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1 Extended Abstract

1.1 Introduction

The combined, unsupervised analysis of coupled data sources is an open problem in machine learn-
ing. A particularly important example from the biological domain is the analysis of mRNA and
protein profiles derived from the same set of genes (either over time or under different conditions).
Such analysis has the potential to provide a far more comprehensive picture of the mechanisms of
transcription and translation than the individual analysis of the separate data sets.

The problem is similar to that attacked with traditional Canonical Correlation Analysis (CCA) but in
many application areas, the CCA assumptions are too restrictive. Probabilistic CCA [1] and kernel
CCA [2] have both been recently proposed but the former is still limited to linear relationships
and the latter compromises the interpretability in the original space. In this work, we preset a non-
parametric model for coupled data that provides an interpretable description of the shared variability
in the data (as well as that that isn’t shared) whilst being free of restrictive assumptions such as those
found in CCA.

The hierarchical model is built from two marginal mixtures (one for each representation - generali-
sation to three or more is straightforward). Each object will be assigned to one component in each
marginal and the contingency table describing these joint assignments is assumed to have been gen-
erated by a mixture of tables with independent margins. This top-level mixture captures the shared
variability whilst the marginal models are free to capture variation specific to the respective data
sources. The number of components in all three mixtures is inferred from the data using a novel
Dirichlet Process (DP) formulation.

1.2 The model

Each dataset consists of N instances, xn and yn. The marginal models are standard mixture models
with components indexed by k (for x) and j (for y). The top level mixture is indexed by i. Us-
ing DP(α, H) to denote a Dirichlet Process with base measure H and concentration α, the model
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follows the following specification

Gx
0 ∼ DP(γx,Hx) , Gy

0 ∼ DP(γy,Hy) ,

Gx
i ∼ DP(βx, Gx

0) , Gy
i ∼ DP(βy, Gy

0) ,

π ∼ GEM(α) , zn ∼ π ,

θx
n ∼ Gx

zn
, θy

n ∼ Gy
zn

,

xn ∼ fx(x|θx
n) , yn ∼ fy(y|θy

n) .

where the superscripts x and y in general denote the two margins, and GEM(α) is the stick-breaking
distribution. Concentration parameters γ and β are margin-specific, defining the diversity, or “ef-
fective number” of the j (or k)-clusters, and α is the concentration parameter defining the diversity
of the top-level clusters over i. Cluster parameters, originating from the base measures (priors) Hx

and Hy , are denoted by θx and θy . Both margins have a hierarchy of DP’s [3], with the top-level
processes Gx

0 and Gy
0 , and processes that are specific to the components i. The latent variables z are

top-level cluster identities for the data samples. Finally, fx and fy are likelihoods of data, specific
to each margin cluster j and k, but in the DP notation parameterized directly by the parameters
sampled from the base measures and circulated through the DP hierarchies.
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Figure 1: Mixture model plates diagram.

Following the Chinese cuisine metaphor popular in models such as this, the Chinese restaurant fran-
chise (describing the hierarchical DP model of [3]) has now grown from a finite to an infinite number
of restaurants. Rather than customers being pre-allocated to restaurants, they are now allocated ran-
domly, according to π. Unusually, each restaurant has two course-specific rooms (e.g., starter x and
main course y) both with their own set of tables. As they must eat the correct course in each room,
customers are assigned to one x-table and one y-table. The structures (Gx

0 , Gy
0) at the franchise

headquarters and the local (Gx
i , Gy

i ) in restaurants exist for each course separately, and all decisions
of the franchise are course-specific. The parameters α and γ describe how readily the franchise
will open new restaurants and generate new dishes whilst β controls how keen the restaurants are
to lay out new tables. This combination of multiple (here two) rooms of tables with room-specific
dishes shared over an infinite number restaurants could be called Multi-Course Chinese Restaurant
Franchise.

1.3 Estimation

We present a collapsed Gibbs sampler for sampling from the posterior distribution over assignments
that is appropriate if the chosen DP base measures are conjugate to the likelihood. For a particular
datapoint n, we first remove n from the current assignments and then assign it to a restaurant i
(generating a new one if necessary) and then to marginal components, j and k, conditioned on this
restaurant. Finally, dishes are re-assigned to tables and the various hyper-parameters are updated
(unless fixed by the user). As in [4] (and described in more detail in [5]) it is also possible to treat
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the various concentration parameters as random variables and sample them within the model. We use
nested Metropolis-Hastings sub-samplers for this task but note that other alternatives are possible
(e.g. [5]).

1.4 Synthetic Example

Whilst we have validated our model on both synthetic and real biological data, we will provide
only synthetic results in this abstract. Figure 2(a) shows the two data sets with different symbols
representing the true top-level grouping. The symbols are consistent across the two data sets. There-
fore, there are three true top-level components, each of which comes from 2 marginal x compo-
nents and one marginal y component. Multivariate Normal-inverse-Wishart priors were used for
the marginal base measures (with hyper-parameters v0 = 3 (number of dimensions +1), κ0 =
1, µ0 = [0 0]T ,Λ0 = [1 0; 0 1], see e.g. [6]) and Inverse-Gamma hyper-priors (p(α|a, b) ∝
α−(a+1) exp(−b/α)) were placed on each of the concentration parameters with hyper-hyper-
parameters a = b = 1. In Figure 2(b) we show the posterior distribution over top-level compo-
nents (the inset plot shows the auto-correlation for this value) where it can be seen that the mode
is positioned over the true value. The rather high weight given to I = 4 is predominantly due to
the creation (and subsequent) destruction of singleton components. In the final plot, Figure 2(c), we
depict the decomposition from a typical sample. For this particular sample, I = 3 and the top row
shows the three contingency tables over the marginal assignments. From the size of these tables we
can see that at this sample there were k = 4 components for x and j = 3 components for y. In the
contingency tables, the lighter the color, the higher the probability (black = zero). Taking i = 1 as
an example, we notice that the contingency table correctly picks out one y component and two x
components, corresponding to the component depicted by blue squares in Figure 2(a).
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(a) Synthetic dataset for x (left) and y (right).
Symbols/colors represent top-level clustering.
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(b) Marginal posterior distribution over the num-
ber of top-level components, I . (Inset - autocorre-
lation)
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(c) Decomposition from typical sample. Top row shows contingency table
mixture components (the lighter the color, the higher the probability) and bot-
tom row shows data associated with this component. Notice how x and y are
independent for each component alone.

Figure 2: Model results on synthetic data.
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