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Abstract

A recent variant of multi-task learning uses the other tasks to help in learning a
task-of-interest, for which there is too little training data. The task can be classi-
fication, prediction, or density estimation. The problem is that only some of the
data of the other tasks are relevant or representative for the task-of-interest. It has
been experimentally demonstrated that a generative model works well in thisrel-
evant subtask learningtask. In this paper we analyze the generalization error of
the model, to show that it is smaller than in standard alternatives, and to point out
connections to semi-supervised learning, multi-task learning, and active learning
or covariate shift.

1 Introduction

Lack of a sufficient amount of training data is a recurring problem in practical data analysis and
machine learning studies. In bioinformatics, for instance in microarray data analysis, this has been
referred to as the largep, smalln problem: It is hard to learn classifier or regression models when the
dimensionality of the data samplesp is large and the number of samplesn is small. Recommender
systems and user modeling share an analogous problem: it would be useful to give good predictions
or recommendations already when only a few observations of the user’s behavior have been made.

The problem can be alleviated by regularizing the predictors, and by including more prior knowledge
to the model structure or in the prior distribution of the parameters. Collecting new data helps too.
Several machine learning scenarios have been developed to help in cases where these straightforward
alternatives are not applicable or available. For instance, in semisupervised learning a classification
task where labeled data is the scarce resource, can be aided by including non-labeled data from the
same distribution. In multi-task learning several tasks are learned together, in the hope that the tasks
share properties which help in learning each task. Common to these scenarios is that they try to
incorporate more data into the training data set.

A central practical problem in adding more data is that most models assume all training data to be
“relevant”; typically the implicit assumption is that all training data come from the same distribution,
or at least that adding the data to the learning set improves the performance. Requiring all data to
come from the same distribution is a strong assumption, and if it could be relaxed, it would be
possible to include data sets or tasks containing only partly relevant data. Useful sets abound in
genomic databanks and measurement databases in bioinformatics, for instance, or data about other
users or products in recommender systems.

Relevant subtask learningis a recent variant of multi-task learning, where the assumption of repre-
sentative data is relaxed by assuming that the learning data is a mixture of relevant and irrelevant
samples. The setup is that there is one task-of-interest, which is special in that the test data is known
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to come from its distribution. In the other tasks, some samples come from the same distribution and
some not, and it is naturally not known which. In other words, the other tasks are contaminated by
data from irrelevant subtasks, and we would only like to use the data from the relevant subtasks. The
relevant subtask model (RSM) (Kaski & Peltonen, 2007) builds a classifier for the task-of-interest
under these assumptions; we will generalize this setup to unsupervised learning, which can naturally
model classes as well. RSM has been empirically demonstrated to outperform standard multi-task
learning and the straightforward alternatives of learning the task-of-interest separately and pooling
all data together.

From the statistical point of view good performance of RSM is not trivial since the increased com-
plexity of the learning model increases the generalization error. In this paper we derive the asymp-
totic generalization error for maximum likelihood estimates. Comparing the generalization error of
alternative models we prove that RSM is still better than the others.

2 Relevant Subtask Learning

Relevant subtask learning is a variant of multi-task learning. In multi-task learning (Caruana, 1997;
Marx et al., 2005; Raina et al., 2005) there are several classification tasks, and the question is
whether solving the problems together improves performance compared to solving each separately.
In practice, the tasks are different data sets. More generally, instead of classification problems the
tasks could be other statistical modeling tasks such as regression, clustering or density estimation;
in all cases the research problem is to learn a good estimator for each task, transferring information
between the tasks as needed.

In relevant subtask learning the setup is asymmetric. One of the tasks is a target task, the “task-of-
interest”, and the research problem is whether the other tasks can be used to help in better solving
the target task. In practice the tasks are data sets, and the goal is to find more data to complement
the scarce learning data in the task-of-interest. The obvious problem is that not all data in the other
tasks are relevant in the sense of coming from the same distribution or at least helping in learning
the task-of-interest. Relevant subtask learning makes the assumption that each task is a mixture of
relevant and irrelevant data, that is, each task is a combination of a relevant subtask and an irrelevant
subtask.

