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Abstract

Exponential family extensions of principal
component analysis (EPCA) have received a
considerable amount of attention in recent
years, demonstrating the growing need for
basic modeling tools that do not assume the
squared loss or Gaussian distribution. We
extend the EPCA model toolbox by present-
ing the first exponential family multi-view
learning methods of the partial least squares
and canonical correlation analysis, based on
a unified representation of EPCA as matrix
factorization of the natural parameters of ex-
ponential family. The models are based on
a new family of priors that are generally us-
able for all such factorizations. We also in-
troduce new inference strategies, and demon-
strate how the methods outperform earlier
ones when the Gaussianity assumption does
not hold.

1 INTRODUCTION

Principal component analysis (PCA) is arguably the
most popular machine learning algorithm, used for ex-
ample as the standard choice for dimensionality re-
duction. When PCA is interpreted as a probabilis-
tic latent-variable model (Tipping and Bishop, 1999),
it becomes obvious that it assumes both the latent
variables and the observations to be Gaussian. This
assumption is ultimately rather restrictive, which ex-
plains the recent renewed interest in PCA.

One of the main research directions has been to re-
lax the Gaussianity assumption to better fit domains
where data is not continuous-valued. The exponential
family variant of PCA (EPCA; Collins et al., 2002)
introduced a way of taking the data distribution into
account. It was followed by a semi-parametric formula-
tion applicable to even more flexible distributions (Sa-

jama and Orlitsky, 2004), by more efficient algorithms
converging into the global optimum (Guo and Schu-
urmans, 2008), and supervised PCA (both exponen-
tial family and standard; Yu et al. 2006; Guo 2009).
Bayesian exponential family PCA takes the approach
to the next level, by including a fully probabilistic
model that needs not assume deterministic latent vari-
ables. Mohamed et al. (2009) made a straightforward
assumption of Gaussian priors which is suboptimal but
hard to remove in practice since the latent variables
do not follow any standard distribution for general ex-
ponential families. We introduce a novel regularizing
prior for EPCA models that removes some of the prob-
lems of the Gaussianity assumption, and present infer-
ence solutions compatible with the prior.

In an abstract and compact form, the PCA problem is
simply a matrix decomposition. The N ×D data ma-
trix X is decomposed as X = UV, where U and V are
of low rank and the scales have been incorporated into
either matrix. EPCA makes this decomposition in the
space of the natural parameters of element-wise expo-
nential family distributions. That is, we assume that
each element of X has been generated independently
from an exponential family distribution with param-
eters collected into Θ, while Θ itself is factorized as
Θ = UV.

The resulting model family contains as special cases
extensions of several useful projection methods, in ad-
dition to standard PCA. We consider joint analysis
of two (or in general more) data sources, demonstrat-
ing how Bayesian exponential family variants of super-
vised EPCA (Guo, 2009), partial least squares, and
canonical correlation analysis can be obtained using
the same basic formulation. The proposed methods
extend naturally the recent literature on probabilis-
tic variants of these methods (PLS: Gustafsson, 2001;
Nounou et al., 2002; CCA: Bach and Jordan, 2005;
Klami and Kaski, 2007) in the same way as the EPCA
approaches extend probabilistic PCA. Moving from
EPCA to models of coupled sources poses some techni-



cal challenges for the inference. We introduce a prac-
tical approximative Bayesian inference technique that
effectively solves many of those for our proposed prior.

We will first recap the general form of exponential fam-
ily projection models, and proceed to introduce in de-
tail the assumptions that result in the multi-view mod-
els of coupled data sources. Then we introduce ways
of defining priors for the models, and present inference
algorithms. Finally, the models are demonstrated to
outperform their rivals in a number of experiments us-
ing both artificial and real data.

