
Preprint for Lahtiet al., MLSP’09

DEPENDENCY DETECTION WITH SIMILARITY CONSTRAINTS

Leo Lahti1,2 , Samuel Myllykangas3, Sakari Knuutila2 and Samuel Kaski1

1. Helsinki University of Technology, Department of Information and Computer Science
PO Box 5400, FI-02015 TKK, Finland

2. University of Helsinki and Helsinki University Central Hospital
Haartman Institute and HUSLAB, Department of Pathology, Helsinki, Finland

3. Stanford University School of Medicine, Department of Medicine, Division of Oncology, and
Stanford Genome Technology Center, Stanford University, Stanford, USA

ABSTRACT

Unsupervised two-view learning, or detection of depen-
dencies between two paired data sets, is typically done by
some variant of canonical correlation analysis (CCA). CCA
searches for a linear projection for each view, such that the
correlations between the projections are maximized. The
solution is invariant to any linear transformation of either
or both of the views; for tasks with small sample size such
flexibility implies overfitting, which is even worse for more
flexible nonparametric or kernel-based dependency discov-
ery methods. We develop variants which reduce the degrees
of freedom by assuming constraints on similarity of the pro-
jections in the two views. A particular example is provided
by a cancer gene discovery application where chromosomal
distance affects the dependencies between gene copy num-
ber and activity levels. Similarity constraints are shown to
improve detection performance of known cancer genes.

1. INTRODUCTION

We develop methods for the task of detecting statistical de-
pendencies between multiple sources of co-occurring data.
The sources are assumed to share relevant common infor-
mation, and additionally contain independent but unknown
type of noise. The task is to discover the relevant informa-
tion; both to detect and analyse or interpret it.

This is a particular type of a data fusion task, shared by
multi-view learning. In multi-view learning each source is
interpreted as a different view to the same items, and the
task is to enhance classification performance by combin-
ing the views. Our task can be interpreted as unsupervised
multi-view learning.
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The traditional statistical way of finding dependencies
between data sources is canonical correlation analysis, CCA,
which generalizes correlation to multidimensional sources,
retaining some of the nice interpretability of correlationco-
efficients. While the basic correlation coefficient assumes
paired scalar values, canonical correlations assume paired
vectorial values. The vectors are projected to scalar compo-
nents before computing the correlations, using linear projec-
tions that maximize the correlations. For multidimensional
data there will be many correlation coefficients; the second
components are constrained to be uncorrelated with the first,
and so on.

CCA is known to have two nice properties: the result
is invariant to linear transformations of the data spaces, and
the solution for any fixed number of components maximizes
mutual information between linear projections for Gaussian
data. These insights can be interpreted as motivations for
generalizing using nonparametric methods [1, 2] and kernel
CCA [3, 4].

The flexibility of CCA can cause overfitting problems
that are specifically harmful with small sample sizes that
abound in biomedical studies, for instance. When the views
are high-dimensional, the completely unconstrained linear
projections involve high degrees of freedom; several ways
to regularize the CCA solution have been suggested to over-
come some of the associated problems [5, 6, 7]. We intro-
duce a complementary approach that is based on bringing
in prior knowledge to constrain the model family.

Assuming the dimensions of the different views are not
completely unrelated but instead are formed of related pairs,
it makes sense to search for more constrained projections.
In our application, the views are different measurements
made on the same locations of the genome, and the dimen-
sions correspond to these particular locations. Constraining
the projections to be the same or at least similar in the dif-
ferent views will additionally enhance interpretability of the
results, given that relationships between the same compo-
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nents in the two views are natural.

Correlation-based CCA has been shown to correspond
to the maximum likelihood solution of a simple generative
model [4], where the two views are assumed to stem from
a shared Gaussian latent variable and normally distributed
data-set-specific noise. This has opened up the road to prob-
abilistic and Bayesian formulations [8, 9] which make it
possible to deal rigorously with uncertainty in small sam-
ple sizes and to include prior knowledge as Bayesian priors.

We suggest also a probabilistic version for constrained
dependency search that provides a robust alternative for di-
rect maximization of correlations. While the probabilistic
version is slower to compute, it is the recommended choice
when prior information of the types of dependency is avail-
able, or sample size is small.

