
Towards unsupervised learning of constructions from text

Krista Lagus, Oskar Kohonen and Sami Virpioja
Adaptive Informatics Research Centre

Helsinki University of Technology
P.o.Box 5400, 02015 TKK, Finland

{krista.lagus,oskar.kohonen,sami.virpioja}@tkk.fi

Abstract
Statistical learning methods offer a route
for identifying linguistic constructions.
Phrasal constructions are interesting both
from the viewpoint of cognitive model-
ing and for improving NLP applications
such as machine translation. In this arti-
cle, an initial model structure and search
algorithm for attempting to learn con-
structions from plain text is described.
An information-theoretic optimization cri-
teria, namely the Minimum Description
Length principle, is utilized. The method
is applied to a Finnish corpus consisting of
stories told by children.

1 Introduction

How to represent meaning is a question that has
for long stimulated research in various disciplines,
including philosophy, linguistics, artificial intelli-
gence and brain research. On a practical level, one
must find engineering solutions to it in some nat-
ural language processing tasks. For example, in
machine translation, the translations that the sys-
tem produces should reflect the intended meaning
of the original utterance as accurately as possible.

One traditional view of meaning in linguistics
(exemplified e.g. by Chomsky) is that words are
seen as basic blocks of meaning, that are orthog-
onal, i.e., each word is seen as individually con-
veying totally different properties from all other
words (this view has been promoted e.g. by
Fodor). The meaning of a sentence, on the other
hand, has been viewed as compositional, i.e., con-
sisting of the meanings of the individual words.

Idioms and other expressions that seem to vio-
late against the principle of compositionality (e.g.
“kick the bucket”) have been viewed as mere ex-
ceptions rather than central in language. While
such a view might be convenient for formal de-
scription of language, and offers a straightforward

basis for computer simulations of linguistic mean-
ing, the view has for long been regarded as inaccu-
rate. The problems can also observed in applica-
tions such as machine translation. Building a sys-
tem that translates one word at a time yields out-
put that is incorrect in form, and most often also
its meaning cannot be understood.

A reasonable linguistic approach is offered by
constructionist approaches to language, where lan-
guage is viewed as consisting of constructions,
that is form-meaning pairs.1 The form compo-
nent of the construction is not limited to a certain
level of language processing as in most other the-
ories, but can as well be a morpheme (anti-, -ing),
a word, an idiom (“kick the bucket”), or a basic
sentence construction (SUBJ V OBJ). The mean-
ing of a sentence is composed from the meanings
of the constructions present in the sentence. Con-
struction Grammar is a usage-based theory and
does not consider any linguistic form more ba-
sic than another. This is well aligned with us-
ing data-oriented learning approaches for building
wide coverage NLP applications.

We are interested in identifying the basic in-
formation processing principles that are capable
of producing gradually more abstract represen-
tations that are useful for intelligent behavior ir-
respective of the domain, be it language or sen-
sory information, and irrespective of the size of
the time window being analysed. There is evi-
dence from brain research that the exactly same
information-processing and learning principles are
in effect in many different areas of the cortex. For
example, it was found in (Newton and Sur, 2004)
that if during development visual input pathways
are re-routed to the region that normally contains
auditory cortex, quite typical visual processing
and representations ensue, but in this case in the
auditory cortical area. The cortical learning al-

1For an overview see, e.g., Goldberg (2003).



gorithm and even the model structure can there-
fore be assumed identical or very similar for both
processes. The differences in processing that are
seen in the adult brain regions are thus largely due
to each region being exposed to data with differ-
ent kinds of statistical properties during individual
growth.

In this article we describe our first attempt at
developing a method for the discovery of construc-
tions in an unsupervised manner from unannotated
texts. Our focus is on constructions involving a
sequence of words and possibly also abstract cate-
gories. For model search we apply an information-
theoretic learning principle namely Minimum De-
scription Length (MDL).

