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ABSTRACT: Information visualization has recently been formulated as an
information retrieval problem, where the goal is to find similar data points
based on the visualized nonlinear projection, and the visualization is opti-
mized to maximize a compromise between (smoothed) precision and recall.
We turn the visualization into a generative modeling task where a simple user
model parameterized by the data coordinates is optimized, neighborhood re-
lations are the observed data, and straightforward maximum likelihood esti-
mation corresponds to Stochastic Neighbor Embedding (SNE). While SNE
maximizes pure recall, adding a mixture component that “explains away”
misses allows our generative model to focus on maximizing precision as well.
The resulting model is a generative solution to maximizing tradeoffs between
precision and recall. The model outperforms earlier models in terms of pre-
cision and recall and in external validation by unsupervised classification.

KEYWORDS: Information Visualization, Nonlinear Dimensionality Reduc-
tion
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1 INTRODUCTION

The importance of information visualization as a central part of data analy-
sis has been evident in exploratory branches of statistics, called for instance
exploratory data analysis, and the importance of visualization is being em-
phasized in the current strong visual analytics movement. Machine learn-
ing seems to have an obvious contribution to the field through the various
manifold learning methods developed during the past ten years, including
Isomap [16], Locally Linear Embedding [14], Stochastic Neighbor Embed-
ding [8], Maximum Variance Unfolding [23], Laplacian Eigenmap [1], and
their more recent variants (see for example [25, 4, 18, 15]). See [19] for a re-
cent comparison of methods. However, the manifold learning methods have
not been designed or optimized for visualization and hence will not work
well for visualization if the inherent dimensionality of the data manifold is
larger than the display dimension [21]. While there now are several more or
less rigorous formulations for the manifold learning problem, there are not
many for the visualization problem.

Visualization has recently been formulated as a visual information re-
trieval task [21], with the goal being to organize points on the display such
that if similar points are retrieved based on the display, the accuracy of retriev-
ing truly similar data is maximized. As in all information retrieval, the result
necessarily is a compromise between precision and recall, of minimizing false
positives and misses. Stochastic Neighbor Embedding (SNE) corresponds to
maximizing recall.

We also take SNE as the starting point because it works well and has a nice
interpretation explicated below: The cost function is (mean) maximum like-
lihood of a simple user model, where the user is assumed to pick neighbors
according to a kernel probability distribution on the display. The data are the
actual neighbor relationships, in practice often given by specifying a kernel
as well. Now the question we asked is: If maximizing recall is a generative
modeling task, could a generative model be made to focus on precision as
well, or in fact on any tradeoff between the two?

We formulate information visualization as a generative modeling task,
which reduces to SNE when maximizing pure recall, and precision is maxi-
mized by a mixture model. When a mixture component is added to explain
away the misses the rest of the model will focus more on minimizing false
positives. This turns the whole visualization task into a generative modeling
task which makes it more understandable for modelers, easier to extend and,
as it turns out, makes the visualizations better. Our cost function, in con-
trast to [21], is directly a likelihood of observed neighborhoods. This makes
visualization a rigorous statistical modeling task, with all tools of generative
modeling available.

2 GENERATIVE MODELING FOR VISUALIZATION

Consider visualization as a model learning task, where observed similarity
relationships are the data and the coordinates of points on the display are the
parameters. We construct a generative model which will generate neighbor
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relationships for query points, and can naturally generate a distribution over
query points too although we do not consider that straightforward extension
in this paper. The model can be considered as a user model, that is, a model
that specifies which other points the user would inspect given the query point.
When the visualization is optimized for the specific user model (neighbor-
hood kernel), it will naturally be optimal for a user behaving according to
that model.

If the data consists of observed neighborhood relationships, for instance as
counts of citations in a paper or counts of social interactions of a person, we
can use them directly or, assuming large sample size, normalize them into
distributions. Let pij denote the “ground truth” probability that j would be
chosen as a neighbor of i without any constraints coming from the visualiza-
tion, and

∑
j 6=i pij = 1 for all i. In practice the analysis often starts with a

kernel, or distance measure and functional form. In that case, we denote the
density after appropriate normalization by p.

