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Abstract— Understanding the nutritional states
and profiles of tree species is important for monitoring
the well-being of forests. Data from foliar surveys are
available, but there is still need to better understand
the underlying nutritional mechanisms in trees. In this
paper, the nutrient concentrations of pine and spruce
needles in Finland between 1987–2000 are analyzed to
build nutrition profiles. The profiles are built from the
data by clustering of the Self-Organizing Map. The VS
algorithm divides the data into base clusters using re-
gion growing and forms a hierarchy from the base clus-
ters. The hierarchy tree is pruned and the final clusters
are selected from the pruned tree. We were able to di-
vide the measurements into six groups. In each group
the growth of the needles and the amounts of the nu-
trients were different and thus, different groups rep-
resented different kinds of growing conditions. With
the help of the domain expert, using the results of the
clustering method, it was possible to construct a tem-
poral model that characterizes the development of the
forests of Finland.

1 Introduction

Living plants are capable of taking up substances from
the environment and using them for the synthesis of
their cellular components. These nutrients play an im-
portant role in the physiological and biochemical pro-
cesses of forest ecosystems. Because the foliar min-
eral composition is closely related to the environment,
chemical foliar analysis is a useful diagnostic and mon-
itoring tool in environmental and forest research [4].

In this study, clustering of the Self-Organizing Map
is used to analyze the relations within the chemical
composition of tree foliage. Measurements from pine
and spruce forests in Finland between 1987 and 2000
are used as the data set for the method.

Previously, the algorithm has only been tested with
artificial data and thus, this was the first opportunity
to test the performance of the algorithm with real-
world data. The clustering method has been presented
in more detail in [9] and some results with the nutrition

data in [5, 6].
It is found that clustering of the SOM is a useful tool

in forest nutrition analysis. The clustering method is
able to effectively represent the structure in the rela-
tions of nutrient concentrations.

In Section 2, the forest nutrition data used in the
analysis is described. In Section 3, the standard SOM
is described and it is followed by a description of the
VS algorithm used in this study. The results are shown
in Section 4 and the study is summarized in Section 5.
Section 6 discusses further work.

2 Forest Nutrition Data

The measurements were made from needle samples col-
lected from the conifer trees in forests of Finland. The
measured variables were different nutrient concentra-
tions and the mass of the needles. The measurements
and analyses of the data described in this section were
mostly carried out by the personnel of the Finnish For-
est Research Institute. For details concerning the mea-
surement techniques, see [4].

Three concentration measurements: nitrogen N
(mg/g), sulfur S (mg/g), and phosphorus P (mg/g)
and the mass of the needles were used in the analy-
sis, as they were thought as important by the domain
experts. In addition, some other nutrient concentra-
tions including for example Calcium Ca, magnesium
Mg, and potassium K were measured, but not used
with the analysis method. The needle mass (NM)
was reported as the mass of 1000 needles (g/1000).
36 stands throughout Finland were sampled annually
for the above-mentioned variables between 1987–2000.
There was, however, some missing data. From the 504
measurements (14 years, 36 stands), there were 216
missing values from NM and 137 from each of the nu-
trient concentrations. Altogether 31% of the measure-
ments were missing. In 16 stands, the main tree species
was Norway spruce (Picea abies) and in the rest Scots
pine (Pinus sylvestris).



3 Clustering using the Self-
Organizing Map (SOM)

A clustering algorithm based on the Self-Organizing
Map (SOM) [3] was chosen for this problem because of
its good visualization properties. The SOM preserves
neighborhood relations and presents high-dimensional
datasets on a 2-dimensional grid. It is therefore an im-
portant tool in data mining with its main applications
in visualization and clustering.

3.1 The Self-Organizing Map

The Self-Organizing Map consists of a low-
dimensional, usually 2-dimensional, regular grid
of map units that are connected to adjacent ones by a
neighborhood relation [3]. The grid can be effectively
used to visualize and explore properties of the data
[8]. Each map unit i is represented by a prototype
vector, mi = [mi1, . . . ,mid]T , where d is input vector
dimension.

The prototype vectors define a tessellation of the
input space into a set of Voronoi sets

Vi = {x | ‖x − mi‖ < ‖x − mj‖ ∀j �= i}, (1)

where x are the data vectors and ‖ · ‖ is the Eu-
clidean norm. In effect, each data vector belongs to the
Voronoi set of the prototype to which it is closest. In
other words, SOM quantizes the training data set with
a representative set of prototype vectors. The quanti-
zation process is regularized by the neighborhood re-
lation such that topology of the data set is preserved.