We have applied the developed method to a cor-
pus of stories told by 1–7 year old Finnish chil-
dren, in order to look at constructions utilized by
children. Stories told by an individual involve en-
tities and events that are familiar to the teller, al-
beit the combinations and details may sometimes
be very imaginative. When spontaneously telling
a story, one employs one’s imagination, which in
turn is likely to utilise one’s entrenched represen-
tations regarding the world. Of particular inter-
est are the abstract representations that children
have—this should tell us about an intermediate
stage of the development of the individual.

2 Related work on learning constructions

Constructions as form-meaning pairs would be
most naturally learned in a setting where both
form and meaning is present, such as when speak-
ing to a robotic agent. Unfortunately, in prac-
tice, the meaning needed for language processing
is highly abstract and cannot easily be extracted
from natural data, such as video. Therefore time
consuming hand-coding of meaning is needed and,
consequently, the majority of computational work
related to learning constructions has been done
from text only. A notable exception is Chang and
Gurevich (2004) who examine learning children’s
earliest grammatical constructions, in a rich se-
mantic context.

While learning from text only is unrealistic as a
model for child learning, such methods can utilize
the large text corpora and discover structure useful
in NLP applications. They illustrate that statistical
regularities in language form is also involved in
learning. Most work has been done within a tra-
ditional syntactic framework and thus focuses on

learning context-free grammars (CFG) or regular
languages. While it is theoretically possible to in-
fer a Probabilistic Context-Free Grammar (PCFG)
from text only, in practice this is largely an un-
solved problem (Manning and Schütze, 1999, Ch.
11.1). More commonly, applications use a hand
crafted grammar and only estimate the probabili-
ties from data. There are some attempts at learn-
ing the grammar itself, both traditional constituent
grammar and also other alternatives, such as de-
pendency grammars (Zaanen, 2000; Klein and
Manning, 2004).

Also related to learning of constructions are the
methods that infer some structure from a corpus
without learning a complete grammar. As an ex-
ample, consider various methods that are applied
to finding collocations from text. Collocations are
pairs or triplets of words whose meanings are not
directly predictable from the meanings of the in-
dividual words, in other words they exhibit lim-
ited compositionality. Collocations can be found
automatically from text by studying the statistical
dependencies of the word distributions (Manning
and Schütze, 1999, Ch. 5).

Perhaps most related to construction learning
is the ADIOS system (Solan et al., 2005), which
does not learn explicit grammar rules, but rather
generalizations in specific contexts. It utilises
pseudo-graph data structures and seems to learn
complex and realistic contextual patterns in a
bottom-up fashion. Model complexity appears to
be controlled heuristically. The method described
in this paper is similar to ADIOS in the sense that
we also use information-theoretic methods and
learn a model that extracts highly specific contex-
tual patterns from text. At this point our method
is much simpler; in particular, it cannot learn as
general patterns. On the other hand, we explicitly
optimize model complexity using a theoretically
well motivated approach.

3 Learning constructions with MDL

A particular example of an efficient coding prin-
ciple is the Minimum Description Length (MDL)
principle (Rissanen, 1989). The basic idea resem-
bles that of Occam’s razor, which states that when
one wishes to model phenomenon and one has two
equally accurate models (or theories), one should
select the model (or theory) that is less complex.
In practice, controlling model complexity is es-
sential in order to avoid overlearning, i.e., a sit-



uation where the properties of the input data are
learned so precisely that the model does not gen-
eralise well to new data.

There are different flavors of MDL. We use the
earliest, namely the two-part coding scheme. The
cost function to minimize consists of (1) the cost
of representing the observed data in terms of the
model, and (2) the cost of encoding the model.
The first part penalises models that are not ac-
curate descriptions of the data, whereas the sec-
ond part penalises models that are overly complex.
Coding length is calculated as the negative loga-
rithm of probability, thus we are looking for the
modelM∗:

M∗ = arg min
M

L(corpus|M) + L(M). (1)

The two-part code expresses an optimal balance
between the specificity and the generalization abil-
ity of the model. The change of cost can be
calculated for each suggested modification to the
model.