Let now probabilities rij denote the neighborhood relationships of the
model; rij is the probability of choosing point j as a neighbor of point i,∑

j 6=i rij = 1 for all i. The rij are interpretable as a “user model” as follows:
rij is the probability with which the model believes a user will inspect point j
when the query point is i, given the visualization. The user model is param-
eterized by the coordinates yj of each point j on the visualization display.
Many definitions of rij can be used depending on the needs of the analyst;
we will use the simple Gaussian falloff around the query point i:

rij =
exp(−||yi − yj||2/σ2

i )∑
k 6=i exp(−||yi − yk||2/σ2

i )
(1)

where σi is a neighborhood radius around point i. Another recent possibility
is a t-distributed falloff [18] which can be easily included.

Simple generative modeling to maximize recall. Now consider simply
maximizing the log-likelihood of the observed neighborhoods, that is, maxi-
mizing ∑

i

∑
j 6=i

pij log rij . (2)

This corresponds to minimizing
∑

i DKL(pi·, ri·), the sum of Kullback-Leibler
divergences from the observed neighborhoods to the user model, which is
the cost function of Stochastic Neighbor Embedding (SNE; [8]). This is a
straightforward re-interpretation of SNE.

We then consider a simple user model in order to build a connection to
recall, extending the work of [21]. Assume that the user (or retrieval model)
retrieves a set Ri of points as neighbors of query point i, and places a uniform
distribution rij = (1 − ε)/|Ri| across the retrieved points with a very small
probability ε/(N − 1 − |Ri|) for others, where ε is a very small number and
N − 1 is the total number of points other than i. Similarly, let the set of
actually relevant neighbors be Pi, with a uniform distribution pij = (1 −
ε)/|Pi| across the relevant neighbors and very small probabilities for the rest.
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Then the objective function for a single query point i becomes

∑
j 6=i

pij log rij ≈
∑

j∈Pi∩Ri

1− ε

|Pi|
log

(
1− ε

|Ri|

)
+

∑
j∈Pi∩Rc

i

1− ε

|Pi|
log

(
ε

N − 1− |Ri|

)

≈ NTP,i

|Pi|
log

(
1

|Ri|

)
+

NMISS,i

|Pi|
log ε (3)

where Rc
i and P c

i denote complements of Ri and Pi, NTP,i = |Pi ∩ Ri| =
|Ri|−NFP,i is the number of true positives (retrieved relevant points), NFP,i =
|Ri ∩ P c

i | is the number of false positives (retrieved non-relevant points), and
NMISS,i = |Pi ∩ Rc

i | is the number of misses (relevant non-retrieved points).
With small ε the rightmost term in (3) dominates, and maximizing the ob-
jective function (3) with respect to the retrieval distribution defined by the
rij is equivalent to minimizing the number of misses, that is, maximizing
recall = NTP,i/|Pi| = 1−NMISS,i/|Pi|. Therefore SNE, which maximizes
(3), can be seen as a generative model of neighborhood relationships which
maximizes recall.

2.1 Extending the generative model for flexible visualization goals

We showed above that maximizing the likelihood for the simple retrieval
model corresponds to maximizing recall, and it also corresponds to the ob-
jective of SNE.

However, maximizing recall is only one possible goal of successful visual-
ization: it corresponds to minimizing misses (missed true neighbors), but it
ignores the other type of visualization error, false positives. Minimizing false
positives would be equivalent to maximizing precision of retrieving neighbors
from the visualization. Both precision and recall, or any tradeoff between
them, are useful optimization goals for visualization. We next show that we
can change the retrieval model to optimize a tradeoff between precision and
recall, while keeping the same rigorous generative modeling approach which
we introduced above.

Notice that the simple analysis above already gives a hint on how to pro-
ceed; equation (3) does involve the number of true positives NTP,i (or equiv-
alently the number of false positives NFP,i) in the first term on the right-hand
side. However, this term does not have much influence on optimization be-
cause the cost function is in practice dominated by the second term involving
misses. For small ε the second term is always much larger than the first, there-
fore misses are likely to dominate. If we could somehow change the model
so that the cost of misses becomes less dominant, the model would be able to
focus also on false positives.

More flexible generative modeling to maximize a tradeoff between pre-
cision and recall. Let us design a more flexible retrieval model qij which
extends rij . We will define qij as a mixture of two retrieval mechanisms: the
user model rij which depends on the visualization coordinates of points, and
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an additional model which need not depend on the visualization coordinates;
the goal of the additional model is to explain away those neighbors that the
user model rij misses. We give the precise definitions soon.

