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Abstract

High-dimensional datasets with large amounts of redundant information are nowadays available for hypothesis-free
exploration of scientific questions. A particular case is genome-wide association analysis, where variations in the genome
are searched for effects on disease or other traits. Bayesian variable selection has been demonstrated as a possible analysis
approach, which can account for the multifactorial nature of the genetic effects in a linear regression model. Yet, the
computation presents a challenge and application to large-scale data is not routine. Here, we study aspects of the
computation using the Metropolis-Hastings algorithm for the variable selection: finite adaptation of the proposal
distributions, multistep moves for changing the inclusion state of multiple variables in a single proposal and multistep move
size adaptation. We also experiment with a delayed rejection step for the multistep moves. Results on simulated and real
data show increase in the sampling efficiency. We also demonstrate that with application specific proposals, the approach
can overcome a specific mixing problem in real data with 3822 individuals and 1,051,811 single nucleotide polymorphisms
and uncover a variant pair with synergistic effect on the studied trait. Moreover, we illustrate multimodality in the real
dataset related to a restrictive prior distribution on the genetic effect sizes and advocate a more flexible alternative.
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Introduction

The progress in high-throughput measurement technologies has

allowed application specialists to gather extensive datasets with

often large amounts of redundant information for the addressed

scientific question. This is particularly true in (human) genetics,

where it has become cost-effective to measure individual genetic

variation at the scale of millions of polymorphic sites in the DNA.

Numerous genome-wide association studies (GWAS) have been

published during the last decade linking the genetic variation to

disease and other traits [1].

However, such data analysis is not without problems. The

primary association analyses in GWAS are mainly conducted by

testing each polymorphic site, usually single nucleotide polymor-

phism (SNP), for association independently and then correcting

for multiple hypothesis testing. This simplification is computa-

tionally convenient, but does not acknowledge the hypothesis of

multifactorial genetic background for many common diseases

and traits. Alternatives, which consider all of the genetic variants

simultaneously, include penalized multivariate regression and

variable selection methods (e.g., [2,3]).

In this work, we focus on the computation of the Bayesian linear

regression model with variable selection using Markov chain

Monte Carlo (MCMC) methods. The variable selection is a

natural fit for the main task in GWAS of searching for the genetic

variants showing association to a phenotype of interest, and such

models have been recently applied successfully to various sizes of

genetic datasets including full GWAS scale [3,4]. These models

introduce latent binary indicator variables c~½c1, . . . ,cm� to

specify the inclusion status of each genetic variant (cj~0 or

cj~1) in the regression model. The expected sparsity is encoded

into the prior distribution of the indicators. The relevant posterior

quantities are then obtained through model averaging (where

model refers to a configuration of the indicator vector c). However,

the computation can be challenging as the Markov chains may

suffer from long autocorrelation.

A general approach to the variable selection in this framework is

the Metropolis-Hastings algorithm (MH) [5,6], where to generate

samples from the posterior distribution, changes to the state of the

indicator vector c are proposed from a proposal distribution

q(c�jc) and then accepted as the new state or rejected (duplicating

the previous state in the MCMC chain) according to the MH

acceptance probability:

a(c; c�)~ min 1,
p(c�)q(cjc�)
p(c)q(c�jc)

� �
, ð1Þ

where c and c� are the current and the proposed state and p(:) is

the posterior probability.
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Here, we study the following ideas in formulating the proposal

distribution q: 1) finite adaptation of the proposal distributions for

adding and removing variables from the model, 2) adding and

removing multiple variables in a single proposal (multistep move)

with finite adaptation of the move size (the number of additions/

removals proposed) and 3) delayed rejection [7,8], which re-

utilizes some of the computations leading to a rejected proposal in

making a second proposal from a larger set of states. The resulting

sampling algorithms are studied on simulated data and a real

GWAS dataset with nearly four thousand individuals and over one

million SNPs (analyzed previously in [4]) with a focus on the

efficiency of the sampling. We further describe additional

proposals tailored to the genetic data, which help against specific

convergence and mixing problems encountered in the real data,

and demonstrate in the real data that a prior, which is flexible to

having few large effect sizes among many small, may be desirable.

The motivation for adapting the proposal distributions stems

from the small n, large p property of the data with most of the p

variables being irrelevant. Proposing updates to c uniformly from

the large set of variables may waste lots of computation time on

rejecting poor proposals and be slow to find high posterior

probability models. Here, the marginal inclusion probabilities of

the variables will be used to form the proposal distributions, which

are adapted during an initial phase in the sampling before

collecting samples for posterior inference (finite adaptation). This is

similar to the (full) adaptive sampler of Nott and Kohn [9]. The

Bayesian adaptive sampling algorithm (BAS) [10] also uses the

marginal inclusion probabilities for sampling. It differs from the

above mentioned in that it samples models without replacement

(and is not an MCMC method). Our previous work [4] included

finite adaptation of the proposal distribution for (single) additions,

while Guan and Stephens [3] have used statistics from single

variable analyses to form the proposal distribution for additions.

The latter two articles do not study the efficiency of the samplers.

Multistep moves have been used in GWAS setting by Guan and

Stephens [3], but they provide little details beyond the mention of

generating them as combinations of single additions and removals.

