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Abstract. We have developed a browser suitable for finding events from
timelines, in particular from life logs and other timelines containing a fa-
miliar narrative. The system infers the relevance of events based on the
user’s browsing behavior and increases the visual saliency of relevant
items along the timeline. As recognized images are strong memory cues,
the user can quickly determine if the salient images are relevant and, if
they are, it is quick and easy to select them by clicking since they are
salient. Even if the inferred relevance was not correct, the timeline will
help: The user may remember if the sought event was before or after a
saliently shown event which limits the search space. A user study shows
that the browser helps in locating relevant images quicker, and augment-
ing explicit click feedback with implicit mouse movement patterns further
improves the performance.
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chine learning

1 Introduction

One of the main reasons why image retrieval is difficult is that it is hard to formu-
late effective queries. In contrast to texts, images cannot be easily automatically
decomposed into low level units which the user could combine to form queries.
Two common image retrieval approaches are retrieval based on textual meta-
data, such as image captions, and content-based image retrieval (CBIR). The
content-based approach [2] is typically an iterative process where the retrieval
system returns a set of images and the user is required to grade their degree of
relevance. The retrieval system then updates its estimate of the desired image
features and retrieves a new set of images.

Explicit feedback in the form of clicking the relevant images or giving rankings
is rather accurate but requires judgement calls by the user and is therefore either
laborious or scarce. Use of implicit feedback has been suggested as an alternative.
The idea is to measure, as a by-product of normal use, data about how the user
interacts with the system, and infer relevance from the measurements that are
indirectly related to relevance. Implicit feedback has been shown to be useful in



text [9, 10] and image retrieval [4, 7, 8], but not very accurate as the only source
of feedback.

When the images are ordered and the order is familiar, new forms of retrieval
and feedback become possible. This is the case for life logs [5] and other narratives
where the images are strong memory cues for recalling past events. We are in
the process of developing an image and event retrieval method that utilizes
the capability of humans to very effectively recognize familiar events from cues
associated with the event, in our case images.

Our search interface helps in locating images in two ways: first, the images
are displayed on a timeline to allow using the temporal neighborhood as a rough
search cue. Secondly, the search interface suggests potentially relevant images by
making them more salient. The relevance is inferred from explicit and implicit
feedback using probabilistic inference. Previous information re-finding methods
(e.g. [3]) require manually entering the remembered details as a search query.
Our hypothesis is that automatic relevance prediction and visualization of the
relevance estimates decreases the effort required to find the correct images.

Unlike a typical CBIR interface, where a small number of images estimated
to be relevant is shown at once, our interfaces shows all the images on screen.
The screen space is allocated proportional to the estimated relevance. This has
the advantage that even the less relevant images are easily accessible, so that the
user can correct the relevance prediction by selecting an image whose current
estimated relevance is low.

The idea of visualizing the relevance predictions as the size of the images is
motivated by Dasher, a predictive text-entry system [11]. Dasher shows all letters
of the alphabet entering from the right edge of the screen. The letters can be
selected by mouse or by gaze. The sizes of the incoming letters are determined by
a language model that predicts likelihood of the next letter given letters selected
so far. In our case, the sizes of the images are similarly modulated according to
their estimated relevance to make it easier to spot other relevant images.

In the remaining of this paper, we introduce our search interface and the
relevance prediction model that combines explicit and implicit feedback. Then
we report results of a user study, where the dynamic interface was compared to
baseline interfaces which do not try to predict the relevance. We also studied
how much the relevance prediction performance improves when explicit feedback
(mouse clicks) is combined with implicit mouse movement features, such as time
duration of hovering over an image.

2 Timeline Browser with a Relevance Estimator

We introduce a browser for finding images that are ordered on a timeline. We
utilize the memory of humans: shown images work as recall cues; seeing an image
brings back memories from the time the image was taken or seen.

The browser includes a mouse-operated fish-eye lens. When the mouse is
moved over an image, the image and its close neighbors are grown to allow



inspecting the images more closely. The size of the images is restored when
mouse moves away from the images.