Intuitively, if we can create an additional retrieval mechanism which re-
trieves all those neighbors that the user model rij misses, then when we fit
the combined model to maximize the likelihood of observed neighborhoods,
the user model rij (which is part of the functional form of qij) can minimize
the remaining kind of error, the number of retrieved false positives.

A simple solution is to define the retrieval distribution qij as a mixture of
the plain user model rij and an “explaining away” model:

qij ∝ rij + γpij (4)

where γ ≥ 0 is a multiplier which controls the amount of explaining away.
The model is again fitted to the observed neighborhoods by maximizing the
log-likelihood

L =
∑

i

∑
j 6=i

pij log qij (5)

with respect to the output coordinates yi of all data points, which affect the
qij through the plain user model rij .

It is easy to see that the explaining-away has no effect in the perfect re-
trieval case where rij already equals pij (then qij = rij); instead, the explaining-
away affects how severely errors in rij affect the likelihood. In the log-likelihood
(5) the explaining-away has the largest effect on the terms corresponding to
misses, where rij is small but pij is large; for such terms qij is also large and
the cost of misses thus no longer dominates the likelihood. Therefore, opti-
mizing qij with respect to the visualization coordinates is now able to better
take into account the false positives, and hence the visualization will be bet-
ter arranged to avoid false positives.

An analysis of the mixture model likelihood. In the simple case that we
discussed above, where the observed neighborhoods pij and plain user mod-
els rij are uniform over some subsets of points Pi and Ri respectively, and
near-zero elsewhere, it can be shown that the log-likelihood of the mixture
model for a single query point becomes∑

j 6=i

pij log qij ≈ const.

+ recall · log

(
precision

recall
+ γ

) (
a− recall

precision

)
γ

(
a− recall

precision

)
+ ε

1−ε

 (6)

where a = (N − 1)/|Pi|, and the information retrieval criteria are recall =
NTP,i/|Pi| and precision = NTP,i/|Ri| as usual. With no explaining-away
(γ = 0), (6) reduces to equation (3), that is, maximizing the mixture model
likelihood without explaining-away is the same as maximising recall · const.
and ignoring precision. However, with a sufficient amount of explaining
away such that γ � ε > 0 the above reduces to the more appealing form∑

j 6=i

pij log qij ≈ const. + recall · log

(
1 +

1

γ
· precision

recall

)
(7)
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where we can see that, because of the explaining-away, the objective function
is affected both by precision (false positives) and recall (misses). The influ-
ence of precision is strongest when γ is small but still clearly larger than ε. In
our experiments we use γ = 0.9 which yielded very good results.

The objective function can be maximized with respect to the output co-
ordinates yi by gradient methods; here we use conjugate gradient. The com-
putational complexity per iteration is O(N2) for N data points which is the
same complexity as for SNE. To help avoid local minima, we first run the
method with no explaining-away (γ = 0) and use the resulting coordinates
yi as initialization for the final run with the desired amount of explaining-
away (desired γ value).

2.2 Comparison to regularization

The functional form of our retrieval distribution qij is superficially similar to
regularization: the user model rij is mixed with another distribution which
keeps crucial retrieval probabilities nonzero. Regularized variants of stochas-
tic neighbor embedding have been proposed earlier: in particular, UNI-SNE
[5] is a variant of SNE where the retrieval distribution is regularized by mix-
ing it with a uniform distribution, which is equivalent to qij ∝ rij + const.

The problem with such regularization is that it distorts the retrieval model
and hence cannot achieve the optimal embedding result. Because the regu-
larization always mixes a constant to all retrieval probabilities, the user model
is forced to compensate for this regularization which distorts the embedding.

It can be shown that even if a perfect embedding (where rij = pij) is
possible, for example when the original data lives on a low-dimensional sub-
space, the UNI-SNE optimum does not correspond to that perfect embed-
ding. (This can be seen by taking the gradient of the UNI-SNE cost function
with respect to rij , enforcing nonnegativity and sum-to-one constraints by
reparameterization, and showing that rij = pij is not a zero-point of that
gradient.)