As the multistep proposals for updating c do not come from a

uniform distribution, some care is required in formulating q in a

proper way. Here, the sequential Metropolis-Hastings proposal

framework of Storvik [11] will be utilized to provide theoretical

validity of the resulting Markov chain. Lamnisos et al. [12] discuss

the adaptation of the move size in multistep moves with uniform

proposal distribution for variable inclusion updates. They use

acceptance rate coercion to adapt the move size proposal

distribution, which relies on the knowledge or estimate of optimal

acceptance rate. An alternative approach is provided by Pasarica

and Gelman [13], who maximize the expected jump distance of

the Markov chain (corresponding to minimizing the first

autocorrelation), and is here introduced in the variable selection

context. This has the advantage of not relying on the availability of

the knowledge of the optimal acceptance rate.

We also experiment with a novel delayed rejection step, which

re-utilizes some of the computations leading to a rejected multistep

proposal. In the delayed rejection algorithm if the first proposal is

rejected, another proposal may be made. Here, assuming a k-step

proposal, which is rejected, the full set of posterior probabilities of

the 2k models available from changes to the inclusion status of the

k variables can be computed using relatively cheap updates to the

likelihood of the full model (particularly, the Cholesky decompo-

sition of the covariance matrix), which is available fully or in part

from the rejected proposal. A second proposal is then made from

this set of models utilizing the computed posterior probabilities.

An open source C++ implementation of the samplers presented

here is available at http://becs.aalto.fi/en/research/bayes/

bmagwa/ and https://github.com/to-mi/. It has been specifically

developed for GWA analysis allowing for fast and memory-

efficient handling of large datasets.

Methods

Model
The model mapping from genotypes (values of the explanatory

variables) to a phenotype (the target variable) is briefly introduced

here. This is essentially the same as in our previous work [4],

except here we consider only additive formulation for the genetic

effects and introduce a more flexible prior for the variance of the

effect sizes. For similar alternatives, see, for example, references

[3,14,15].

A linear regression model is used:

yi~bT xizei, ð2Þ

where yi, i~1, . . . ,n, are the values of the phenotype for n

individuals, xij , j~1, . . . ,m, are genotypes for m SNPs and ei are

residuals, which are assumed to follow a zero-mean normal

distribution with variance s2: eijs2*N(0,s2):
To facilitate variable selection, binary variables cj are used to

indicate the presence of effect bj . That is, for cj~0, bj~0 and for

cj~1, bj may be non-zero. The prior structure for the model

parameters is:

bj~agj

a*N(m,1)

gj js2,t2
j ,cj~1*N(0, s2t2

j )

gj js2,t2
j ,cj~0*d0 ð3Þ

s2*Inv{x2(ns, s2
s)

t2
j *Inv{x2(nt, s2

t)

cj jv*Bernoulli(v)

v*Beta(av, bv),

where m is the mean of the prior for a, d0 is the Dirac delta

function at zero and n and s2 refer to the degrees of freedom and

scale parameters of the (scaled) Inv{x2 distributions. v is the

prior probability of cj~1 with prior expectation
av

avzbv
: j runs

from 1 to m.

The prior of the effect sizes, bj , is a zero-mean normal

distribution with a noncentral-F prior for variance [16]. This is

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e49445

MCMC Computation in Variable Selection for GWAS



more flexible than the Inv{x2 distribution for variance, which we

have used previously [4], but is still convenient to sample. Here, t2
j

are also variable specific (previously a single parameter was

shared), which places more mass on b with few large effects among

many small ones and seems appropriate in the lipoprotein

cholesterol analyses. Figure 1 illustrates the b prior. The prior

for cj induces sparsity into the model. When available, published

analyses may be used to guide the selection of the prior parameters

(proportion of variance explained for ns and s2
s; effect sizes for m,

nt and s2
t ; number of associations for av and bv; see [4]).

Computation
The overview of the Markov chain Monte Carlo algorithm used

to sample from the posterior distribution of the parameters of the

above model is given here briefly, before focusing on the specifics

of the sampling of c.

The linear model given c, a and t2 has conjugate structure

allowing integration over g and s2 analytically, which is utilized

below in the third step. v is integrated out analytically and not

sampled. The following Gibbs sampling scheme is used for the

remaining parameters (see Text S1 for details on the conditional

distributions):

1. Sample t2
j s given the other parameters from scaled inverse-x2

distributions.

2. Sample a given the other parameters from a normal

distribution.

3. Sample c given a and t2 with a Metropolis-Hastings step.

4. Sample s2 given c, a and t2 from a scaled inverse-x2

distribution.

5. Sample g given the other parameters from a normal

distribution.

The last three steps are a factorized draw from p(c,s2,gja,t2,y).
Additionally (if m is not zero), a deterministic Metropolis proposal

to flip the signs of a and g is included to avoid getting a stuck into

negative or positive values (note that this move has no effect on the

signs of bs). Steps 1, 2, 4 and 5 are done only every tenth (or

hundredth for alternative algorithms) iteration in our experiments,

as the sampling of c in the third step is often the most challenging

one.

For posterior inference, the Rao-Blackwellization method of

Guan and Stephens [3] is used to estimate the posterior association

probabilities p(cj~1jy), denoted pj for short (see also [4]). It

essentially works by periodically computing single variable linear

regressions for each variable against the residual of the current

linear regression model (at some sampled state c) and updating the

estimates pj accordingly.

Algorithms for Variable Inclusion Updates
Three algorithms will be described for the Metropolis-Hastings

step (MH) step, which is used to update c in the third sampling

step:

1. Single step (SS) algorithm, which proposes a change to a single

cj in each iteration.

2. Multistep (MS) algorithm, which proposes multiple changes to

c in each iteration.

3. Multistep algorithm with delayed rejection (MS-DR).

The proposals are formed in two main steps: 1) move size

(number of changes) proposal and 2) sequential proposal of the

variables to update (add to or remove from the model). The

proposal is then accepted or rejected according to the MH

acceptance probability. The single step algorithm always chooses

move size of one.