2 EXPONENTIAL FAMILY PCA

A vectorial random variable x ∈ KD (where K is a
suitable subset of the real-space, such as Z or R+) in
the exponential family follows the distribution

p(x|θ) = exp(s(x)Tθ + h(x)− g(θ)), (1)

where the elements of x are assumed independent of
each other. Here θ ∈ KD represents the natural pa-
rameters of the distribution, g(·) is the log cumulant
function that normalizes p(x|θ) to be a valid distri-
bution, s(·) are the sufficient statistics, and h(·) is a
function of the data alone. We choose the natural ex-
ponential family by assuming s(x) = x. The function
g(·) then defines the distribution: different choices lead
to different exponential family distributions including
Gaussian with unit variance, Bernoulli, Poisson, and
exponential to name a few. For every member of the
exponential family there exists a conjugate prior dis-
tribution for θ:

p(θ) ∝ exp(λTθ − νg(θ)).

Exponential family PCA is computed in the natu-
ral parameter space of the element-wise exponential
family. The element Xnd is assumed to come from
p(Xnd|Θnd), independently for all elements. Thus
the matrix X is assumed to come from distribution
p(X|Θ), where we further assume Θ = UV is of low
rank; U and V have a low pre-specified number K of
columns and rows, respectively1. Essentially, we make
the conditional independence assumption between el-
ements of X given Θ, assuming that Θ is flexible
enough to capture the relevant structure in data. The
rows of U can be interpreted as latent variables gen-
erating the data, and V as projections transforming
the latent variables. With Gaussian distribution and
Gaussian latent variables this would result in proba-
bilistic PCA.

1For non-centered data one can include a separate rank-
one mean parameter in the factorization, controlling the
mean of each feature. We leave the mean parameter out
to simplify the formulas.

Bayesian treatment of EPCA (Mohamed et al., 2009)
requires prior distributions for the model parameters
U and V. We will discuss the priors in more detail
in Section 4 after introducing a set of coupled data
analysis models obtained as special cases of EPCA.

3 MODELS FOR COUPLED DATA

3.1 GENERAL FORM

Two data sets, Y1 ∈ KN×D1 and Y2 ∈ KN×D2 , are
coupled if the samples co-occur; each row of Y1 is
paired with the corresponding row in Y2. By con-
catenating the two sources as X =

(
Y1 Y2

)
we

can write several projection methods for coupled data
sources as EPCA of X, that is, as factorizations of
the form Θ = UV, where certain elements of V are
restricted to be zero. Many of the decisions in practi-
cal modeling, such as the choice of prior distributions
and inference algorithm, are independent of such re-
strictions imposed on V, and hence the unified frame-
work helps in developing practical algorithms for var-
ious coupled data analysis tools.

3.2 SUPERVISED EPCA

Supervised PCA is the simplest model for coupled
data. One of the sources, say Y1, is treated as the tar-
get variable, and the task is to find a low-dimensional
representation of Y2 that helps in predicting the tar-
get. In the simplest case one obtains the solution di-
rectly as the EPCA of X. The original SPCA formula-
tion (Yu et al., 2006) as well as the supervised EPCA
(Guo, 2009) follow this idea, the crucial difference be-
ing that the latter makes a suitable distributional as-
sumption for discrete target variables. Due to the ba-
sic assumption of independence over the features, the
model is written as

p(Y1,Y2,U,V) =p(Y1|U,V1)p(Y2|U,V2)
p(U)p(V1)p(V2),

where V =
(

V1 V2

)
so that the columns are split

according to the features in X. No distinction is made
between the features in Y1 and Y2, and hence the
supervision is weak.

The predictive performance improves if one does not
attempt to model Y2 perfectly; the ultimate task is
to predict Y1 and the covariates Y2 should be mod-
eled only to the degree they help in that. Rish et al.
(2008) solved this by introducing a weighting for the
generative parts,

p(Y1,Y2,U,V) =p(Y1|U,V1)p(Y2|U,V2)α

p(U)p(V1)p(V2),



where α controls the relative importance of modeling
the two sources. A small value for α equals spending
less modeling power on the covariates, resulting in in-
creased predictive performance. The value is chosen
for instance by cross-validation.

3.3 EXPONENTIAL FAMILY PLS

An alternative way of improving the predictive per-
formance in supervised learning tasks is to allow the
covariates to have structured noise that is independent
of the target variable. This leads naturally to a classi-
cal linear supervised dimensionality reduction method
of partial least squares (PLS) and its probabilistic vari-
ants (Gustafsson, 2001; Nounou et al., 2002). We ex-
tend the idea to the exponential family distributions.