In contrast, our method mixes the user model with the “perfect retrieval”
distribution pij , which is data-dependent and non-uniform. This is a true
“explaining away” model which does not distort the embedding: it is easy
to show that if perfect embedding (where rij = pij) is possible, it corre-
sponds to the optimum of our method, as desired. To show this, simply
note that if rij = pij then also qij = pij which yields the maximum value
of the log-likelihood

∑
i,j 6=i pij log qij , or equivalently the minimal value of∑

i DKL(pi., qi.) where the DKL are Kullback-Leibler divergences between
the relevance probabilities pij and the qij . Therefore, if rij = pij can be
achieved, it corresponds to the optimum of our method.

In summary, the new method can be seen as a rigorous approach to the
same problem that has been previously addressed by regularization approaches
like UNI-SNE. Our new method also has a novel interpretation and an anal-
ysis in terms of precision and recall; and it corrects a problem present in
UNI-SNE, so that the new method is able to find the optimal embedding.
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3 EXPERIMENTS

We compare our new method to several previous methods, first in terms of
retrieval performance and then in terms of unsupervised classification per-
formance; lastly, we plot visualizations produced by our method on several
data sets.

3.1 Comparison of retrieval performance

We evaluate the performance of the new method against a comprehensive set
of alternatives on two data sets, in the task of visualizing the sets as scatterplots
in 2D. The Faces data set (http://www.cs.toronto.edu/~roweis/data.
html) contains 400 face images, from 40 people with 10 images each, with
different facial expressions and lighting; each image is 64 × 64 pixels with
256 grey levels. The Seawater temperature time series [12] contains weekly
measurements of seawater temperature over several years. Each data point is
a 52-week window of the temperature time series, and for the next data point
the window is shifted one week forward; this yields 823 data points with 52
dimensions.

We compare our method with thirteen others: Principal Component Anal-
ysis (PCA; [9]), Metric Multidimensional Scaling (MDS; see [3]), Locally
Linear Embedding (LLE; see [14]), Laplacian Eigenmap (LE; [1]), Hessian-
based Locally Linear Embedding (HLLE; [7]), Isomap [16], Curvilinear
Component Analysis (CCA; [6]), Curvilinear Distance Analysis (CDA; [11]),
Maximum Variance Unfolding (MVU; [23]), Landmark Maximum Variance
Unfolding (LMVU; [22]), Local MDS (LMDS; [20]), Neighbor Retrieval
Visualizer (NeRV; [21]), and UNI-SNE [5].

We use the same test setup as [21].1 In brief, each method was run with
several parameter values, and non-convex methods were run from five ran-
dom initializations. For each method, the best result was chosen in the sense
of maximizing the (unsupervised) F-measure computed as 2(P ·R)/(P +R)
where P and R are rank-based smoothed precision and recall measures; see
[21] for details. The NeRV and LocalMDS methods which allow a tradeoff
between precision and recall were run with several values of their tradeoff
parameter λ; for clarity we show results for a single λ value chosen by the
F-measure. We ran our method with two settings: the baseline case γ = 0
(no explaining-away; corresponds to Stochastic Neighbor Embedding) and
γ = 0.9 (strong explaining-away during training). We ran the correspond-
ing setting for UNI-SNE, with λ = 0.47 which corresponds to γ = 0.9 in
our method. Note that both the explaining-away in our method and regu-
larization in UNI-SNE are only used during training, and only the resulting
visualization (data point locations) are used to evaluate the quality of the
method.

The quality of the visualizations is evaluated by how well the real neigh-
borhoods are visible in the visualization or, equivalently, how well the real
neighbors (set to be the 20 nearest neighbors of points in the original space)
can be retrieved based on the visualization. We use traditional precision–
recall curves to measure this.

1We thank the authors for providing their code and results.
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Figure 1: Retrieval quality measures for neighbor retrieval based on the visu-
alizations, for two data sets: Faces and Seawater temperature time series. For
clarity, only a few of the best-performing methods are shown for each data
set. Performance is measured by standard precision-recall curves. For NeRV
and LocalMDS, for clarity performance is shown for only a single λ chosen
by a F-measure. For our method (denoted “NM”) we report performance for
γ = 0 (no explaining away; corresponds to Stochastic Neighbor Embedding)
and γ = 0.9 (strong explaining away used during training). For UNI-SNE we
report results for λ = 0.47 which corresponds to our setting γ = 0.9; UNI-
SNE at λ = 0 is essentially equivalent to our method at γ = 0. Our new
method attains the highest precision for both data sets and is comparable to
NeRV/SNE in terms of recall.