The parameters of the proposal distribution may be adapted

during an initial phase in the sampling (giving a total of six

different samplers; three adaptive and three non-adaptive). The

parameters are then fixed before collecting posterior samples

(finite adaptation). Non-adaptive algorithms employ uniform

distribution to generate the proposals (expect that move size

adaptation is allowed here for all multistep samplers to avoid trial-

and-error in finding a good proposal distribution). Brief descrip-

tions of the sampling and adaptation are given below. Details are

given in Text S1.

Move size proposal. The proposal distribution qp(kjc) for

move size k should preferably have only a single parameter in

order to make adaptation simple. We have chosen to use a

truncated geometric distribution, where the parameter p[(0,1�

Figure 1. Illustration of the effect size prior. A. b prior density with Inv{x2 and noncentral-F (from a2t2 with a*N and t2*Inv{x2)
distributions for the variance. The former yields a t-distribution. The latter is more spiked. Both have heavier tails than normal distribution. Panels B
and C show the comparison in two dimensions (pseudo-colored histograms with dark as low and bright as high values). In the former the two bs
share the t2 parameter, whereas they have independent t2 parameters in the latter. The plots were constructed from 50 million samples with fixed
prior parameters m~1, nt~1 and s2

t~0:02 (and assuming s2~1).
doi:10.1371/journal.pone.0049445.g001
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governs the shape of the distribution. Geometric distribution is

more conservative a choice than, for example, the binomial

distribution in the regard that the move size 1 is always the single

most probable value. We use a fixed value equal to 20 as the

truncation point, while p is adapted. For adaptation we use

expected jump distance optimization described below (for an

alternative, see [12]).

Pasarica and Gelman [13] optimize the expected squared jump

distance in a Gaussian proposal distribution, the motivation

of which stems from the formula EJ ½jjhtz1{htjj2�~
2(1{r1)varp½ht�, where J is the kernel of the Markov chain with

some optimizable parameter, r1 the lag one autocorrelation and p
the stationary distribution of the sampled parameter h. Thus,

maximizing the expectation corresponds to minimizing the first

autocorrelation, which may lessen the dependencies between

consecutive samples. Using the approach in variable selection

context for move size proposals is straightforward and does not

rely on assumptions about optimal acceptance rate for the

problem at hand.

In order to derive the connection of the expected squared jump

distance and lag one autocorrelation in the present context, the

mean and variance of c and its lag one autocorrelation (times

variance) for the Markov chain are defined as

E½c�~mc

var½c�~E½(c{mc)T (c{mc)�~E½cT c�{mT
c mc ð4Þ

r1var½c�~E½(ctz1{mc)T (ct{mc)�~E½cT
tz1ct�{mT

c mc,

where the variance and covariance are taken as sums of the variances

and covariances of the individual components. With these at hand, the

expected squared jump distance can be seen to be EJ ½jjc{c�jj2�
~2(1{r1)var½c�. We note that for vectors of binary values the

squared distance is equal to the Hamming distance1. 1jjc{c�jj22
~(c{c�)T (c{c�)~

P
j (cj{c�j )2~

P
j jcj{c�j j~jjc{c�jj1 as cj

can take values 0 and 1.

Pasarica and Gelman [13] suggest using covariance norm in the

case of multidimensional targets, but estimating the covariance

matrix would be difficult here.

The objective function to maximize with regard to the

parameter p is.

h(p)~EJ ½jjc{c�jj2�~
X

c

X
c�
jjc{c�jj2p(c)qp(c�,kjc)a(c; c�), ð5Þ

where p is the stationary distribution and a is the acceptance

probability of a move from c to c�. The acceptance probability will

be independent of p as the corresponding factors cancel in the MH

ratio. Samples from the adaptive phase of our MCMC algorithm

are used in the multiple importance sampling estimator of Pasarica

and Gelman [13] to evaluate this objective (for details, see

Text S1).

Sequential proposal for variable inclusion

updates. Given the move size, additions and removals are

proposed in a sequence with probability 0.5 (unless there are no

variables to add or remove). Denoting the sequence of proposed

changes using auxiliary variables z1:k, the proposal distribution can

be written as a product Pk
i~1q1(fijc,z1:i{1), where z1:0 is taken as

the empty sequence. The individual proposal distributions

q1(fijc,z1:i{1) for selecting the variables to add or remove are

formed according to the estimates of the marginal inclusion

probabilities pj of the variables, which are continuously updated

during the adaptive phase of sampling using the Rao-Black-

wellization method [3]. The proposals for variables to add are

generated by sampling variables proportional to the estimated

inclusion probabilities (with bounding away from zero using a

preset minimum value) unless the variable has already been

proposed to be added in this round. Variables to remove are

sampled identically except for the sampling probabilities being

proportional to 1{pj .

Alternatively, the usual MCMC estimates of pj could be used in

the adaptation with a smaller computational cost than the Rao-

Blackwellization, but the latter provides more robust estimates

especially at the beginning of the sampling and when the number

of variables is large.

The above sampling scheme is here cast into the form of Storvik

[11] (with some differences in notation) to write the acceptance

probability and show the validity of the scheme. The full proposal

distribution is written as

q1(c�,z�,kjc)~qp(kjc)Pk
i~1q1(f�i jc,f�1:i{1)q1(c�jc,z�): ð6Þ

In this, q1(c�jc,z�)~1 if c� is the model derived from c with the

operations specified by z� and zero otherwise. In order to be able

to calculate the Metropolis-Hastings acceptance probability, the

sequence of auxiliary variables related to the reverse proposal must

be specified. To this end, a distribution h1(zjc,z�,c�) is introduced.