The key idea in EPLS is that not all variation in Y2

is relevant for predicting Y1. As a generative model
we restrict some of the components to only model Y2.
By factoring U =

(
US U2

)
and V as

V =
(

VS1 VS2

0 V2

)
,

where S indicates shared variables, we can still write
the model as Θ = UV. The model complexity is gov-
erned by setting the ranks of the various parts. Denot-
ing the rank of US by KS and the rank of U2 by K2,
the zeroes in V the make sure the last K2 columns of
U will have no effect on Y1. In more intuitive terms
we have Θ =

(
Θ1 Θ2

)
, where the parameters can

equivalently be written as

Θ1 = USVS1

Θ2 = USVS2 + U2V2. (2)

This makes explicit the assumption that all variation
in the target variable must come from the shared latent
sources, while the covariates are created as an additive
sum of the shared and source-specific variation.

We will later show in the experiments how EPLS re-
quires less shared components for predicting Y1 than
supervised PCA, which makes the model easier to in-
terpret.

3.4 EXPONENTIAL FAMILY CCA

Going beyond mere prediction problems, a common
task in analysis of coupled data is finding what is
shared between the two data sources. This is a kind
of data fusion task; the goal is to compress two data
sources into a representation that captures the com-
monality between the two. The problem has tradi-
tionally been solved by canonical correlation analysis,
or its kernelized variant, that have been applied to a
range of practical problems such as extracting shared

Figure 1: Graphical model for Bayesian exponential
family CCA.

semantics of document translations (Vinokourov et al.,
2003) and discovering dependencies between images
and associated text to be used as preprocessing for
classification (Farquhar et al., 2006). The probabilistic
interpretation of CCA (Bach and Jordan, 2005) shows
that the classical CCA implicitly assumes normal dis-
tribution. We remove this assumption and present a
novel generalization of CCA to the exponential fam-
ily that is useful, e.g., for analysis of text documents
described as binary word occurrences or counts.

In the exponential family projection framework,
ECCA is obtained by factoring the parameters as
U =

(
US U1 U2

)
and

V =

 VS1 VS2

V1 0
0 V2

 ,

following the presentation of Archambeau and Bach
(2009). The notation is equivalent to (Klami and
Kaski, 2008)

Θ1 = USVS1 + U1V1

Θ2 = USVS2 + U2V2.

Depending on the task we then analyze either the
shared variables US , implicitly marginalizing out the
other parts, or either one of the source-specific ones.
The full model is illustrated in Figure 1, to clarify the
role of the various parts of V.

4 PRIORS FOR EXPONENTIAL
FAMILY PROJECTIONS

We will now turn our focus to the prior distributions
given for the model parameters, which is an open
problem for exponential family models in general and
coupled-data models in particular. We propose a fam-
ily of prior distributions that incorporates certain com-
mon choices as special cases, while being an efficient
way of altering a compromise between conjugacy and
flexibility in practical models.

Mohamed et al. (2009) extended the EPCA to a full
Bayesian model, specifying priors directly for U and



V. This approach is conceptually simple and straight-
forward, but it is hard to determine which distribu-
tions to use. Mohamed et al. (2009) borrowed the
assumption of normally distributed latent variables U
from the Gaussian case, while taking V conjugate to
the specific exponential family. Unfortunately that
choice is poor for some exponential family distribu-
tions. For example, for the exponential distribution
the domain of Θ is the set of positive real numbers,
which does not comply with the normal distribution.

Another intuitive alternative is to impose the prior on
the product UV, instead of formulating separate pri-
ors for each variable. For UV we can easily choose a
prior conjugate to the specific distribution of X, which
makes the estimation of Θ easy. However, we then
lose the connection to the actual factorization; while
the model is still parameterized through the low-rank
matrices U and V, they become unidentifiable. In
practice, the model can still be useful: If the goal is
not to analyze the components but to find a low-rank
approximation of X (which is sufficient e.g. for recon-
structing the original data from a compressed version),
then it is feasible to place the prior directly on Θ.