The methods will be applied in a very promising appli-
cation setup for knowledge discovery with dependency de-
tection. The task is to find potential cancer genes by study-
ing the relationship between changes caused by cancer in
gene expression and gene copy numbers, that is, amplifica-
tions or deletions caused by mutations in cancer samples.
Copy number changes are a key mechanism for cancer, and
combination of copy number information with gene expres-
sion measurements can reveal functional effects of the mu-
tations; gene expression data is informative of gene activity.
The rationale goes as follows: Mutations having no func-
tional effect will not cause cancer, and cancer-related gene
expression changes may be side effects. Gene expression
changes caused by mutations would be strong candidates
for cancer mechanisms, and they contribute to the depen-
dencies between the two data sources. While causation can
be difficult to grasp, study of the dependencies can provide
an efficient proxy for such effects.

2. CANONICAL CORRELATIONS WITH
SIMILARITY CONSTRAINTS

2.1. Correlation-based approach

Correlation-based CCA searches for a maximally correlated
linear projection of the original data sets with paired sam-
plesX andY . It maximizes the correlation between the
projections,cor(Xvx, Y vy), with respect to arbitrary pro-
jection vectorsvx,vy. However, this flexibility easily leads
to overfitting as demonstrated by the case study in Section 3.

In many applications prior information of the potential
relationships between the features of the investigated data
sets is available. Constraining the projections accordingly
can potentially reduce overfitting and help to focus on spe-
cific types of dependencies between the two data sets. A
particular example of such a model is provided by our can-
cer gene discovery application, where gene copy number
changes are systematically correlated with the gene expres-
sion measurements from the same genes.

The relationship between the projections can be para-
metrized with a transformation matrixT such thatvy =
Tvx. Maximization of the correlations between the projec-
tions leads to the following optimization problem:

argmax
v,T

=
v

T Σ̃xyTv

√

v
T Σ̃xxv

√

(Tv)T Σ̃yyTv

, (1)

where the observed covariances of the two data sets are de-
noted by thẽΣ. Constraints onT can be used to guide the
dependency search. We refer to this model as Similarity-
constrained CCA (SimCCA). Suitable constraints depend on
the particular applications; the solutions can be made to pre-
fer particular types of dependencies in a soft manner with an
appropriate penalty term onT .

While we consider only one-dimensional projections in
the case study, multidimensional projection matrices are also
possible. The optimal projection vectors can be sought iter-
atively as in ordinary CCA. Direct optimization of the corre-
lations provides a simple and computationally efficient way
to detect dependencies between data sources but it lacks an
explicit model to deal with the uncertainty in the data and
model parameters.

2.2. Probabilistic approach

An explicit model-based approach for the dependency ex-
ploration task is provided by the probabilistic modeling fra-
mework. We derive a probabilistic approach which should
be more robust to small sample sizes. The correlation-based
CCA has a direct connection to the maximum likelihood
(ML) solution of the generative model [4, 10]:

X ∼ N(Wxz, Ψx)
Y ∼ N(Wyz, Ψy),

(2)

assuming normally distributedz, and data-set-specific co-
variancesΨx, Ψy. The dependency between the data sets is
captured by the shared latent variablez, andWx, Wy char-
acterize the relationship between the data sets. The covari-
ancesΨx, Ψy characterize data set-specific effects. Note
that while optimal projectionsv in the correlation-based
CCA (Eq. 1) operate on the observed data, the parameters
of interest,Wx, Wy, in probabilistic CCA mediate transfor-
mations of the latent variablez.

The solutions of the probabilistic CCA can be constrai-
ned analogously to the correlation-based approach in Eq (1),
by extending the formulation to include appropriate prior
terms. The joint likelihood of the model is given by

P (X,Y, W, Ψ) (3)

∼P (X, Y |Wx, Wy, Ψ)P (Wy|Wx)P (Wx)P (Ψ) (4)

=

∫

P (X, Y |Wx, Wy, Ψ, z) (5)

P (Wy |Wx)P (Wx)P (Ψ)P (z)dz. (6)
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HereΨ denotes the block-diagonal matrix ofΨx andΨy.
While incorporation of prior information of the data set-
specific effects through theWx andΨ provides promising
lines for further work, we focus on the shared latent vari-
ables as a probabilistic alternative to the correlation-based
SimCCA. The relation between the transformation matri-
ces for the shared latent variable is encoded by the prior
term P (Wy|Wx) and can be parametrized with a transfor-
mation matrixT such thatWy = TWx. Assuming invert-
ible WT

x Wx, we haveT = Wy(WT
x Wx)−1WT

x .
By setting a prior onT it is possible to emphasize cer-

tain types of dependencies. With unconstrainedT the so-
lution reduces to ordinary probabilistic CCA. In the other
extremeT is an identity matrix,T = I, and the two shared
components, derived fromx andy respectively, would be
identical. The formulation would also allow tuning ofT
between these two extremes.

