and
CSC– Scientific Computing Ltd. for providing access
to the 128-processor SGI Origin 2000 supercomputer.

1 2 3 4 5 6 7 8 9 10 11 12
212 s 105 s 82 s 67 s 60 s 55 s 50 s
99% 100% 99 % 99 % 99% 99 % 99 %

520 s 257 s 174 s 130 s 105 s 88 s 76 s 67 s 60 s 56 s 51 s 47 s
99% 100% 99 % 99 % 99% 98 % 97 % 96% 95 % 93 % 92% 90 %

Table 3: Time to explore the RLC model with Algorithm 3 and n copies of Algorithm 4 (path compression)
on a network of workstations, and on n ·MIPS R12000. Compare to Table 2 and the last column of Table 1.

N.o. Alg. 1 Alg. 3 + n ·Alg. 2
Nodes n =1 2 3 4 5 6 7 8 9 10

8 4.85 s 6.14 s 3.17 s 2.09 s 1.48 s 1.16 s 0.94 s 0.83 s 0.72 s 0.70 s 0.70 s
79% 76% 77 % 82 % 84% 86 % 83 % 84% 77 % 69 %

9 20.82 s 25.02 s 12.60 s 8.39 s 6.03 s 4.72 s 3.79 s 3.26 s 2.87 s 2.54 s 2.33 s
83% 83% 83 % 86 % 88% 92 % 91 % 91% 91 % 89 %

Table 4: Average time to explore the data base model on the SGI Origin 2000.

References

Ciardo, G., Lüttgen, G. & Siminiceanu, R. (2000),
Efficient symbolic state-space construction for
asynchronous systems, in M. Nielsen & D. Simp-
son, eds, ‘Application and Theory of Petri Nets
2000, 21st International Conference’, Vol. 1825
of Lecture Notes in Computer Science, Springer-
Verlag, Århus, Denmark, pp. 103–122.

ETSI (2000), Universal Mobile Telecommunications
System (UMTS); RLC protocol specification,
ETSI TS 125 322 V3.5.0 (2000-12), European
Telecommunications Standards Institute.

Holzmann, G. J. (1999), The engineering of a model
checker: the Gnu i-protocol case study revisited,
in D. Dams, R. Gerth, S. Leue & M. Massink,
eds, ‘Theoretical and Practical Aspects of SPIN
Model Checking: 5th and 6th International SPIN
Workshops, Trento, Italy, July 1999, Toulouse,
France, September 1999. Proceedings’, Vol. 1680
of Lecture Notes in Computer Science, Springer-
Verlag, pp. 232–244.

Holzmann, G. J. & Smith, M. H. (2001), ‘Software
model checking: extracting verification models
from source code’, Software Testing, Verification
& Reliability 11, 65–79.

IEEE (2001), Standard for information technology—
portable operating system interface (POSIX r©),
IEEE Std 1003.1-2001, Institute of Electrical
and Electronics Engineers, Inc., New York, NY,
USA.

Jensen, K. (1981), ‘Coloured Petri nets and the in-
variant method’, Theoretical Computer Science
14(3), 317–336.

Kindler, E. & Völzer, H. (2001), ‘Algebraic nets
with flexible arcs’, Theoretical Computer Science
262, 285–310.

Latvala, T. (2001), Model checking LTL properties of
high-level Petri nets with fairness constraints, in
J.-M. Colom & M. Koutny, eds, ‘Application and
Theory of Petri Nets 2001, 22nd International
Conference’, Vol. 2075 of Lecture Notes in Com-
puter Science, Springer-Verlag, Newcastle upon
Tyne, England, pp. 242–262.

Lorentsen, L. & Kristensen, L. M. (2001), Exploiting
stabilizers and parallelism in state space genera-
tion with the symmetry method, in A. Valmari &

A. Yakovlev, eds, ‘2nd International Conference
on Application of Concurrency to System De-
sign’, IEEE Computer Society, Newcastle upon
Tyne, England, pp. 211–220.

Mäkelä, M. (2002), Maria: Modular reachability anal-
yser for algebraic system nets, in J. Esparza
& C. Lakos, eds, ‘Application and Theory of
Petri Nets 2002, 23rd International Conference’,
Vol. 2360 of Lecture Notes in Computer Science,
Springer-Verlag, Adelaide, Australia, pp. 427–
436.

Miller, H. & Katz, S. (1999), ‘Saving space by fully
exploiting invisible transitions’, Formal Methods
in System Design 14(3), 311–332.

Stern, U. & Dill, D. L. (1997), Parallelizing the
Murϕ verifier, in O. Grumberg, ed., ‘Computer
Aided Verification 1997, 9th International Con-
ference (CAV97)’, Vol. 1254 of Lecture Notes
in Computer Science, Springer-Verlag, Haifa, Is-
rael, pp. 256–267.

Tynjälä, T., Leppänen, S. & Luukkala, V. (2002),
Verifying reliable data transmission over UMTS
radio interface with high level Petri nets. Un-
published manuscript.

	Introduction
	Related Work
	Outline

	Explicit State Space Enumeration
	A Basic Algorithm
	Probabilistic Storage
	Explicit Storage
	Error Trace Generation

	Parallel Processing
	A Client--Server Algorithm
	Dynamic Load Balancing
	Termination Detection
	Resource Management

	Results
	Improving Scalability with Reductions: Path Compression
	Performance on Simple Models

	Conclusion