To combine the advantages of the above two formula-
tions, we introduce the general prior family

p(U,V) =
1

Z(ψ)
a(UV)βb(U)γc(V)γ , (3)

where β and γ are control parameters. The func-
tions a(·), b(·), and c(·) can be arbitrary non-negative
functions over the domain of the parameters, and ψ
denotes collectively the parameters of all of them.
The entire normalization is done with Z(ψ) so the
functions a(·), b(·) and c(·) need not be normalized.
In practice, however, one would typically use simple
standard distributions. Then (β = 0, γ = 1) and
(β = 1, γ = 0) reduce the prior into the simpler al-
ternatives discussed above, and setting γ = 1− β pro-
vides a single-parameter family for interpolating be-
tween the two.

A useful property of the prior is that if a(·) is set to give
zero for values outside the domain of Θ, then already a
small β will be sufficient to restrict b(U)γc(V)γ to be
a valid prior. More generally, a(UV) can be thought
of as a regularization term, making the model less sen-
sitive for the specific choice of the distributions b(U)
and c(V). In practice we simply use component-wise
Gaussian priors,

b(U) =
N∏
n=1

b(Un,:) =
N∏
n=1

N(0,ΣU)

c(V) =
K∏
k=1

c(Vk,:) =
K∏
k=1

N(0,ΣVk
) (4)

for both, which would not work in general without the
regularizing a(UV) term which we choose conjugate.

A practical challenge is that the prior is known only up
to the normalization constant Z. While it cancels out
when inferring the parameters, the unknown constant
makes inference on hyper-parameters ψ of the prior
difficult. We will discuss the solutions for this in the
next section, separately for each inference algorithm.

5 INFERENCE

In principle the inference process for models of cou-
pled data is identical to that of standard EPCA. The
only difference between the models is the set of ze-
ros in V, which requires only trivial modifications for
most algorithms. In practice, however, there are cer-
tain challenges that need addressing. We will first re-
cap standard inference methods for EPCA models in
general, including details on how our new prior affects
them, and then present a novel two-level sampling ap-
proach that solves some of the challenges. The details
are given for the CCA variant; the other models are
special cases of that. In the experiment section we
provide examples for each of the inference algorithms.

5.1 POINT ESTIMATES

Point estimates of U and V can be inferred from data
by maximizing the log likelihood that essentially mea-
sures the similarity between the data and the low-
rank approximation. MAP estimation is conceptu-
ally equally simple; the priors only result in addi-
tive terms in the log-likelihood. Guo and Schuurmans
(2008) proposed a convex optimization algorithm for
the maximum-likelihood case, while MAP estimation
requires more generic optimization algorithms. Fol-
lowing Srebro and Jaakkola (2003), we use conjugate
gradients, which has in our experiments turned out to
be sufficiently robust.

For MAP inference the hyperparameters of the prior
p(U,V) are chosen by cross-validation. To avoid need-
ing to validate over the Cartesian product of all of the
parameters we choose γ = 1− β and use a simple ap-
proach where the hyperparameters of a(UV) are cho-
sen by assuming β = 1 and the hyperparameters of
b(U) and c(V) by assuming β = 0. We show in the
experiments section that already this simple approach
leads to a better generalization ability than using ei-
ther of the extremes, for a wide range of β.

5.2 HMC SAMPLER

For full Bayesian analysis Mohamed et al. (2009) ap-
plied a Hybrid Monte Carlo (HMC) sampler. Com-



pared to standard Metropolis-Hastings (MH) sam-
plers, the HMC typically converges faster in large state
spaces due to utilizing the gradient information.

Inferring the hyperparameters is difficult since the
prior has an intractable normalization constant. We
apply the exchange algorithm of Murray et al. (2006).
The algorithm works with standard MH proposals for
the hyperparameters ψ but multiplies the acceptance
probability by f(U∗,V∗|ψt)/f(U∗,V∗|ψt+1), where
U∗ and V∗ are auxiliary variables or “replacement
data” drawn from the prior using a separate MCMC
chain for each posterior sample ψt, and f(U,V) equals
(3) without the normalization term Z(ψ). The algo-
rithm was originally proposed for exact samples; we
use randomly initialized MCMC chains sampled until
convergence, resulting in an approximative variant.

