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Abstract

Large relational datasets are prevalent in
many fields. We propose an unsupervised
component model for relational data, i.e.,
for heterogeneous collections of categorical
co-occurrences. The co-occurrences can be
dyadic or n-adic, and over the same or dif-
ferent categorical variables. Graphs are a
special case, as collections of dyadic co-
occurrences (edges) over a set of vertices.
The model is simple, with only one latent
variable. This allows wide applicability as
long as a global latent component solution
is preferred, and the generative process fits
the application. Estimation with a collapsed
Gibbs sampler is straightforward. We de-
mostrate the model with graphs enriched
with multinomial vertex properties, or more
conceretely, with two sets of scientific papers,
with both content and citation information
available.

1. Introduction

Many types of data collections can be represented as
graphs. These include social networks, metabolic net-
works in biology, and computer networks (Newman,
2003). Many methods for finding structure in graphs
have been devised (Newman & Girvan, 2004; Hand-
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cock et al., 2007; Airodi et al., 2007), but the methods
do not provide a framework for incorporating other
rich data on network elements, such as vertex types.

We present a generalized model for inferring compo-
nent structure in enriched graphs based on a compo-
nent model for graphs (Sinkkonen et al., 2008). The
enriched graphs may contain other types of data be-
yond simple edges, such as classes for edges, nominal
data associated to the vertices, or both—or even some-
thing more complex.

From another viewpoint, the model is for general
multi-relational data, and below we present it in this
more broad sense. Here multi-relational data are het-
erogeneous categorical co-occurrences: The samples
are tuples over discrete variables, and heterogeneous
in that all samples need not be tuples of similar length
or over the same variable. Tuples may also be in-
ternally heterogeneous. From this viewpoint, graphs
are co-occurrences (edges) within a single categorical
variable (vertices), while graphs with associated ver-
tex data have additional co-occurrence type, between
vertices and a nominal variable describing the vertices.

The co-occurrences given implicit knowledge about
statistical relations between the variables, and these
are modeled by a global latent component structure.
The relational model is implicit in that occurrences be-
tween variables are independent within a component.
Dependencies become modeled by the aggregate com-
ponent structure.

Compared to other multi-relational proposals (Xu
et al., 2006; Kemp et al., 2006), here (1) the gener-
ative process is simple, (2) the model has only one
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Figure 1. Plate representation for the graph model with
nominal vertex data (Section 4).

latent variable, and it therefore produces global latent
components, (3) we do not need to explicitly handle
probabilities for co-occurrence combinations that do
not occur in the data, making the model scalable. Es-
timation with collapsed Gibbs sampling is easy. From
the viewpoint of complex relational models, our model
is similar to LDA (Blei et al., 2003), although it allows
rich data and has no hierarchy level of “documents”.

2. Heterogeneous co-occurrence models

Let the data D consist of independent co-occurrences
D;, i = 1,...,N, that can (within a single data
set) fall into several object classes described by Cj,
i =1,...,n(C). The structure of the co-occurrences
is heterogeneous, but fixed within a class C. A co-
occurrence of class C} is a tuple of nominal values
(dD,d@ ... dP)), of size hy > 0. If hy = 2, the
co-occurrences are dyadic and presentable as a co-
occurrence matrix or a graph. To each variable d we
associate a nominal variable type T'; the types differ in
their domains. Then a tuple (T, Ty, ..., Th,) of length
h; becomes associated to each C;. The same variable
type T may be shared by several nominal variables d,
even within one C.

Note that althought the co-occurrences may often be
dyadic, the model class includes triplets and higher-
order co-occurrences. It also includes independent
events, although they are likely to be of less use.

We assume the data are generated from latent compo-
nents. A latent component z is drawn, from a multi-
nomial with parameters 6, for each co-occurrence D;.
Given the component z for the datum D;, and its class
C, the nominal values d®) are generated independently
from the associated multinomials, having the types T;.
(Figure 3 and Section 4 offer an example with two co-

occurrence classes and two nominal variable types.)

Denote the parameters of the multinomials by 1/19.
Note that all multinomials of type T; generated by the
same component z share the same parameters wf);
this is the assumption that ties the co-occurrences to-
gether.

We have conjugate priors in the model, a Dirichlet or
Dirichlet process (DP) prior for the latent components
zi, and Dirichlet priors for wit). With the DP prior,
the data are generated by

1. § ~ DP(a); ¥ ~ Dir(B®), t = 1,...,n(T);

2. Foreachie1,...,N:

e 2; ~ Mn(6);
o d; n(1z,7’), J y e NE(C(D)))3

with the hyperparameter a controlling the component
diversity, and the hyperparameters 5*) the evenness
of the specific data type distributions. The index ¢;;
simply indicates that each d should be generated from
the multinomial T to which it is associated via the
description of the co-occurrence class C(D;). The oc-
currence of classes C' within D is not modelled—we
have a model only for the contents of an occurrence
D; given its class C;. That is, the amounts of data
from various types are not modelled either.