We consider the following simple prior forT : P (T ) =
N+(‖ (T − I) ‖ |0, σ2

T ) = N+(‖ Wy(WT
x Wx)−1WT

x ) −
I ‖ |0, σ2

T ). This can be plugged intoP (Wy |Wx) in Eq. (3).
We have used Frobenius norm, andN+ refers to truncated
normal distribution for positive input values.

Theσ2
T can tune the deviation ofT from the identity ma-

trix; a strict version of probabilistic SimCCA (pSimCCA)
is obtained withσ2

T → 0, while σ2
T → ∞ yields ordi-

nary probabilistic CCA (pCCA). With uninformative pri-
ors P (W ), P (Ψ) ∼ 1 and normally distributed shared la-
tent variablez ∼ N(0, I), the model has the negative log-
likelihood

−logP (X, Y, W, Ψ) ∼ log|Σ|+trΣ−1Σ̃+
‖ T − I ‖

σ̂2
T

. (7)

HereΣ = WWT + Ψ contains the matricesWx, Wy and
data set specific covariancesΨx, Ψy. We have added the
prior for T , which tunes the relationship betweenWy and
Wx. For other details, see [4, 5].

3. ANALYSIS OF FUNCTIONAL COPY NUMBER
CHANGES IN GASTRIC CANCER

A promising biomedical application highlights the potential
practical value of our approach. Constraints on the poten-
tial dependencies between gene expression and copy num-
ber are shown to improve the detection of known cancer
genes. The advantages of constrained and probabilistic ver-
sions become particularly salient when the dimensionality
increases and ordinary correlation-based CCA seriously over-
fits to the data.

3.1. Background and motivation

Copy number changes in chromosomal regions with tumor-
suppressor or other cancer-associated genes have important

contribution to cancer development and progression. Chro-
mosomal gains and losses are likely to be positively corre-
lated with the expression levels of the affected genes; copy
number gain is likely to increase the expression of some of
the associated genes whereas deletion will block gene ex-
pression. Identification of cancer-associated regions with
functional copy number changes has potential diagnostic,
prognostic and clinical impact for cancer studies.

Canonical correlations provide a principled framework
for detecting the shared variation in gene expression and
copy number data. Systematic copy number changes in
a particular chromosomal region are captured by multiple
copy number probes, and this is also visible in the expres-
sion levels of the genes within the affected region. The de-
pendent signals can be subtle, however, as gene expression
and copy number data are affected by high levels of unre-
lated biological and measurement variation, and the sample
sizes are typically small.

Both correlation-based and probabilistic SimCCA com-
bine power over the adjacent genes by capturing the strong-
est shared signal in gene expression and copy number obser-
vations. They can also ignore unrelated signal from poorly
performing probes, or probes that measure genes that are
not functionally affected by the copy number change. This
provides tools to distinguish between so-called driver mu-
tations having functional effects from less active passenger
mutations, which is an important task in cancer studies. A
further advantage of the probabilistic formulation is thatthe
shared latent variablez provides a robust measure of the
amplification effects in each patient.

3.2. Implementation

SimCCA is used to study the association between gene ex-
pression and copy number in a gastric cancer data set with
41 patients and 10 controls [11]. The gene expression and
copy number data sets were matched for the analysis such
that the closest probe by genomic location in gene expres-
sion data was selected for each copy number probe, and
probes with no match between gene expression and copy
number within 5000 bp interval were discarded. The pre-
processed data has gene expression and copy number mea-
surements from 5596 genes from∼ 700 chromosomal re-
gions (cytobands). To satisfy the normality assumptions of
our model, the data waslog2-transformed and the mean of
the signals for each probe was set to 0 before the analysis.