The distribution h1 places unit probability to a single sequence of

auxiliary variables which is obtained from c,z� and c� using a

specific deterministic procedure (see below). Given these distribu-

tions, the acceptance probability for the proposal is

a1(c; z�,c�,z)~ min 1,
p(c�)

p(c)

q1(c,z,kjc�)
q1(c�,z�,kjv)

h1(z�jc�,z,c)

h1(zjc,z�,c�)

� �
, ð7Þ

which, according to Proposition 2 of Storvik [11], leads to samples

from the correct target distribution with proper convergence and

ergodicity results when the Markov chain is irreducible. For some

insight, the move may be viewed as an iteration of an MCMC for

sampling from the joint distribution p(c)q1(zjc), which has the

correct marginal for c. The iteration consists of a Gibbs step

updating z0 to z�, followed by a Metropolis-Hastings step with the

specified acceptance probability during which (c,z�) is proposed to

be replaced by (c�,z). This is illustrated in Figure 2A.

Regarding h1, a simple approach would be to take

h1(zjc,z�,c�)~1, if z is the reverse of z� (i.e., additions become

removals with the sampling order reversed and vice versa) and

zero otherwise. However, to be consistent with the delayed

rejection implementation, a slightly more complex deterministic

procedure is chosen here (see Text S1).

An alternative to introducing the sampling order to the

acceptance probability would be to sum over the different

orderings of z�. See Text S1 for a comment on this.

Example 1. Here we illustrate the notation and behavior of

the sampling algorithm using a concrete, albeit overly simplistic,

example. Suppose the total number of SNPs in data is equal to 5

and let the current state of the algorithm be c~f2g, i.e., the

second SNP is currently included in the model. Note that here, for

shortcut, we represent c, actually a vector of indicators, as a set of

non-zero indicators. The sampling then proceeds as follows. 1)

The number of updates, k, is drawn. Suppose that k~2 is selected.

MCMC Computation in Variable Selection for GWAS
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2) The type of update (addition/removal) and the SNP involved is

determined in turn for each update. Suppose this results in the

sequence of auxiliary variables z�~(z3,z4), meaning that SNPs

3 and 4 are proposed to be added to the model. This, in turn, fixes

the proposed new state to c�~f2,3,4g. Furthermore, this fixes the

sequence of auxiliary variables in the reverse proposal to

z~({4,{3). Recall that z is determined using the distribution

h1(zjc,z�,c�), which places a unit mass on a single sequence of

auxiliary variables using the deterministic procedure, as described

earlier. Also note that applying z to c� would change the state back

to c again, as required. 3) Finally, the acceptance probability

specified in Equation 7 is used to decide whether to change the

current state from c to c�.
Delayed rejection. Delayed rejection [7,8] builds on the

result of Peskun [17], which states that given two transition

probability matrices of Markov chains, the one with greater off-

diagonal elements has lower asymptotic variance for the MCMC

estimate of an expectation of a function. Whereas the MH

sampling algorithm replicates the old state on rejection and

proceeds to the next iteration, the delayed rejection algorithm

makes a second proposal (and possibly more), which is then

considered for acceptance. The acceptance probability is con-

structed to preserve the reversibility of the Markov chain. The

algorithm can only increase the off-diagonal mass in the transition

matrix as the acceptance probability of the first proposal is not

affected.

An essential feature of delayed rejection is that the second

proposal may depend on the first. Here, this is taken advantage of

by re-utilizing the computations performed for the first proposal.

Note that the time complexity of computing the likelihood after

the first proposal has been made is dominated by the updates to

the Cholesky decomposition of the covariance matrix of the

predictors (O(q2)) and computation of the covariances when

variables are added (O(nk0q) with q the number of variables in the

model and k0 the number of new variables). Now, following a

proposal from c to c� through auxiliary variable z� which is to be

rejected, another proposal is made instead. The second proposal is

sampled from the set of models, which can be constructed by

flipping elements of c with the flips restricted to the variables

indicated by z�. There are 2k such models, where k is the move

size of the first proposal. Given the Cholesky decomposition of the

largest model, computation of the posterior probabilities of the

whole set of models may be done in O(2kk) (see Text S1 for more

details). This overhead is often small compared to making a

completely new proposal, when q or n are large relative to k and

allows the sampling to use the knowledge of the posterior

probabilities of 2k models.

The acceptance probability of the second proposal preserving

reversibility is given by:

a2(c,z�; c0,z0�)~ min (1,
p(c0)

p(c)

q1(c0�,z0�,kjc0)
q1(v�,z�,kjc)

(1{a1(c0; z0�,c0�,z0))

(1{a1(c; z�,c�,z))

q2(cjc0,z0�)
q2(c0jc,z�)

h2(z�jc,c0,z0�)

h2(z0�jc0,c,z�)
),

ð8Þ

where items related to the second proposal are marked with 0 and

the ratio for h1 is dropped to simplify notation. Note that c� and

c0�, which are the first proposals in the forward and backward

routes, are not constrained to be equal. h2 will be chosen to be

deterministic similarly to h1. We have constructed the proposal

distributions such that the second proposal is always accepted. The

notation and the course of action of the delayed rejection are

illustrated in Figure 2B and through the following example.

Further details are provided in the Text S1.