The sizes of the images are also affected by their estimated relevance. Rele-
vance is estimated from explicit feedback (mouse clicks) and implicit browsing
patterns. Images estimated to be relevant are shown in a larger size. The rele-
vances are recomputed and sizes are updated dynamically after each click. Our
hypothesis is that emphasizing the relevant images makes it easier and quicker
to find the correct images. Figure 1 shows snapshots of the interface.

Fig. 1. The three interface variants from the experiments. From top to bottom: our
new proactive interface where image sizes are proportional to the estimated relevance,
zooming interface that magnifies the image on which the cursor is located and its neigh-
borhood, and a scrollable simple timeline. The images are snapshots from a Creative
Commons licensed movie by Adam Wojtanek.

2.1 Relevance Prediction

To be able to emphasize potentially relevant images, we need to estimate the
relevance based on clicks and implicit feedback. Next, we will introduce a prob-
abilistic generative model for this purpose.

We assume that relevance is reflected in a latent (potentially multidimen-
sional) variable z. The latent variable zi of image i is assumed to be generated
by a linear regression from image’s observed content feature vector f i to the la-
tent space. The values in the unobserved regression matrix Q capture the user’s
“implicit” query by weighting the content dimensions appropriately. This prior
distribution constrains images that are similar with respect to the latent query
Q to have similar relevances. We further assume a user model where the image



click counts y are drawn from a multinomial distribution. The weights of the
multinomial are softmax-normalized values of the latent variables z. The plate
diagram of the model is shown on the left-hand side of Fig. 2.

We also consider the case where implicit mouse movement feedback, in addi-
tion to the clicks, is available for the relevance prediction. The implicit browsing
behavior on an image i is encoded as a feature vector xi. We assume that the
relevance of an image is related to what is common between the explicit clicks
and the implicit mouse movements. Therefore, we consider a model where both
the click y and movement features x are generated by the common latent rele-
vance variables z. The linear mapping from z to x is a parameterized by a latent
matrix W . The model structure, where two observed variables are generated by
a common latent variable, is similar to the Bayesian CCA (see [6]). This variant
of the model is depicted on the right-hand side of Fig. 2.

To summarize, we make the following distributional assumptions:

zi|Q,f ∼ N(Qf i, σ
2I)

xi|W , z ∼ N(Wzi, σ
2
xI)

y|α, z ∼ Multinomial([. . . ,
exp(αTzi)∑
j exp(αTzj)

, . . .])

Columns of W and Q and the vector α are drawn from Gaussian distributions
with zero mean and diagonal variance.
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Fig. 2. Plate diagram of the relevance prediction model. The simpler model on the left
uses only information about which documents were clicked to give explicit feedback for
the prediction. The model on the right includes mouse movement features x, as well.
The plate I is over the images and the plate C is over the feedback rounds.

We use adaptive MCMC for inferring the relevances. The sampler is initial-
ized from the MAP estimate.



3 Experiments

We tested the model in a video recall task. Three test subjects were asked to
view a 17 minute video and, after viewing, recall certain events from it. To aid
the recall, the test subjects were able to browse a timeline of snapshots from the
video. We recorded the mouse movements and clicks during the browsing. The
test subjects completed six recall tasks where they were asked to find certain
number of scenes with a specific set of people in specific places. Specifically,
they were asked to select one image per suitable shot by clicking it and, after
selecting enough images, to shortly describe out loud what they remember about
each selected scene. This video recall setup was chosen to simulate retrieval from
a personal database, where the content is already somewhat familiar beforehand.

The test subjects were randomly assigned to one of three interface conditions
(Fig. 1) in each task. The first condition was the interface described in Sec.
2, which dynamically changes the size of the images to reflect the predicted
relevance. We will refer to this interface as proactive below. To quantify the effect
of altering image saliency during the search, we had a second interface (called
zooming) which was otherwise identical to the first except that the sizes of the
images were not changed in according to the relevance predictions. The third
interface (called scrollable) was a simple baseline where images were shown in a
static size on a scrollable window. The order of the tasks and interface conditions
was balanced between the test subjects.

The video was compressed into a series of snapshots taken at 5 second in-
tervals. The timeline, which the users saw, included every second snapshot. The
rest of the snapshots, which were not shown, were held out as a test set. There
were 104 and 105 images in the timeline and hold out sets, respectively.