Ordinary and constrained versions of canonical corre-
lation analysis, CCA/SimCCA, were applied to investigate
the dependencies between gene expression and copy num-
bers. The correlations were computed within a specific chro-
mosomal window around each gene. The observed correla-
tions provide a measure of dependency between gene copy
number and expression data for each window, or chromoso-
mal region.
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Fig. 1. Gene expression, copy number signal, and the de-
pendency score for a sliding window of 15 genes along
the chromosome arm 17q from the SimCCA method of
Eq. (1). Known gastric-cancer associated genes from an
expert-curated list are marked with black dots.

With unconstrainedT , the models defined by Eqs. (1)
and (7) reduce to ordinary correlation-based and probabilis-
tic CCA, respectively. We assume that the constraints for
T are provided prior to analysis, i.e. the prior parameter
σT is fixed. Alternatively,σT could be optimized based on
external criteria such as identification of the known cancer
genes in our application. Our empirical results show, how-
ever, that already a simple prior forT without an explicit
optimization procedure can improve the detection of known
cancer genes.

We consider here the two extreme cases of the model
where T is (i) completely unconstrained (ordinary CCA;
σT = ∞), and (ii) T = I (σT = 0). Point estimates for
the model parameters were estimated with EM algorithm in
the probabilistic version. Strength of the shared signal ver-
sus marginal effects is measured withTr(WWT )/T r(Ψ),
whereTr denotes matrix trace. This yields a dependency
score between copy number and expression data for the in-
vestigated chromosomal neighborghood around each gene.
High scores highlight regions where the dependent signal
between the two data sets is particularly high relative to the
data-set-specific variation.

In addition to the correlation-based and probabilistic Sim-
CCA, we tested a simplified probabilistic version with one-
dimensional shared componentz and isotropic covariances
for the data-set-specific effects: (Ψx = σ2

xI; Ψy = σ2
yI).

This is a special case of the full probabilistic model, and
it reduces to principal component analysis (PCA) for con-

catenated data(X, Y ). We refer to this method as pSim-
PCA. The simplified model does not distinguish between
the shared and marginal effects as effectively as the full
probabilistic CCA but it has fewer model parameters. Low-
dimensional latent models are also faster to compute, and
interpretation of the results is potentially more straightfor-
ward.

3.3. Validation
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Fig. 3. ROC curve for the results from correlation-based
SimCCA with a 15-gene sliding window.

Results from the correlation-based SimCCA are illus-
trated for chromosome arm 17q in Fig. 1, where SimCCA
highlights a known cancer-associated region. The Figure
shows the dependency score for the correlation-based Sim-
CCA with a sliding window of 15 genes genes along the
chromosome arm. The correlation-based and probabilistic
approaches were compared in various window sizes (10,
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15, 20, 25, and 35 genes). In each experiment, the gene
list ordered by the dependency measure was compared to
an expert-curated list of 59 gastric-cancer associated genes
in our investigated data set [11].

The correlation-based and probabilistic models were com-
pared with respect to their ability to detect the known can-
cer genes, measured with the AUC value of the ROC curve
for each method. Results are summarized in Fig. 2. The
best AUC value (0.79) was obtained with a chromosomal
window of 15 genes for the correlation-based SimCCA that
directly maximizes the correlations assuming identical pro-
jections (Eq. (1)). The corresponding ROC curve is shown
in Fig. 3 and presents the tradeoff between true and ’false’
positive findings along the ordered gene list. While a large
proportion of the most significant findings are in fact known
cancer genes, the remaining findings with no known associ-
ations to gastric cancer are promising candidates for further
studies; among the 100 genes with highest dependencies be-
tween gene expression and copy number in their chromoso-
mal neighborghood, 30% of the corresponding regions had
previously known association with gastric cancer, while the
proportion in the whole data set is 5%.

The constrained dependency detection methods intro-
duced in this paper outperformed the unconstrained mod-
els in most cases. The improved detection performance of
the constrained models is likely explained by their ability
to reduce overfitting. Interestingly, the most constrained
probabilistic model, pSimPCA, outperforms the other ap-
proaches in the highest-dimensional case. In contrast, the
performance of correlation-based CCA decreases steadily
with increasing dimensionality (window size) as the num-
ber of samples (patients) remains fixed to 51.