Example 2. Here we illustrate the delayed rejection part of

the sampling algorithm by continuing from Example 1 and

assuming that the suggested move from c~f2g to c�~f2,3,4g
was rejected. Recall also that the sequence of auxiliary variables

related to the first proposal was f�~(z3,z4). Thus, in the first

proposal, SNPs 3 and 4 were proposed to be added to the model.

The big picture here is that starting from the rejected first proposal

we make a second proposal. To calculate the Metropolis-Hastings

acceptance probability of this two-step forward proposal, a corre-

sponding two-step backward proposal must be specified. In our

approach, the backward route is fixed deterministically such that

the second step of the forward proposal is always accepted.

The delayed rejection part of the algorithm proceeds by

sampling the second (forward) proposal from the set of all models

which can be reached from the initial state c by applying any

subset of operations in f�. Here, we will denote this set of models

by M(c,f�). Consequently, M(c,f�)~ff2g,f2,3g, f2,4g,
f2,3,4gg. The models are sampled from M(c,f�) using a

distribution q2 which is selected such that it cancels the terms p,

Figure 2. Flow diagram of the proposal. A. View of the full move as a Gibbs step followed by a Metropolis-Hastings (MH) step. B. Delayed
rejection (DR): a second proposal may be done when the first proposal is rejected. Since the DR proposal is constructed here such that it is always
accepted, there is no further branching after the second proposal. a1 is the acceptance probability of the MH step. z0 refers to an old value of the
auxiliary variable, which is irrelevant.
doi:10.1371/journal.pone.0049445.g002
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q1 and 1{a1 in the numerator of the acceptance probability given

in Equation 8. Suppose the model proposed is c0~f2,3g. Note

that no auxiliary variables are related to this second proposal, as

the model itself is sampled directly.

Now, the two-step backward proposal is determined as follows:

first, auxiliary variables related to the first step in the backward proposal

are deterministically set to f0�~({3,z4) corresponding to

proposing the model c0�~f2,4g. This follows, because it is

required that M(c0,f0�)~M(c,f�), i.e. that the second proposals

in both forward and backward moves are sampled from the same

set of models. To calculate the acceptance probability of this first

step in the backward proposal, the reversed sequence f0 of

auxiliary variables is required similarly to the first step in the

forward proposal (see Example 1), yielding f0~(z3,{4).
After rejection of the first step in the backward proposal, the

second step must change the state back to the original model c.

With these specifications at hand, the acceptance probability of the

second step in the forward proposal can be evaluated using

Equation 8, and is found to be equal to unity. In summary, the

only variables that were sampled during the whole MCMC step

are: 1) the sequence of auxiliary variables sampled in the first step

of the forward proposal, f�, and 2) the model sampled in the

second step of the forward proposal, c0. All other variables

required when calculating the acceptance probability follow

deterministically from these two along with the initial state c.
Additional moves for SNP data. Two additional moves are

introduced specifically for genetic data, where the variables can be

ordered linearly (corresponding to their locations in the genome)

and neighboring variables may have block-like correlation

structure (linkage disequilibrium), which may complicate the

mixing of the Markov chain.

The first move type proceeds by selecting one variable in the

model (cj~1) randomly to be swapped with a variable which is

located in its neighborhood (defined by a cutoff in the distance of

the linear indices) and is not in the model (ck~0). A similar move

is also considered by Guan and Stephens [3]. The second move

type begins identically by randomly selecting one variable in the

model (cj~1). Then, an update to a randomly selected neighbor-

ing variable (ck[f0,1g) is proposed. For both of these move types,

multiple updates of the same type may be incorporated into a

single proposal. Further, delayed rejection is allowed for the latter

move type (i.e., we allow reverting some of the proposed updates in

a multistep proposal similarly to the delayed rejection described

above, but with simpler acceptance probability as the updates are

proposed from a uniform distribution).

In our implementation each of the additional move types is

proposed with probability 0.15 and the main c update with

probability 0.7. The move size in the additional move types is

determined using the truncated geometric distribution with a fixed

parameter (p~0:7 for the first additional move type, p~0:25 for

the second).

Comparison Algorithms
The algorithms introduced above are compared to random scan

versions of Kohn-Smith-Chan (KSC) [18] and Nott-Kohn (NK)

[9] sampling algorithms. A proposal of both algorithms first selects

k variables in random for consideration (here k is fixed to 1, 5 or

10) and propose a new model c� from the set of 2k models

available by flipping the inclusions of the selected variables. The

KSC algorithm makes this proposal with the proposal probabilities

proportional to the prior probabilities of the models. The NK

algorithm uses an adaptive distribution for the proposal. Here, we

restrict the adaptation to be finite and use the same kind of tuning

as in the proposed adaptive algorithms. The proposal distribution

is taken as a independent combination of the adapted marginal

inclusion probabilities: q(c�jc)!Pj:j[K p
c�j
j (1{pj)

1{c�j with K

representing the set of the selected k variables. See Text S1 for

more details and for a note on the similarity of the NK and the

proposed algorithm.

Ethics Statement
Human data was not collected primarily for this article and was

analyzed here anonymously. Primary collection has followed

appropriate ethics guidelines.

Results

Data
A dataset of 3895 individuals with quality controlled, measured

or imputed genotypes at 1,051,811 single nucleotide polymor-

phisms (SNPs) is used to test the sampling algorithms. High-

(HDL-C) and low-density lipoprotein cholesterol (LDL-C, for

3822 individuals) phenotype data were available for analysis.