In this paper we will consider the unsupervised setting of density estimation, and two tasks without
loss of generality: the task of interest (task number 1) and a supplementary task (task number 2).
Let us denote the distribution of data in the task-of-interest byq1(x) = q01(x), where the datum
x ∈ RM . The data of the irrelevant subtask within task 2 follow the distributionq02(x).

For learning we are given two training data setsD1 andD2, one for each task, where#D1 = αn
and#D2 = (1−α)n for 0 < α < 1. Hereαn of course needs to be a natural number.D1 is known
to be sampled fromq01(x), but generally#D1 is too small for learning an adequate model forq01.

The supplementary data setD2 contains samples from both the same distribution asD1, and from
the irrelevant subtask. Hence the density is a mixture,

q2(x) = c∗q01(x) + (1 − c∗)q02(x),

where0 < c∗ < 1 is a constant. All quantities above, theq andc∗, are unknown to us. Then,
we formally rewriteD2 = D21 + D22, whereD21 andD22 have been sampled fromq01 andq02,
respectively. Obviously, the data inD2 do not have a label showing which distribution they come
from, q01 or q02. The data inD1 have the label since they are all fromq01. This situation is
analogous to semi-supervised learning (Zhu, 2007), in which a small labeled training data set of a
classifier is complemented with additional unlabeled data. The difference is that in RSL the goal is
not to classify samples according to the labels but instead to build a good model forq1(x) based on
D1 andD21. In this sense relevant subtask learning even resembles “one-class classification” (Tax,
2001; Tax & Duin, 2001).

The test data setDt is known to come fromq01(x). This fundamentally separates RSL from standard
multitask learning; we are only interested in the target task. As a result, since we use both data sets
D1 andD2 for training, the test distribution is different from the training distribution. Moreover,
we can change the training distribution by selecting the data for training. This scenario is similar
to active learning (Fedorov, 1972), which focuses on doing the active selection, and the covariate
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Table 1: Data structures and learning models

method data training model prediction model
with MLE

true parameter

M1 D1 p1 (single dist.) p1(x|â) a∗

M2 D2 p2 (mixture) p01(x|s(ŵ2)) w∗
2 = (a∗, b∗, c∗)

M3 D1 ⊕ D2 p1 ⊕ p2 (RSM) p01(x|s(ŵ3)) w∗
3 = (a∗, b∗, c∗)

M4 D1 + D2 p2 (mixture) p01(x|s(ŵ4)) w∗
4 = (a∗, b∗, α + (1 − α)c∗)

shift (Shimodaira, 2000), where the research interest is in studying the effects of the difference in
the training and testing distributions.

Let us assume that our learning model can attain the true distributions which generate the training
data. In other words, we prepare modelsp01(x|a) = p1(x|a) andp02(x|b), wherea ∈ Rd and
b ∈ Rd are the parameters, respectively. Then the assumption translates to the following: there exist
true parametersa∗ andb∗ such that

q01(x) = p01(x|a∗), q02(x) = p02(x|b∗).
Let us define a mixture model for modelingD2:

p2(x|w) = cp01(x|a) + (1 − c)p02(x|b),
wherew = {a, b, c}. More precisely,a = (w1, . . . , wd), b = (wd+1, . . . , w2d), andc = w2d+1.

With these definitions we can formulate the possible solutions to the learning problem more pre-
cisely. Table 1 summarizes the methods. We will use maximum likelihood estimator (MLE)ŵi of
Mi for i = 1, . . . , 4. Each Mi is defined as follows:

(M1) Single-task learning. The first and the simplest approach is to use only data from the task
of interest, discarding the supplementary data altogether.

(M2) Learning only from the supplementary task. A slightly artificial choice is to discardD1

altogether and learn only fromD2. The model M2 is expected to be better than M1 when#D1 is
too small and the estimation usingD1 is not reliable.

(M3) Relevant subtask model. M3 corresponds to the RSM of (Kaski & Peltonen, 2007). The
likelihood is defined by

ŵ3 = arg max
w

{ ∑
xi∈D1

ln p1(xi|a) +
∑

xi∈D2

ln p2(x|w)

}
.