5.3 ALTERNATING SAMPLER

Without further measures the ECCA model suffers
from two kinds of unidentifiability problems, which
makes inference difficult. First, the solution is defined
only up to a rotation of U (as for EPCA in general).
Second, it is hard to make sure the modeling power is
divided correctly between the US , U1, and U2. For
Gaussian BCCA both problems can be solved, by an-
alytically marginalizing the source-specific noise out
and finding the right rotation (Klami and Kaski, 2007).
Unfortunately, analytic marginalization is not possi-
ble for other exponential family distributions, which
results in less efficient inference.

We next introduce a novel sampler that utilizes the
more efficient solutions for Gaussian models as part
of the sampler for general exponential families. The
approach is similar to how Hoff (2007) made inference
for binary PCA. The intuitive idea is to alternate be-
tween two sampling stages. In one stage, we treat the
parameters Θ as data that a priori follows normal dis-
tribution, and learn a factorization Θ = UV for that.
The other stage then updates Θ, taking into account
both the exponential family likelihood and the conju-
gate prior a(UV).

The practical sampling algorithm, coined GiBECCA,
proceeds by alternating between two separate sam-
pling steps implementing the above idea. Given the
current sample for Θ we apply the Gibbs sampler for
Gaussian BCCA (Klami and Kaski, 2007), treating Θ
as data. This gives a new posterior sample for US

and V, as well as a block-diagonal noise covariance
Σ = [V1VT

1 ,0; 0,V2VT
2 ] obtained by marginalizing

out U1 and U2. During this step, we can also eas-
ily infer the hyperparameters of b(U) and c(V), since
the full prior is the product of them and hence the
normalization constant is tractable.

Next, we sample a new parameter matrix Θ∗ given
the data and the current values for the model param-
eters, using MH. The trick is to use the predictive
distribution of the Gaussian BCCA as the proposal
distribution for Θ. It produces parameters that are
approximately normal and for which the factorization
can effectively be found, yet the likelihood part takes
the true distribution correctly into account. In detail,
the proposals are drawn independently for each data
point n from N(U(n,:)

S V,Σ). For each element Θ∗
nd

the new value is then accepted with probability

min
(

1,
p(Xnd|Θ∗

nd)a(Θ∗
nd)

β

p(Xnd|Θnd)a(Θnd)β

)
,

which takes into account both the likelihood and the
remaining part of the prior. Possible domain con-
straints are taken into account by always rejecting pro-
posals leading to a(Θ∗) = 0. The a(Θ) part can be
interpreted directly as a regularizing term for which
fixing the hyperparameters manually is the right solu-
tion. For example, for binary data we can choose a(Θ)
as the symmetric beta distribution, which enables in-
terpreting β directly as the strength of the prior. Sim-
ilarly, for count data we can use a gamma prior, where
β controls the variance of the counts.

6 EXPERIMENTS

6.1 SUPERVISED EPCA

The first empirical experiment shows the importance
of separately modeling the data-specific noise in su-
pervised learning. Using artificial toy data, we
demonstrate the difference between supervised EPCA
(SEPCA) and EPLS.

We created binary data from the model (2) with
KS = 1, K2 = 5, D1 = 1, and D2 = 20. We used 50
samples for training and 950 for testing. We found the
MAP estimate of the parameters with β = 0 and γ = 1
for the prior, and compared the models in the task of
predicting Y1 for the left-out testing samples, using
prediction error as the performance measure. The re-
sults were averaged over 80 random data sets.

As the shared source is only one-dimensional, it is
possible to reach maximal prediction accuracy already
with one component. However, SEPCA with just one
component did not find the true solution as it is con-
fused by the noise specific to Y2. The model will still
reach the optimal prediction accuracy, but requires 6
components for it (Figure 2). The trick of Rish et al.
(2008), lowering the importance of modeling Y2, helps
by improving the predictive performance for low num-
bers of components, but still as many components are
needed for optimal performance.
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Figure 2: Prediction errors (lower is better) for the
supervised EPCA experiment. The solid line depicts
the error for a one-component EPLS-solution, while
the other two curves are classical SEPCA models. The
dashed line assumed equal modeling power for the tar-
get and covariates, while the dotted line weights the
covariate modeling part with α = 10−3. A wide range
of values result in similar performance (not shown).