Moreover, 20 simulated datasets were generated for four

simulation configurations using the genotypes of the first

chromosome (85,331 SNPs) for 2002 of the individuals and a

linear model for the phenotype. The simulated data had either 30

or 100 SNPs randomly selected as causal with additive genetic

effects, whose sizes were generated from a double exponential

distribution. Normally distributed noise was added to the

phenotypes to set the proportion of variance explained (H2) by

the causal SNPs to 0.2 or 0.5. For more details on the dataset and

the simulation procedure, see the previous analysis in Peltola et al.

[4] and references [19,20].

Simulated Data
The efficiencies of the samplers were tested on the simulated

datasets. The samplers are abbreviated as SS for single-step

sampler, MS for multistep sampler, MS-DR for multistep sampler

with delayed rejection, NK for Nott-Kohn and KSC for Kohn-

Smith-Chan. Maximum move size in the multistep samplers is 20

and delayed rejection is restricted to moves with size of 10 or less.

The (finite) adaptivity of SS, MS and MS-DR samplers refers to

the tuning of the proposal probabilities of which variables to add

or remove. Non-adaptive samplers employ discrete uniform

distribution for this. All MS and MS-DR samplers use move size

proposal adaptation. NK and KSC samplers were run with block

sizes 1, 5 and 10. Three independent MCMC chains were run for

20,000,000 (KSC and NK) or 2,000,000 (others) iterations of the

third step in the Computation and thinned by taking every 100th

(KSC and NK) or every 10th (others) sample. The KSC and NK

algorithms were run for ten times longer as they have cheaper

iterations and showed convergence problems with shorter runs.

First halves of all chains are discarded as burnin. Prior parameters

are given in Text S2.

The effective sample size (ESS) for c samples forms the basis of

the comparisons. It estimates the number of independent samples

as a ratio of the number of collected samples and the auto-

correlation time (computed using Equation 4 and Geyer’s initial

monotone sequence estimator [21]). We compute the geometric

mean of the ESS divided by the sampling time t (spent in step 3 of

the computation) over the three chains and report relative

efficiencies RE~
ESS

t
=

ESSr

tr

, where r refers to a reference.

Convergence was checked visually and by computing potential

scale reduction factors [22] over all chains for model size,

proportion of variance explained and a2 traces. These and
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inspection of the posterior inclusion probabilities show severe

convergence and mixing problems for KSC01 and NK01

algorithms and indicate that longer runs would have been

preferable on some of the dataset for other algorithms also (Table

S1 and Figures S1, S2, S3, S4).

Figure 3 presents boxplots of the relative efficiencies, where

each box represents the variation over the 20 datasets normalized

to the adaptive single step sampler. The adaptive samplers have

greater efficiency in all configurations of the simulations, while

KSC shows the poorest performance in these datasets. Multistep

moves and delayed rejection increase the efficiency especially in

the simulations with 30 causal SNPs, but only in combination with

the proposal distribution adaptation. The ESSs are also increased

in the non-adaptive samplers with multistep moves, but less so

relative to the increase in the sampling time (Table S2). KSC and

NK samplers have difficulties in sampling models of different sizes

(Figure S5 and Table S2).

The move size proposal distribution adaptation was validated

by running the adaptive MS and MS-DR samplers with fixed

move size proposal distributions for six parameter configurations

(giving mean move sizes from 2 to 7) for the 20 simulated datasets

with H2~0:2 and 30 causal SNPs. The results (Table S3) indicate

that the move size adaptation maximizes the realized jump

distance and minimizes the first autocorrelation as intended.

However, it seems that the effect of other autocorrelations on ESS

is notable and, for this set of parameters and simulations, the larger

the proposed move size, the larger the ESS. The differences in

relative efficiencies are small (within a factor of 1.2) for the six

parameter configurations.

We further note that the multistep moves and delayed rejection

do not necessarily increase the efficiency of moving between

different model sizes (Figure S5 and Table S2 show the relative

efficiencies when the autocorrelation time is computed for model

size samples). A possible explanation is that larger moves reduce

the acceptance rate and a notable proportion of the moves jump

between models of same size (e.g., 18% of the moves that change

the model in the adaptive MS-DR sampler in the simulations with

30 causal SNPs and H2~0:5 are such, while obviously none are

such for the SS sampler; this comparison excludes the additional

SNP switch move). Move size and rate statistics are presented in

Table S4.

HDL-C and LDL-C Data
Only the adaptive samplers proposed here were run for the

HDL-C and LDL-C data as the others would be expected to

perform worse with the large increase in the number of variables

relative to the simulations. Twelve independent chains of length

8,000,000 iterations were run with each sampler and dataset and

thinned by taking every tenth sample. Effective sample sizes and

sampling times were computed as in the simulations. Here, results

are presented as ESS/time rather than as relative efficiencies as

there is no additional variation due to multiple datasets (HDL-C

and LDL-C results are shown separately). Prior parameters are

given in Text S2.

Convergence analysis did not indicate problems with the HDL-

C dataset. The inferences regarding posterior inclusion probabil-

ities and the proportion of variance explained did not change from

the previous analysis [4], whereas the posterior distribution of

model size is here wider reflecting the change in the effect size

prior (results not shown). However, the different sampling

algorithms did not converge to the same posterior distribution

for the LDL-C dataset. Thus, comparisons for sampling efficiency

between the samplers are not valid for the LDL-C data. On the

other hand, analysis of the convergence problem is interesting.