In our particular application, gene expression and copy
number are expected to have strong linear correlations in
cancer-associated chromosomal regions. Correlation-based
approach is therefore directly suited for the cancer gene de-
tection task and it has also fewer parameters than the proba-
bilistic versions. However, the performance of correlation-
based SimCCA reduces with increasing dimensionality. A
likely explanation is that the correlation-based version mod-
els also some of the data set-specific effects, which is em-
phasized in higher-dimensions. The probabilistic formula-
tions provide an alternative way to bring in prior knowledge
of the relationships in a principled framework. A potential
advantage of the probabilistic approaches is that they have
an explicit model for distinguishing the shared signal from
data set-specific variation.

3.4. Biomedical interpretation of the findings

The results obtained using the SimCCA algorithm are in
general concordant with the output from signal-to-noise sta-
tistics and random permutation method that was applied pre-
viously to analyze the same data [11, 12]. The advantage of

the current method is that it combines the signal across adja-
cent genes within a particular chromosomal region already
in the modeling step. Probabilistic SimCCA estimates the
strongest shared signal between the data sets and ignores
other variation using explicit modeling assumptions. Prob-
abilistic versions also provide a measure of the amplifica-
tion effect for each patient which allows robust identifica-
tion of small patient groups with profound amplification ef-
fects that would be missed in previous permutation-based
tests due to low event frequency.

In concordance with the previous analyses, the chro-
mosomal area showing the most significant correlation be-
tween the gene copy number and expression was 17q12-q21
(Fig. 1). There are a number of potential target genes in
that region, includingERBB2 andPPP1R1B, which show
clinical and biological relevance. TheERBB2 gene encodes
a transmembrane tyrosine kinase receptor, which is a tar-
get of Herceptin. This monoclonal antibody specifically in-
activates the overexpressedERBB2 protein and is used to
treat metastatic breast cancer patients. The expression of
PPP1R1B has been shown to be associated with repression
of programmed cell death and increase the survival of the
cancer cells in upper gastrointestinal tract cancers [13].

Another genomic region with correlated gene copy num-
ber and expression changes is 10q26, andFGFR2 was iden-
tified as one of the putative target genes of that region. It
was recently shown that in a set of gastric cancer cell lines,
FGFR2 amplification is driving the cell proliferation and
promoting cancer cell survival. Furthermore, inhibition of
theFGFR2 protein by small molecules retained the growth
arresting and apoptotically active phenotype [14]. The de-
tected 1q22 region harbors theMUC1 gene, whose expres-
sion was shown to be associated with the intestinal subtype
of gastric cancer [11]. The 20q is one of the most frequently
amplified chromosomal regions in gastric cancer. However,
despite of high frequency of the amplifications the target
genes in that area remain to be described. Our analysis pin-
pointed the strongest correlating loci to 20q13.12 and sig-
nificantly narrow the list of putative target genes.

Some of the detected chromosomal regions did not have
known association with gastric cancer; we are currently in-
vestigating these results more closely. The current applica-
tion shows promising performance in detecting functional
copy number changes, but biomedical studies provide also
a number of other potential applications. For example, an
increasing number of paired data sets are available in the
future for studying the relationships between methylation,
single-nucleotide polymorphisms, miRNAs, and other ge-
nomic features.
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4. DISCUSSION

We have introduced methods that regularize CCA solutions
by taking into account similarity constraints. The methods
assume that the dependencies between the different views
are visible in the same dimensions, that is, the projection
matrices are similar. We introduced the constraints to stan-
dard CCA, resulting in a quick method that helps in solving
the “smalln largep problem”, wheren is the number of
samples andp their dimensionality.

If n is very small compared top, even the constrained
CCA may not be sufficient, and we introduced a Bayesian
variant into which further prior knowledge can be easily in-
serted, and which is capable of rigorously handling uncer-
tainty in the data. While we only compare SimCCA and
CCA in the present work, the probabilistic formulation al-
lows smooth tradeoff between these two extremes, which is
potentially useful in many applications.

Importantly, the constrained approaches for dependency
detection can be directly applied in practical tasks in knowl-
edge discovery; good results were obtained in a promis-
ing medical application on searching for potential cancer
genes by detecting dependencies between gene expression
and DNA copy number changes of the genes.
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