EPLS, instead, found the true one-dimensional shared
space, while modeling all the source-specific noise with
separate components. Hence, it achieved the same pre-
dictive performance already with a single component,
and for 1− 5 components it was significantly more ac-
curate (p < 0.05, t-test with Bonferroni correction).
It is worth noting, however, that the computational
load for optimal prediction is comparable; SEPCA re-
quired 6 components, while EPLS required 1 shared
and 5 noise components. The added benefit of EPLS
is primarily in interpretation.

6.2 THE EFFECT OF THE PRIOR

In Section 4 we presented a family of prior distribu-
tions controlled by the regularization parameter β (we
set here γ = 1 − β). Here we illustrate how the com-
bination improves the predictive performance of the
model on the UCI SPECT data (http://archive.
ics.uci.edu/ml/datasets/SPECT+Heart). We solve
the standard PCA task of missing value imputation
with one component for 100 values of the regulariza-
tion parameter, and measure the performance as the
reconstruction quality (log-likelihood).

As the data is binary, we choose the Bernoulli distri-
bution and prior

a(UV) =
N∏
n=1

D∏
d=1

Beta(λ+ 1, ν − λ+ 1).

with the computationally simple assumption of indi-
vidual Gaussian priors for U and V as in (4) with
ΣU = σ2

UI and ΣVk
= σ2

VI ∀k. We then find the
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Figure 3: Illustration of the reconstruction quality
with different values of the regularization parameter.
For each β we used 10 random initializations and in-
cluded all of the results in the plot to illustrate that al-
ready the simple conjugate gradient algorithm always
converges to the global optimum. The best generaliza-
tion ability is obtained with β ≈ 0.4, and the smooth
curve indicates that the choice is robust and general-
izes for further independent test sets (not shown).

MAP solution with conjugate gradients.

The main purpose of the experiment is to illustrate
the effect of the regularization parameter β. We first
learn suitable values for the hyperparameters for β = 0
and β = 1 separately with simple cross-validation, re-
sulting in values σ2

V = 100, σ2
U = 0.001, λ = 0.1,

and ν = 0.2. We then vary the β parameter, keeping
the hyperparameters fixed, and show (Figure 3) that
the optimal predictive performance is obtained with β
around 0.4. That is, regularizing a model with sep-
arate priors for U and V by conjugate prior on UV
improves the predictive performance.

6.3 EXPONENTIAL FAMILY CCA

6.3.1 Classification in the joint space

CCA finds a shared representation that contains the
variation to both data sources. The ability to do that
can be indirectly measured by attempting to classify
the samples given the shared representation. On an
artificial data where the shared variation is known to
be relevant (i.e., predictive of the class labels), a model
extracting the true shared variation should have the
best performance.

We created two collections of toy data sets from the
model in Figure 1 with KS = 1, K1 = 2 and K2 =
2. The first collection was binary and the second was
count data. We chose N = 50 and D1 = D2 = 20, and
learned four different variants of CCA for 10 randomly
created data sets to study the effect of the link function
and inference algorithm. First, we applied standard
linear CCA to obtain a baseline. Bayesian Gaussian
CCA (Klami and Kaski, 2007), which has an incorrect
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(a) Bernoulli (b) Poisson

BCCA GiBECCA HMC
Bernoulli 0.54s 0.70s 6.85s
Poisson 0.73s 0.88s 9.02s

(c) Time between non-correlated samples

Figure 4: Performance of CCA variants, measured
as the classification error of a K-nearest neighbor
classifier (K = 9) in the shared latent space. For
both Bernoulli (a) and Poisson (b) observations the
two inference algorithms for exponential family CCA
(GiBECCA and HMC) outperformed the Gaussian
variant (BCCA) and standard CCA baseline (the box-
plots show the 25%, 50% and 75% quantiles). The dif-
ference is particularly clear for the skewed Poisson dis-
tribution (b), where making the incorrect Gaussianity
assumption even decreases the performance compared
to classical CCA. GiBECCA and HMC have compara-
ble accuracy for both data types, but the former is an
order of magnitude faster, having only a small over-
head over the Gaussian Gibbs sampler (c). The num-
bers show the mean CPU time between non-correlated
posterior samples (autocorrelation below 0.1).

link function here (namely the identity function), is
comparable with CCA on the binary data, but worse
on the skewed count data (Figure 4).