3.2 The VS clustering algorithm

Clustering algorithms can be divided into two main
categories: partitive and hierarchical algorithms.
Partitive algorithms divide the data set into non-
overlapping partitions whereas hierarchical algorithms
construct a hierarchy tree of the clusters. Usually, the
structure of the hierarchy is such that all the data be-
longs to the top level cluster and at the bottom level,
each data vector forms a separate cluster.

In this study, the hierarchical VS clustering algo-
rithm, named after its developers [9], is used to divide
the data into clusters. It is a two-level approach: first,
a SOM is trained and the data is partitioned into a
large number of Voronoi sets, each corresponding to
one map unit. Subsequently, the map units are clus-
tered. All data vectors in a Voronoi set belong to the
same cluster as the corresponding map unit. An ad-
vantage over more traditional methods like k-means
is that the result can be effectively visualized on the
2-dimensional grid. Another advantage is that by clus-
tering the SOM rather than the data directly, signifi-
cant gains in the speed of clustering can be obtained
[8].

U-matrix is a commonly used tool to cluster the
SOM visually [7]. It visualizes distances between each
map unit and its neighbors. Unfortunately, when clus-
ters are identified visually, the results by different peo-
ple are not necessarily the same. Therefore, an auto-
mated clustering algorithm that follows the results of
the U-matrix was used. The details of the algorithm
are presented in [9]. The basic idea of the VS algorithm
is as follows:

(1) The data is quantized with SOM and a distance
matrix, showing the median distances between
neighboring map units is calculated.

(2) The map is divided into a set of base clusters. This
is done using region growing with local minima of
the distance matrix as seed points.

(3) A cluster hierarchy is constructed from the base
clusters using an agglomerative algorithm and a
pruning procedure.

(4) The final partitioning with suitable number of
clusters is obtained from the hierarchy.

The phases (2)–(4) are described in detail in the fol-
lowing sections.

3.2.1 Region growing

The region-growing starts with setting the local min-
ima of the distance matrix as seed points. These are
the map units whose median distance to neighboring
units is smaller than the median distance of any of the
neighboring units to their neighbors. Next, the unas-
signed map unit with smallest distance to a cluster is
found and assigned to the corresponding cluster. Here,
a continuity constraint is used to ensure that the clus-
ters form continuous areas on the map. Only those
unassigned map units are considered for merging that
are neighbors of map units that belong to a cluster. As-
signing the map units is continued until all map units
belog to a cluster.

This procedure provides a partitioning of the map
into a set of base clusters, number of which is equal
to the number of local minima on the distance matrix.
A problem is that the distance matrix may have some
local minima that are products of random variations
in the data rather than real local maxima of the prob-
ability density function of the data. Such base clusters
can be pruned out of the clustering in a hierarchical
fashion.

3.2.2 Cluster hierarchy

In cluster analysis, constructing a cluster hierarchy is
often beneficial [2]. Apart from the need for pruning
explained above, a cluster hierarchy may represent the
true structure of the data better than a single-level
partitioning. Some clusters can be considered super-
clusters, consisting of several sub-clusters, which allows
the data to be investigated at several levels of detail.



An agglomerative clustering algorithm was used to
construct the cluster hierarchy from the base clusters.
This, however, produces a binary tree which may not
be representative of the true structure of the data.
The extra intermediate clusters were pruned out as ex-
plained in [9].

3.2.3 Final partitioning

A particular partitioning is obtained from the pruned
tree by starting from the top with all data in a single
cluster, and traversing the tree downwards by always
splitting the intermediate node with best clustering
validity index. The selection criterion for the num-
ber of final clusters was the following: the sub-clusters
were combined into a super-cluster if the distance be-
tween the means of the sub-clusters was smaller than
the standard deviation of the whole data.

4 Results

Because there was only a little a priori information
about the structure of the data, a clustering method
was used to analyze the relationships between the nu-
trients at the stand level. The N, S and P concen-
trations (c) in the needles and needle mass of the cur-
rent year’s needles were used as the 4-dimensional data
vector in the clustering method. The data vector for
measurement stand i and year t was thus

xi,t = (ci,t(N), ci,t(S), ci,t(P ), NMi,t)
T

. (2)

These elements were used because of their importance
to the growth of the tree and their dynamic temporal
behavior. Needle mass was used because it enabled us
to interpret the clusters based on nutrient concentra-
tion as well as nutrient content.