Earlier this kind of MDL-based approach has
been applied successfully in unsupervised mor-
phology induction. For example, the language-
independent method called Morfessor (Creutz and
Lagus, 2002; Creutz and Lagus, 2007) finds from
untagged text corpora a segmentation for words
into morphemes. The discovered morphemes have
been found to perform as good as or better than lin-
guistic morphemes or words as tokes for language
models utilized in speech recognition (Creutz et
al., 2007). It is therefore our hypothesis that a
similar MDL-based approach might be fruitfully
applied on the sentence level as well, to learn a
“construction inventory” from plain text.

3.1 Model and cost function
The constructions that we learn can be of the fol-
lowing types:

• word sequences of different lengths, e.g.,
went to, red car, and

• sequences that contain one category, where a
category refers simply to a group of words
that is expected to be used within this se-
quence, i.e. went to buy [X], [X] was.

If only the former kind of structure is allowed,
the model is equivalent to the Morfessor Base-
line model(Creutz and Lagus, 2002), but for sen-
tences consisting of words instead of words con-
sisting of letters. Initial experiments with such a

model showed that while the algorithm finds sen-
sible structure, the constructions found are very
redundant and therefore impractical and difficult
to interpret. For these reasons we added the lat-
ter construction type. However, allowing only one
category is merely a first approximation, and later
we expect to consider also learning constructions
with more than one abstract category.

The coding length can be calculated as the neg-
ative logarithm of the probability. Thus, we can
work with probability distributions instead. In the
likelihood we assume that each sentence in the
corpus is independent and that each sentence con-
sists of a bag-of-constructions:

P (corpus|M) =
N∏
i

P (si|M)

P (si|M) =
Mi∏
j

P (ωij |µij ,M)P (µij |M)

where si denotes the i:th sentence in the corpus
of N sentences, Mi is the amount of constructions
in si, µij denotes a construction in si and ωij is
the word that fills the category of the construc-
tion (if the construction has a category, otherwise
that probability = 1). The probabilities P (µij |M)
and P (ωij |µij ,M) are multinomial distributions,
whose parameters need to be estimated.

When using two part codes the coding of the
model may in principle utilize any code that can
be used to decode the model, but ideally the code
should be as short as possible. The coding we
use is shown in Figure 1. We apply the following
principles: For bounded integer or boolean values
(fields 1, 2.1, 2.3, 2.4 and 4.1 in Figure 1) we as-
sume a uniform distribution over the possible val-
ues that the parameter can take. This yields a cod-
ing length of log(L), where L is the amount of
different possible values. For the construction lex-
icon size (field 1), L is the number of n-grams in
the corpus and its coding length is therefore con-
stant.

When coding words (fields 2.2 and 4.2) we as-
sume a multinomial distribution over all the words
in the corpus, and the parameters are estimated
from corpus frequencies. Thus the probability of
construction lexicon units (field 2.2) is given by:

P (words(µk)) =
Wk∏
j

P (wkj), (2)



1. Number of 2. Constructions µi: 3. Construction counts 4. Categories:
constructions 2.1. length(µi) 4.1. number of words

2.2. words in µi 4.2. words

2.3. has category? 4.3. word counts

2.4. category position

Figure 1: Coding scheme for the model.

where Wk is the number of words in construction
µk and P (wkj) the probability of a word. The cat-
egory words (field 4.2) are coded in a similar man-
ner.

We also need to encode the parameters for
the multinomials P (µij |M) and P (ωij |µij ,M).
We do this by encoding the corresponding counts
(fields 3 and 4.3), from which the probabilities can
be calculated. We use the following reasoning: If
there are M different construction or word types
and the sum of their counts is K, then there are(
K − 1
M − 1

)
ways of choosing M positive inte-

gers so that they sum up to K. Thus the coding
length is the negative logarithm of

P (count(µ1), .., count(µM )) = 1/
(
K − 1
M − 1

)
.

(3)

3.2 Search algorithm

Because we are optimizing both model parame-
ters and model size at the same time, standard
probabilistic parameter estimation methods, such
as Expectation-Maximization, cannot be used. In-
stead we use an incremental algorithm for optimiz-
ing the cost function as follows: At all times we
maintain a certain analysis of the corpus and try to
improve it. For a given analysis it is possible to
estimate the maximum likelihood parameters for
P (ωij |µij ,M) and P (µij |M) and then calculate
the cost function for that model.