The exponential family CCA with correct distribu-
tional assumptions outperformed the alternatives for
both data sets. For binary data the standard mod-
els are reasonable but still worse than the exponential
family variants, whereas for the count data the dif-
ference is considerable. We show results for both the
HMC sampler and GiBECCA, using mild regulariza-
tion with β = 0.1 for both. The accuracy of both
inference methods is comparable for both data types,
but GiBECCA is an order of magnitude more efficient,
largely due to the inefficiency caused by inference of
the hyperparameters in the HMC sampler.

6.3.2 Movie data

To demonstrate the data analysis capabilities of
Bayesian ECCA, we analyze a small collection of

movies described with two views, selected from in-
formation available in the Allmovie database (http:
//www.allmovie.com/). The first view is the binary
bag-of-words representation of a brief description of
the movie, while the other is a multivariate genre clas-
sification in binary format. Each movie may belong to
a subset of 10 genres, which extends the task beyond
supervised visualization or SPCA.

Our main interest is in demonstrating the capability of
ECCA to separate shared information from structured
“noise” present in only one of the views. Hence, we
manually construct the representation of the content
descriptions to contain both. We manually choose a
subset of terms (total of 32 terms) for the bag-of-words
representation, so that half of the terms were chosen
as genre-related and half were other terms chosen near
the genre-related terms in frequency order to provide
a contrast group. As an example, the most frequent
terms in the genre-related set are love, comedy and
drama, while the corresponding words in the noise set
are two, woman, some, chosen because their frequency
matched best the genre-related words.

We apply GiBECCA on this data, aiming to extract
the components that best capture the genre variation.
Figure 5 shows the first two shared projection vectors,
that is, the first two rows of V. We immediately see
that the part covering the noise-terms in VS2 is close
to zero for all terms, showing that the shared com-
ponents do not capture description-specific noise. At
the same time, each projection picks a subset of genre-
related terms and actual genre memberships. Closer
inspection of the features reveals that the first com-
ponent separates romantic movies from action movies,
while the second component mainly separates family-
targeted genres (cartoons, family movies) from drama.

7 DISCUSSION

We presented a general framework for matrix factor-
izations or projection methods in the exponential fam-
ily, and derived methods for analyzing coupled data
sources. We also introduced a new family of prior dis-
tributions for the Bayesian analysis of EPCA models.
We combine separate priors on the latent variables and
projections, needed to make the solution identifiable
and interpretable, with a regularizing prior specified
directly for the natural parameters of the exponen-
tial family. As a result we can make computationally
tractable assumptions for the latent variables while
still getting a valid prior. The prior is known only
up to a normalization constraint, but we show how
it it still possible to infer even the hyperparameters
of the prior. This is particularly efficient in our new
sampler that uses a Gibbs sampler for the Gaussian
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Figure 5: Illustration of the first two CCA compo-
nents of the movie data. In both figures the top 10
bars represent the 10 genre membership indicators,
the next 16 bars the genre-related words in the tex-
tual description of the movie, and the bottom 16 bars
the genre-independent terms. Genre-related terms are
present in the projections much more strongly than the
genre-independent ’noise’-terms, as they should. The
first shared component (a) picks most genre-related
terms, detecting a strong link between the genre mem-
berships and descriptions. The second shared compo-
nent (b) extracts a more detailed relationship: fam-
ily/comedy/animation movies are separated from the
rest by absence of the word drama in the descriptions.

distribution to create proposals for the CCA model in
any exponential family.

However, there is still work to be done, especially for
the most flexible model corresponding to CCA. The
novel efficient sampler explicitly marginalizes out the
components specific to the individual data sources,
but needs to use a normality assumption for that.
With more flexible distributions for latent variables
we need to represent also those components explicitly,
which results in identifiability problems and requires
a heavy exchange algorithm for hyperparameter in-
ference. Computationally efficient algorithms for the
most general case are hence still missing, but the ex-
periments in this article suggest that the GiBECCA
algorithm, making a partial assumption of normality,
is a practical learning tool for exponential family CCA.
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