Based on Figure 1 our new method (denoted “NM” in the figures) per-
forms very well: it attains clearly the best precision. In terms of recall it is
roughly as good as NeRV or, equivalently, SNE. The simple regularization
approach UNI-SNE also performs fairly well, but our more rigorous approach
achieves better results.

3.2 Unsupervised classification

We additionally compare the methods using external validation, computing
unsupervised 2D displays and then measuring how well known but so far
unused classes are separated on the display. Class separation is measured by
classification accuracy of a k-nearest neighbor classifier (k = 5) operating on
the display coordinates; each point is classified according to a majority vote
of its k nearest neighbors excluding itself.

Four data sets are used. The Letter recognition data set is from the UCI
machine learning repository [2] and contains 4× 4 images of capital letters,
based on distorting letter shapes in different fonts; the data set has 16 di-
mensions and 26 classes. The Phoneme data set is from LVQ-PAK [10] and
contains spoken phoneme samples; the data are 20-dimensional and there
are 13 classes (different phonemes). The Landsat satellite data set is from the
UCI machine learning repository; it contains satellite images, each of which
is 3× 3 and measured in four spectral bands, yielding 36 dimensions per im-
age. Each image is classified into one of 6 classes which denote different soil
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Table 1: (In)separability of known classes on unsupervised diplays for four
data sets. The cost measure is classification error rate based on the visual-
izations with a k-nearest neighbor classifier, k = 5. Our method is the best
on three of the four data sets and second best on one set (Phoneme). On
Landsat data our method and LocalMDS yield the same accuracy. The best
method in each column has been boldfaced.

Letter Phon. Land. TIMIT
Eigenmap 0.914 0.121 0.168 0.674
LLE n/a 0.118 0.212 0.722
Isomap 0.847 0.134 0.156 0.721
MVU 0.763 0.155 0.153 0.699
LMVU 0.819 0.208 0.151 0.787
MDS 0.823 0.189 0.151 0.705
CDA 0.336 0.118 0.141 0.643
CCA 0.422 0.098 0.143 0.633
NeRV 0.532 0.079 0.139 0.626
LocalMDS 0.499 0.118 0.128 0.637
UNI-SNE, 0.299 0.072 0.136 0.628
λ = 0.47
NM, γ = 0 0.590 0.088 0.133 0.657
NM, γ = 0.9 0.326 0.080 0.128 0.594

types. The TIMIT data set is from the DARPA TIMIT speech database [17];
it contains phoneme samples, each of which is 12-dimensional, and there are
41 classes.

Our new method (“NM” in Table 1) with strong explaining-away dur-
ing training (γ = 0.9) yields the best results on two data sets (Landsat and
TIMIT), second-best on one (Letter), and third-best on one (Phoneme). The
use of explaining-away during training clearly improves results on all data sets
compared to the no explaining-away case (γ = 0, corresponding to SNE).
UNI-SNE performs almost as well: it is best on two data sets (Letter and
Phoneme), third-best on one (TIMIT) and fourth-best on one (Landsat).
Other methods that perform well are LocalMDS and NeRV.

Although for brevity we report the results of our method only with two
choices of γ, the results are very good for all the nonzero gamma values that
we tried (between 0.1 and 0.9). On TIMIT our method is best with any
such γ value; on Letter, Phoneme and Landsat, our method is always in the
top-two, top-three, and top-four respectively.

3.3 Demonstrations on toy data, face images, and fMRI data

We demonstrate the visualizations on three data sets. First, we replicate the
simple demonstration of the precision–recall tradeoff shown in [21]. Data
points are distributed on the surface of a three-dimensional sphere (Figure
2A). We create two-dimensional visualizations with our new method, with
two settings: no explaining-away (γ = 0; corresponds to SNE) which con-
centrates on minimizing misses, and strong explaining-away during training
(γ = 0.9) which concentrates on minimizing false positives. The result
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trained without explaining-away (Figure 2B) minimizes misses by squashing
the sphere flat, which leads to numerous false neighbors when points origi-
nally on opposing sides of the sphere are placed near each other. With strong
explaining-away (Figure 2C) false neighbors are minimized by opening up
the sphere, at the expense of missing some neighbors across the tear. Both
solutions are useful visualizations of the sphere, but for different purposes.

Secondly, we visualize the face images data set which was already used in
the previous section. In the plot with γ = 0.9, Figure 2D, faces of the same
person become mapped close to each other in the visualization.