The optimization proceeds with the following
steps: (1) Initialize the analysis so that each word
is a construction by itself and there exist no other
constructions. (2) Generate all possible construc-
tions of length ≤ 6 from the corpus. For those
constructions that exist more than 10 times in the
corpus, calculate the likelihood ratio. Since the
likelihood side of the optimization is completely
local one can calculate the change in likelihood
that one would get from modeling a set of sen-
tences using a certain construction, compared to
the initial analysis. (3) In the descending order of

likelihood ratios, apply the construction to all sen-
tences where applicable. Then calculate the value
of the cost function. If the change improved the
cost, accept it, otherwise discard the change. Fi-
nally, proceed with the next construction.

4 Experiments

We applied our MDL-based model to a corpus
consisting of stories told by Finnish children. The
are several reasons for this choice of data. If one
is interested in underlying cognitive processes and
their development, it may be more fruitful to look
at the outputs of a cognitive system in the middle
of its development rather than modeling the out-
puts of the fully developed system. Because the
data that children hear is produced by adult sys-
tems, some of it is likely to be discarded by chil-
dren by means of attentional selection, and one
cannot easily know which part. This problem is
avoided by only looking at data that is known to
be represented by the children, that is, produced
by them. From the practical point of view, as we
have no means of quantitative evaluation, we want
to apply the method to such a data that should
have many frequent and simple constructions to
observe.

4.1 Corpus and preprocessing

The corpus contains 2642 stories told by children
to an adult—typically a day care personnel or a
parent—who has written the story down exactly
as it was told, without changing or correcting any-
thing. A minority of the stories were told together
by a pair or by a group of children. The chil-
dren ranged from 1 to 7 years. The story mark-
up contains the age and the first name(s) of the
storyteller(s). The stories contain a lot of spoken-
language word forms. For a more extensive de-
scription of the corpus, see (Klami, 2005).

A story told by Oona, 3 years: Mun äitin nimi
on äiti. Mun iskän nimi on iskä. Iskä tuli mun
kanssa tänne. Mun nimi on Oona. Jannen nimi
on Janne. A story told by Joona, 5 years and



11 months: Dinosaurus meni kauppaan osti sieltä
karkkia sitten se meni kotiin ja söi juuston. Sit-
ten se meni lenkille ja se tappoi pupujussin ilta-
palaksi ja sitten se meni uudestaan kauppaan ja
se ei näkenyt mitään siellä kun kauppa oli kiinni.

The stories are preprocessed as follows: Story
mark-up containing headers etc. is removed, any
punctuation is replaced with a symbol # and the
story is divided into sentences. After removal of
story mark-up the total number of sentences in the
corpus is 36,542. The number of word tokens is
244,274 and word types 24,242. Each sentence is
then given as input for the construction learner.

4.2 Results

Figure 2 shows the most frequent constructions
that the algorithm has discovered. One can see
that the frequent constructions found by the algo-
rithm are good, in the sense that they are not ran-
dom frequent strings, but often meaningful con-
structions. An especially nice example of a con-
struction found is olipa kerran [X], which is
the archetypical way of beginning a fairy tale in
Finnish (once upon a time there was a ...). The
prominence of ja sitten is caused by many sto-
ries following a pattern where the child explains
some event, then uses ja sitten to move on to
the next event and so on. The algorithm has dis-
covered one piece of this pattern. We also see that
the algorithm has discovered that the spoken lan-
guage forms of sitten (then)—sit, sitte and
sitt—are similar.

When looking at the categories, it can be seen
that they are sometimes overly general. E.g., meni
metsään and meni # are analysed as meni [X],
where in the former case [X] is the argument of
the verb, and in the latter the verb takes no argu-
ments, but happens to be at the end of a sentence.
However, in many cases the discovered categories
appear to consist of one or a few semantic or part-
of-speech categories. E.g., söi [X] # (ate [X] #)
contains mostly edible arguments banaania (ba-
nana), mansikkaa (strawberry), jäniksen (a rab-
bit) or a pronoun hänet (him/her), ne (them).