Note that the complexity of the model is more than M1. You can see the dimension of the parameters
increases fromd to 2d + 1, which could cause worse generalization.

(M4) Pooled data model. The simplest approach, optimal when data of all tasks come from the
same distribution, is to pool all data and estimate a single model. Since we know the data may be a
mixture of relevant and irrelevant data, we will learn the mixture model.

In Table 1,D1 ⊕ D2 is the combined data set with the task label andD1 + D2 is the merged data
set, where we cannot distinguish the difference between the original data sets any more. Thes(·) is
a function that chooses the parameters corresponding to the target task fromw, namelys(w) = a.

3 Analysis of the Generalization Error

Let us define the generalization error of the learning methods by

Gi(n) = ED1⊕D2

[∫
q1(x) ln

q1(x)
p01(x|s(ŵi))

]
,

whereED1⊕D2 [·] denotes the expectation over the training dataD1 andD2, the suffixi stands for the
error of the learning method Mi, and we defines(ŵ1) = â1 to simplify the notation. The following
theorem is the main contribution of this paper:
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Theorem 1 The generalization error has the asymptotic form

G1(n) =
d

2αn
+ O

(
1
n2

)
,

G2(n) =
1

2(1 − α)n
Tr[I(a∗)J(w∗

2)−1] + O

(
1
n2

)
,

G3(n) =
1
2n

Tr[I(a∗)K(w∗
3)−1] + O

(
1
n2

)
,

G4(n) =
1
2n

Tr[I(a∗)J(w∗
4)−1] + O

(
1
n2

)
,

where theI, J,K are (2d + 1) × (2d + 1)-dimensional matrices where

I(a∗)ij =
∫

∂ ln p1(x|a∗)
∂wi

∂ ln p1(x|a∗)
∂wj

q1(x)dx,

J(w∗)ij =
∫

∂ ln p2(x|w∗)
∂wi

∂ ln p2(x|w∗)
∂wj

q2(x)dx,

K(w∗) = αI(a∗) + (1 − α)J(w∗)

for a∗ = s(w∗) ⊂ w∗.

As a reminder,d is the number of parameters inp01, n is the total number of data samples, andα is
the proportion of samples in the task-of-interest data#D1. Note thatI(a∗) has non-zero elements
in the top-leftd × d submatrix. Comparing to the coefficients of the generalization errors, we can
find the following:

Corollary 1 Generalization error of M3 is smaller than that of M1 or M2.

This corollary implies that the advantage resulting from increasing the number of training data is
stronger than the disadvantage caused by the cost for parameter tuning.

4 Discussion

In this paper we have derived the asymptotic generalization error of relevant subtask learning mod-
els, estimated using maximum likelihood. The results gave an interesting insight that RSM is the
best alternative when the model can attain the true distribution. This means that the advantage to get
more data is larger than the disadvantage to increase the complexity of the model. Since our model
setting is general, applications to practical data such as bioinformatics are expected in future studies.

References

Caruana, R. (1997). Multitask learning.Machine Learning, 28, 41–75.

Fedorov, V. V. (1972).Theory of optimal experiments. New York: Academic Press.

Kaski, S., & Peltonen, J. (2007). Learning from relevant tasks only.ECML (pp. 608–615).

Marx, Z., Rosenstein, M. T., Kaelbling, L. P., & Dietterich, T. G. (2005). Transfer learning with an ensemble
of background tasks.NIPS workshop on inductive transfer.

Raina, R., Ng, A. Y., & Koller, D. (2005). Transfer learning by constructing informative priors.NIPS workshop
on inductive transfer.

Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference, 90, 227–244.

Tax, D. M. J. (2001).One-class classification. Doctoral dissertation, Delft University of Technology.

Tax, D. M. J., & Duin, R. P. W. (2001). Uniform object generation for optimizing one-class classifiers.Journal
of Machine Learning Research, 2, 155–173.

Zhu, X. (2007). Semi-supervised learning literature survey(Technical Report TR1530). Computer Science,
University of Wisconsin Madison.

4