Thirdly, we visualize a set of functional magnetic resonance imaging (fMRI)
measurements. The data set [13] includes measurements of six healthy young
adults in two measurement sessions where they received temporally non-
overlapping stimuli: auditory (binaural tones or a male voice), visual (shown
video clips), and tactile (touch pulses delivered to fingers). Using an MRI
scanner, 161 whole-head volumes (time points) were obtained for each per-
son in each test. Preprocessing of the volumes included realignment, nor-
malization, smoothing, and extraction of 40 components by independent
component analysis; see [24] for details.

For our purposes we took every fourth time point (whole-head volume)
from the first half of each session as a data item to be visualized, yielding
6 × 2 × 19 = 228 data items with 40 dimensions. We visualize this data
set in two dimensions using our new method with explaining-away (γ = 0.9)
during training. Figure 2E shows the result. The different stimuli types are
separated in the visualization. This kind of a display is useful for interactive
analysis of the experiment, where browsing for evidence of common patterns
is interleaved with interactive slicing through the 3D brain volumes to more
accurately view the sets of 3D active regions.

4 CONCLUSIONS AND DISCUSSION

We have introduced a novel way to perform nonlinear dimensionality reduc-
tion by bringing in the generative modeling framework and a way of con-
trolling the precision and recall of the visualization. The method includes
Stochastic Neighbor Embedding (SNE) as a special case, and thus gives a
generative interpretation for it, but where SNE minimizes only one kind of
error (misses) we allow a flexible amount of explaining-away during training
to let the model concentrate on reducing the other kind of error, false pos-
itives. Our model simply mixes the retrieval “user model” linearly with an
explaining-away distribution during training; this remarkably simple model
suffices to yield a flexible tradeoff between minimizing misses and minimiz-
ing false positives, and in experiments it gives visualizations that outperform
alternative methods according to several measures.

Compared to the earlier regularization-based approach UNI-SNE [5], our
method performs slightly better. Furthermore, it has a novel interpretation
and an analysis in terms of precision and recall, and it corrects a problem
present in UNI-SNE. In contrast to UNI-SNE, the new method is able to
find the optimal embedding.

Compared to a previous approach [21] which also minimized a tradeoff
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C

AD

Figure 2: Demonstrations of our method. A-C demonstrate the tradeoff be-
tween misses and false positives. Points on a three-dimensional sphere (A) are
mapped to a two-dimensional display by the new method. In B, the visualiza-
tion is optimized without explaining-away (γ = 0; corresponds to Stochastic
Neighbor Embedding) which minimizes misses by squashing the sphere flat.
In C, the visualization is optimized with strong explaining-away (γ = 0.9)
which minimizes false positives by opening up the sphere. D: Face images
(γ = 0.9); faces of the same person occur close to each other. E: Visualiza-
tion of fMRI whole-head volumes from an experiment with several people
experiencing multiple stimuli (γ = 0.9). The four stimuli types (red: tactile,
yellow: auditory tone, green: auditory voice, blue: visual) have become sepa-
rated in the visualization; the two auditory stimuli types are arranged close-by
as is intuitively reasonable. An axial slice is shown for each whole-head vol-
ume, chosen so that the shown slice contains the highest-activity voxel.
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between misses and false positives, our novelty is the rigorous generative
framework; our cost function is directly a likelihood of observed neighbor-
hoods and we control precision and recall by using a generative model. This
makes it easier to analyze the performance and extend the model. In partic-
ular, it should now be possible to start to rigorously learn the user model too,
on-line or off-line, to adapt to real user behavior and needs.

We have now brought information visualization into the domain of rigor-
ous probabilistic generative modeling. The specific modeling choices were
made to show that this is possible; we did not yet make any claims about
optimality, in particular about maximization of precision. However, even
the proof-of-concept model outperformed existing models in empirical tests,
giving strong support to this line of research.

A simple extension is to use alternative distributional assumptions. In-
stead of the Gaussian falloffs which gave very good results here, there is evi-
dence that t-distributed neighborhoods could work even better for visualiza-
tions [18].

In this paper the goal is information visualization, where it is natural to
have 2-3 output dimensions. Controlling precision and recall with genera-
tive modeling may also be useful more generally in dimensionality reduction
with higher output dimensionalities.
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