Whereas these frequent constructions are fairly
good, the analyses of individual sentences gener-
ally leave much available structure unanalysed.
Consider the analysed sentence: että hirveä

hai tuli niitten [perään {X → ja}] [söi

{X → ne}] # (that terrible shark came them
[after {X → and}] [ate {X → them}] #). We

can see that most of the sentence is not analysed
as any abstract construction. Looking at the
corpus, we can see possible constructions that the
algorithm does not discover. E.g., constructions
such as [X] hai, where the category contains
adjectives or hai [X] where the category contains
an action verb. Note also that both constructions
could not currently be used at the same time, but
one would have to choose either.

5 Discussion

As this is our first attempt at learning a construc-
tion inventory, there are still many things to con-
sider. Regarding learning of the model, one a
more local updating step, in addition to the cur-
rent global update, would be needed. Also, the
algorithm should consider merging categories that
have partially overlapping words.

Currently the model structure allows only a very
restricted set of possible constructions, namely ex-
act phrases and partially filled constructions that
have exactly one abstract category that can be
filled by one word. It is later possible to relax
both constraints, and allow a category to be filled
by several consecutive words, as well as allowing
many abstract categories per construction. How-
ever, adding such abstraction capability will in-
crease the search space of possible models quite
radically, bringing the complexity close to learn-
ing a PCFG from unannotated text.

Starting simple is thus prudent: we wish to en-
sure learnability of the model. Moreover, we wish
to identify the simplest possible approach and
model structure that can account for interesting
and complex phenomena, when applied through-
out a corpus. A possible alternative to PCFGs
would be to keep the constructions simple, but al-
low them to overlap each other.

Our goals include also applying the found
constructions to NLP applications such as ma-
chine translation. The current statistical machine
translation systems solve the problems of non-
compositionality by translating a longer sequence
of words (phrase) at a time. However, finding
the phrase pairs is usually quite heuristic, and the
phrases do not include any abstract categories.
Even a reasonably simple algorithm for finding
more abstract constructions should help alleviate
the data sparsity problems. Applying construction
learning into applications is also useful as a way
of evaluating the results, as there is no “gold stan-



Most frequent constructions of two words
Freq. Form Category words (freq.)

891 hän [X] meni (68), oli (50), lähti (32), löysi (29), otti (19)
he [X] went, was, left, found, took

885 ja sitten
and then

798 [X] on se (82), hän (24), täällä (20), tässä (20), nyt (17)
[X] is it, he/she, here, here, now

768 meni [X] metsään (33), ulos (33), sinne (30), # (25), nukkumaan (18)
went [X] (into the) forest, outside, there, #, (to) sleep

694 sit [X] se (302), ne (81), kun (20), hän (17), # (12)
then [X] it, they, when, he/she, #

Most frequent constructions of three words
632 ja [X] se sitten (303), sit (155), sitte (109), sitt (18), kun (5)

and [X] it then, then, then, then, when
337 [X] se meni sitten (125), sit (66), sitte (58), ja (35), kun (14)

[X] it went then, then, then, and, when
245 olipa kerran [X] pieni (8), tyttö (7), yksi (6), koira (6), hiiri (5)

once (upon a time) there was (a) [X] little, girl, one, dog, mouse
235 ja [X] ne sitten (129), sit (37), sitte (28), kun (6), niin (5)

and [X] they then, then, then, when, so
197 ja [X] tuli sitten (91), se (9), sinne (6), ne (4), niistä (3)

and [X] came then, it, there, they, (of) them (be-)

Figure 2: The most frequent two- and three word constructions with their five most frequent category
words.

dards” for direct automatic evaluation.

6 Conclusions

We share the intuition found in cognitive linguis-
tics in general, that constructions are able to cap-
ture something essential about the cognitive repre-
sentations that are also the basis of our actions and
situatedness in the world.

It is our hope that the study of constructions,
and the endeavour of learning them from corpora
and perhaps later from richer behavioral and per-
ceptual contexts might eventually provide a new
opening in the field of modeling both language and
cognition.
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