All models of the class can be easily estimated by col-
lapsed Gibbs sampling (Neal, 2000), and the rules for
sampling the latent classes of the various co-occurrence
types are simple enough that they can be derived auto-
matically. Such a sampler gives only posterior samples
of the latent memberships Z; of the co-occurrences;
The parameters i and 6 are marginalized out. The
sampler proceeds by removing one co-occurrence from
the sampling “urn” at a time, then drawing a new as-
signment z for the sample, given assignments of other
co-occurrences. An example is presented below in Sec-
tion 4.

3. Model for graph topology

A trivial case of an undirected graph with one object
type, {Cy = (T1,T1)}, is described by Sinkkonen et al.
(2008). The co-occurrences are edges of an undirected
graph, with values of T} being vertices. Implementa-
tion details of that paper are directly applicable in the
models of this paper.
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4. Model for graphs with nominal
vertex data

Another example is a model for two co-occurrence
types, {C1 = (T1,T1),Co = (11,12)}, where n(C) = 2.
An interpretation is a graph with undirected edges
(C1), and a categorical variable T generating vertex-
specific properties (Cg). The corresponding plate
model is presented in Figure 1.

The sampling formulas for the two object types are'

{n., o}
D; X
plalDy) ox Lo
1) (1 1), (1
909 /(95 (68 +1)) for Dy € O
1) (2 1), (2
9o 9/ (98 (9))  for D€ o
All counts, g, n, and N, in the samping formulas
are with the object removed for which we are drawing
the latent component. The total number of objects
is denoted by N, while n, is the number of objects
(co-occurrences) associated to the latent component
z. The first factor arises from the DP prior, with the
case n, = 0 corresponding to a new component, and
we define {n,,a} = «a for n, = 0 otherwise n.
itl) exists for each type T;, counting
atomic events d assigned to a latent z. The index [ is

A matrix of counts g

over the bins of the multinomial 1/)9’). In the sampling
formula associated to a co-occurrence class Cj, the
indices l1,la, . .., I, refer to the atomic events d within
that type of co-occurrence. Priors 3 are included in the
counts g as virtual data. The dot notation is used for
summation.

In the general case of multiple object types, there is
one sampling formula similar to those above for each
co-occurrence class, and the structure with the g coun-
ters closely follows the structure of the object type.

5. Experiments

We tested the model of Section 4 on enriched versions
of the Cora and Citeseer data sets (Sen & Getoor,
2007), and compared the model to the simple model
of Section 3, which uses only the graph topology,
and another simple model which uses only the ver-
tex attributes. The slowest model for Figure 2 ran in
1.25 hours, with a conservative number of iterations
(50,000) to assure convergence.

The sizes of the Cora and Citeseer sets are 2708 and

'We have assumed no self-links in the citation network.
o 1) .
If papers were citing themselves, g, 1, I the numerator of

first formula would need to be 921)2 + 61y 05 -
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Figure 2. In terms of perplexity, the subject categories of
Cora and Citeseer citation sets are best recovered with
the model of Section 4, that is able to combine citation
and content information (“Combined”; lower perplexity is
better). The other candidates are the model of Section 3
(“Netw.”), and a similar model for the article content only
(“Attr.”). The 2SE error bars are over ten runs. The mod-
els are with Dirichlet priors that work well in cases with
a known number of categories. Note that the models are
unsupervised—perplexities are not assumed to beat those
from supervised models.

3312 vertices, 5429 and 4732 edges, and 1433 and 3703
indicators for the existence of unique words, respec-
tively. At the time of writing this, the data sets,
with more detailed descriptions, are available at http:
//www.cs.umnd.edu/~sen/lbc-proj/LBC.html .

Figure 2 demonstrates how the components found with
the models correspond to the correct Citeseer and Cora
subject categories in terms of perplexity. Perplexities
were computed from average cluster assignments z.
Figure 3 shows in further detail how the components
found align to the correct subject categories.

6. Discussion

We present an infinite mixture model for multi-
relational data and demonstrate it with two enriched
citation graphs. Although the original motivation for
the model is to find communities (global components)
from enriched large social networks, the model is likely
to be more widely applicable to relational data.

If the counters g of the Gibss sampler are represented
sparsely, the model is highly scalable, regardless of the
number of co-occurrence types, that can be very high,
even on the order of the data set size.

Comparisons to other approaches are missing from
this work. Possible future enhancements to the model
would be a hierarchy, and considering more complex
latent structures what would still allow sparse repre-
sentations for efficient estimation for large data sets.
Estimation by mean-field approximations or stick-
breaking samplers should also be evaluated.
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Figure 3. The average confusion matrices between real and
computed clusters of Citeseer. Left: model for combined
citation and content. Right: model for the citation in-
formation only. The model for combined data recovers
the original subject categories except for Artificial Intel-
ligence (AI) that is mixed with Machine Learning (ML)
and Agents. Content information is helpful overall, but
especially in separating Information Retrieval (IR) from
ML.
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