The source of the problem is a pair of correlated (Pearson’s

correlation 0.91) SNPs in the PVRL2 gene, which have weak

effects individually but a strong effect together (and preferably in

combination with a third near-by SNP, which has a strong

individual association). Figure 4 shows the MCMC traces for these

three SNPs in all of the sampled chains. The adaptive SS sampler

does not find the pair at all in these 12 chains. Most chains of the

adaptive MS sampler include the pair at least at some point, but

seem to mix poorly, while mixing is clearly better when delayed

rejection is used. All of the samplers picked up the pair, when the

dataset was reduced to contain only the SNPs in chromosome 19

(results not shown). The posterior inclusion probability for the pair

is 0.79 with the MS-DR sampler. For independent evidence, a p-

value of less than 0.000001 for the pair was found by computing

Bayes factors using BIMBAM [23] and a million permutations of

Figure 3. Relative efficiencies of the samplers in the simulated datasets. The boxplots show ESS/time values normalized to the third
sampler, where the ESSs are computed for the c samples. Red dots show the geometric mean over the 20 datasets. Some outliers were truncated to
fit into the figure and are shown with crosses. 1 = adaptive MS-DR, 2 = adaptive MS, 3 = adaptive SS, 4 = non-adaptive MS-DR, 5 = non-adaptive MS,
6 = non-adaptive SS, 7 = NK10, 8 = NK05, 9 = NK01, 10 = KSC10, 11 = KSC05, 12 = KSC01.
doi:10.1371/journal.pone.0049445.g003
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the phenotype (after adjusting for the third SNP using linear

regression). Similarly computed single-SNP p-values were 0.09

and 0.15 for the two SNPs. The PVRL2 gene is located near a

region with known associations to LDL-C (e.g., the APOE gene)

[24].

The SNP pair was missed in our previous analysis [4]. This may

in part have also been due to a more restricting prior for the effect

sizes there (Inv{x2 for a single variance parameter). The pair was

first seen in an analysis with the noncentral-F prior for effect size

Figure 5. Demonstration of multimodality with shared t2 parameter in the LDL-C data. The multimodality is related to the SNP pair, whose
state change is shown (snp1 and snp2; csnp3~1 for the whole period) together with the corresponding parts of the trace of model size samples for

two MCMC chains with the different priors.
doi:10.1371/journal.pone.0049445.g005

Figure 4. MCMC traces of the three SNPs related to convergence problems in LDL-C data. Each subplot contains traces (including burn-in
period) from 12 chains, where each trace is composed of three lines (red for snp1, blue for snp2 and black for snp3), which may be in upper state
(cj~1) or lower state (cj~0). csnp3~1 almost always, whereas csnp1 and csnp2 are mostly synchronized: almost always 0 for SS, often 1 for MS-DR, but
changing states often and mixed for MS (some chains are like SS, some more like MS-DR but with poorer mixing).
doi:10.1371/journal.pone.0049445.g004
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variance, but with a shared t2 parameter. However, the prior

seemed still inadequate as there was clear modal change in the

shared t2 parameter to larger values on including the SNP pair in

the model, which also presented as a change in the model size

distribution (Figure 5). These issues spurred the change to the

individual t2 parameters and to include the second additional c
update tailored for SNP data.

The ESS/time values for comparing the algorithms on sampling

efficiency are shown in Figure 6 (and Table S5) for both HDL-C

and LDL-C data (comparisons for the latter are invalid). Similarly

to the results in simulations, the multistep moves and delayed

rejection seem to increase the sampling efficiency in the HDL-C

dataset. On comparing the efficiency with regard to model size

samples, the trend is similar to Figure 6, but more modest (Figure

S6 and Table S5).

Move size and rate statistics for the sampling algorithms are

shown in Table 1. The average proposed move sizes in the

multistep samplers are between 6 and 7 with the DR sampler

having slightly larger values. The realized jump distance is clearly

larger for the DR sampler as is the move rate, which is close to the

value of the single step sampler. We note that the cutoff value for

making the second stage proposal in the DR sampler (here 10)

may affect the behavior of the jump distance optimization.

Discussion

Several aspects related to the use of the Metropolis-Hastings

algorithm (MH) in Bayesian variable selection in the context of

genome-wide association studies were studied here. Specifically,

the focus was on the (finite) adaptation of the proposal

distributions for additions and removals of variables, multistep

proposals (batching of additions and removals) with move size

adaptation and using a delayed rejection step in the multistep

proposal. A more flexible prior formulation for the effect sizes and

additional MH moves tailored to genetic data were also

introduced.

The effect of the adaptation of the proposal distributions was

studied on simulated datasets with 85,331 SNPs. The results

suggest that the adaptation is beneficial in regard to the sampling

efficiency. This is not surprising as similar ideas have been used

previously in sampling from high-dimensional model spaces for

variable selection [3,4,9,10]. The results on simulated data and on

the HDL-C dataset imply also that the multistep moves and

delayed rejection (DR) are beneficial for the sampling efficiency.

The DR step is similar to a block Gibbs update and it allows for

oversized multistep moves, where the second stage proposal trims

poor updates out. The acceptance rates for MH algorithms in

large model spaces are often high and, in such cases, the DR step

may also be seen to provide a short-cut relative to full Gibbs

moves. The proposed algorithms were also compared to random

scan versions of Nott-Kohn [9] and Kohn-Smith-Chan [18]

samplers. These seemed to have problems especially in moving

along the model size distribution and showed worse performance

than the proposed finitely adaptive algorithms in all configurations

of the simulated data.