The image content was encoded as binary indicators of specific people, objects
and locations in the image. For this experiments, the features were constructed
by manually tagging the images. Similar features could be constructed without
manual tagging using face and object recognition algorithms with the expense
of a lower accuracy. For example, in lifelogging type of applications a wearable
recording device can recognize people and objects in the image [1].

3.1 Comparing the Interfaces

An interface is efficient if it allows a quick access to the relevant images without
having to view too many non-relevant images. We measure the effort required
to find the relevant images among the non-relevant ones using the standard in-
formation retrieval measure of mean average precision. We consider the viewed
images as an ordered list, where the clicked images are labeled as positive and
all others as negative. The average precision is the average of the precisions com-
puted at each positive rank. In the proactive and zooming interfaces, an image
is considered viewed when the user moves the mouse over it. In the scrollable
interface, an image is considered viewed when it is scrolled into the view.

Figure 3 shows the mean average precisions for the three interfaces in each
task. We are interested in comparing the zooming and the proactive interfaces,



which behave equally until the first click. Therefore, the figure displays values
computed after discarding all views up to and including the first clicked image.

The proactive interface attains higher mean average precision than the zoom-
ing interface in all tasks. This shows that modulating the saliency according to
the relevance estimates helps the users to locate the relevant images faster.

The performance of the scrollable interface has the largest variance between
the tasks. In task number 2 it is clearly better than the alternatives. The reason
is that the scrolling interface is initially showing the first images on the timeline
and there happened to be a few scenes which are relevant in the second task,
in the beginning of the video. In five tasks the scrollable interface is the worst
by a large margin. They correspond to the typical case where one has to scroll
through many images before finding relevant ones, whereas in the other two
interfaces it is possible to easily skip over a sequence of images.
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Fig. 3. Mean average precisions in image viewing sequences after the first click for the
scrolling (S), zooming (Z) and proactive (P) interfaces. Higher values mean that fewer
non-relevant images were viewed between the relevant (clicked) images. The proactive
interface is better in all tasks than the zooming interface, which is identical except for
the prediction.

3.2 Integrating Explicit and Implicit Feedback

We also study if implicit feedback from the mouse movement patterns can im-
prove inference over the explicit clicks. We encode the implicit feedback as a
feature vector for each image. The features are listed in Table 1. The evidence



from the explicit and implicit feedback is combined using the model from Sec. 2.1.
We compared the performances of the combined feedback and the explicit-only
models. They were trained using data collected with the zooming and proactive
interfaces. The data from the scrollable condition is discarded because, in that
condition, the mouse is mostly used to interact with the scrollbar and less with
the images.

Table 1. Implicit mouse movement features designed for capturing the browsing pat-
terns.

Description Type

Number of visits to the image Integer
Total hover duration on the image (ms) Continuous
Was this image already visited during the last 15 visits? Binary
Both left and right neighbors visited during the last 4 visits Binary
Average hovering duration on the previous 2 images (ms) Continuous

To select the dimensionality of the latent variable z we train models of dif-
ferent dimensionality on the observations excluding the last click of a task, and
compare the log-likelihoods when predicting the last click. The log-likelihoods
averaged over the tasks are plotted in Fig. 4. If the dimensionality is too low
(less than 6), the model is not flexible enough to model both the features x
and the clicks y, and hence the performance of the combined feedback variant
is much worse than that of the explicit-only model. When the dimensionality is
6, including the implicit feedback improves the performance slightly. Combined
feedback model with dim(z) = 8 has the best log-likelihood. In summary, the
performance is improved when the implicit feedback is combined with explicit
feedback.
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Fig. 4. Average log-likelihood of the clicks y for training (on left) and testing (on right)
sets as a function of dim(z), the dimensionality of the latent variable. Larger values
mean better prediction performance.



4 Discussion

We have introduced an image browser that modulates the saliency (size) of im-
ages according to their predicted relevance. The relevance is estimated online
by observing explicit and implicit mouse interaction patterns. We performed a
small scale user study where we showed that changing the image size in pro-
portion to the relevance predictions helps in finding the relevant images with
less effort. We also showed that complementing explicit feedback with implicit
mouse movement patterns improves the relevance prediction further.
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