The expected jump distance optimization [13], used here for

adapting the move size proposals, provides an alternative to

relying on the knowledge of an optimal acceptance rate. However,

it has two caveats: the optimization does not account for the

increase in computational effort for larger move sizes (there is no

such problem with a Gaussian proposal distribution) and, in our

limited experiments, minimizing the first autocorrelation did not

lead to a minimum of the autocorrelation time. The acceptance

rates of the multistep moves (without DR) fell in 0.30–0.42 for all

experiments in this work, which corresponds well with the

empirical optimal range of 0.25–0.40 found by Lamnisos et al.

[25] in the case of variable selection for probit regression.

Problems in the mixing of the samplers were found in the LDL-

C data. This was identified being related to a pair of SNPs, which

are required to be together in the model to have notable

contribution. The interpretation of the SNP pair is unclear to us

(e.g., haplotype tag or false positive), but it is plausible that such

combinations could be found in other datasets also and that they

are probably missed in single-SNP analyses. Multistep moves may

help in finding such SNP pairs, but it is still improbable that one

move would happen to propose the correct pair amongst all

possible. We introduced a specific MH move to alleviate the

problem of finding such local SNP combinations. Together with

the delayed rejection, which allows for some misspecification of

move size, this seemed to improve the mixing for the SNP pair

markedly.

Moreover, the prior distribution of the effect sizes was changed

to have more probability mass near the axes for the regression

Figure 6. ESS/time in the HDL-C and LDL-C datasets. Boxes show
the variation over the 12 independent MCMC chains for each sampler.
ESSs are computed for the c samples. Red dots show geometric means.
1 = adaptive MS-DR, 2 = adaptive MS, 3 = adaptive SS. Note that the LDL-
C samplers have not converged to same posterior distribution and thus
the comparison is not valid.
doi:10.1371/journal.pone.0049445.g006

Table 1. Move size and rate statistics as averages over the
MCMC chains for HDL-C and LDL-C datasets.

Dataset/Sampler RJD PJD RJD/PJD Move rate p

HDL-C

adaptive MS-DR 2.00 6.75 0.45 0.67 0.12

adaptive MS 1.15 6.25 0.33 0.33 0.14

adaptive SS 0.66 1.00 0.66 0.66 NA

LDL-C

adaptive MS-DR 1.95 6.57 0.45 0.68 0.12

adaptive MS 1.11 6.36 0.31 0.31 0.13

adaptive SS 0.69 1.00 0.69 0.69 NA

Values are arithmetic means.
RJD: Realized jump distance (mean number of changes to c sample chain per
iteration). PJD: Proposed jump distance (mean proposed number of changes
per iteration). Move rate: proportion of moves with jump distancew0

(acceptance rate for non-DR samplers). p: parameter of the geometric
distribution for move size proposals.
doi:10.1371/journal.pone.0049445.t001
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coefficients (through having SNP specific t2 parameters), which

may be more appropriate in cases where there are large differences

in the effect sizes of associated variables. This seems desirable in

genome-wide association analysis. Having a shared t2 parameter

led to multimodal posterior distributions for t2 and model size in

the LDL-C data. Such behavior was not observed with the more

flexible prior. However, the issue highlights the potential sensitivity

of the model size posterior to the prior specification, which has

been long acknowledged in the literature on Bayesian varying

dimensional models (e.g., [26]).

We acknowledge that comparisons for sampling efficiency may

be sensitive to the implementation, sampling parameters and the

computer environment, where the experiments are run. To this

end, all experiments here were run on a cluster computer, where

the nodes have almost identical configurations (most importantly,

the same CPU model and software libraries for linear algebra; for

HDL-C, and similarly for LDL-C, a single node was used to run

all experiments) and the same sampling parameters were used for

all algorithms (where applicable). Moreover, the third step in the

Gibbs scheme, the variable inclusion update, was timed separately

and was used to compute the efficiencies. Thus, the time spent in

the other steps, which may account for a significant portion of the

total time (especially the Rao-Blackwellization), was excluded. All

of the algorithms were implemented by the first author and most

of the source code is shared between them. A set of unit tests

(including checks for likelihood computations and sampling on

small test data, among others) was used to increase confidence in

the correctness of the implementation and is available with the

source code.

The results may also be expected to vary with the specifics of the

data (e.g., scale, number of significant associations, effect size

distribution and correlation structure) as seen to some extent

between the different simulation configurations. Our experiments

were specifically in the context of genome-wide association

analysis, but many of the ideas are applicable to other types of

high-dimensional data. However, the sampling algorithms used

here may need to be combined with other means of tackling

potential multimodality for general use.
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Figure S1 Model size posterior distributions in the
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(TIF)

Figure S2 Model size posterior distributions in the
simulated data (three estimated densities per method).
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Figure S3 Model size posterior distributions in the
simulated data (three estimated densities per method).
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Figure S4 Model size posterior distributions in the
simulated data (three estimated densities per method).
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Figure S5 Boxplot of the relative efficiencies (ESS/time
normalized to third sampler) of the samplers in the
simulation datasets computed for the model size
samples. Red dots show the geometric mean over the 20

datasets. 1 = adaptive MS-DR, 2 = adaptive MS, 3 = adaptive SS,

4 = non-adaptive MS-DR, 5 = non-adaptive MS, 6 = non-adaptive

SS, 7 = NK10, 8 = NK05, 9 = NK01, 10 = KSC10, 11 = KSC05,

12 = KSC01.

(TIF)

Figure S6 ESS/time boxplot, where ESS is computed
based on the autocorrelation of model size samples for
the HDL-C and LDL-C datasets. 1 = adaptive MS-DR,

2 = adaptive MS, 3 = adaptive SS.

(TIF)
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(PDF)

Table S2 Sampling time, ESS, ESS/time and relative
efficiency for the simulated datasets.
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