The data set was clustered using the algorithm ex-
plained in Section 3.2. The SOM was initialized lin-
early, i.e. the map weight vectors were initialized along
the two greatest eigenvectors of the covariance matrix
of the data. Then, the map was trained with SOM
Toolbox1 using the batch algorithm [3] in two rough
training epochs and five fine tuning epochs. The fi-
nal neighborhood width was 1 in order to ensure good
quality of quantization. A map consisting of a regular
hexagonal grid with 6 × 9 map units was used.

The U-matrix of the SOM is shown in Figure 1a and
the final clustering result in Figure 1b. As expected,
the clustering result is similar to the U-matrix [9]. The
hierarchical structure of the clustering can be seen in
Figure 2. One cluster (9) was pruned out of the hier-
archy and bottom level clusters 1 and 3 were combined
into cluster 8 in the final clustering. Clusters 2 and 7
are the most different from all other clusters. These
two clusters have the highest mean values of the con-
centration variables.

U−matrix

(a) U-matrix
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(b) Clustering

Figure 1: (a) U-matrix of the SOM. Darker color in-
dicates smaller value. (b) The clustering result. The
numbers (2-8) indicate which cluster the map unit be-
longs to. Some numbers are not present, because those
clusters weren’t chosen from the hierarchy to the final
clustering.
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Figure 2: Cluster hierarchy of the SOM. Black circles
are the final clusters.

The mean values and standard deviations of all the
measurements for the clusters are shown in Tables 1
and 2. The component planes of the SOM are shown
in Figure 3.

Needle mass is the variable that had the most miss-
ing measurements. Despite of that, needle mass con-
tributed quite much to the clustering result. It can
be seen that clusters 4–7 have rather low and clusters
2 and 8 rather high mean needle mass values. These
two groups of clusters don’t overlap each other much
with respect to needle mass, i.e. their standard de-
viations are fairly small. The reason for this is that
according to histograms (not shown), needle mass has
a clearly bimodal probability density function, whereas
all the concentration variables have more or less uni-
modal probability density functions. The bimodality
of needle mass is simply caused by the two different
tree species having needles of different size. Now, the
two groups of clusters approximately correspond to the
two different peaks of the probability density function
of needle mass.

1http://www.cis.hut.fi/projects/somtoolbox
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Figure 3: The component planes of the SOM. The val-
ues of the component planes correspond to the values
of the normalized data.

Table 1: The means and standard deviations of the
concentration and needle mass measurements of the
clusters for spruce.

Cluster 2 4 5

N (mg/g) 14.9±1.8 12.2±0.9 10.1±0.5
S (mg/g) 0.95±0.07 0.95±0.12 0.84±0.07
P (mg/g) 1.79±0.12 1.32±0.19 1.50±0.21
NM (g/1000) - 4.2±0.8 4.4±0.9
Ca (mg/g) 4.84±1.31 4.61±1.26 3.29±0.90
Mg (mg/g) 1.15±0.16 1.16±0.16 1.12±0.08
K (mg/g) 7.12±0.53 6.38±0.86 6.34±0.91
Cluster 6 7 8

N (mg/g) 11.6±0.7 13.6±0.9 12.4±1.6
S (mg/g) 0.91±0.07 1.11±0.10 0.82±0.06
P (mg/g) 1.71±0.17 2.05±0.24 1.36±0.17
NM (g/1000) 4.3±0.8 4.5±0.7 -
Ca (mg/g) 4.98±1.30 5.07±1.16 5.23±1.43
Mg (mg/g) 1.22±0.16 1.28±0.12 1.16±0.19
K (mg/g) 6.42±1.10 6.49±1.10 6.82±0.51

The clusters have slightly different meanings for the
tree species. The nutrition profiles, i.e. the mean val-
ues and standard deviations of the clusters for the two
species are in Tables 1 and 2. For pine, the clusters
can be explained as follows [5]. Cluster 5 represents
trees with multiple-nutrient deficiency. All the con-
centrations and needle mass are low. Clusters 4 and
6 represent a sub-optimal nutrient status. Cluster 4 is
characterized by a deficiency of P and cluster 6 may
have P-excess. Clusters 2 and 7 have high S and P
concentrations. Both clusters have excess of these nu-
trients but only cluster 2 has high needle mass. Cluster
8, which is the most common one, has favorable S and
P concentrations but N is probably a limiting factor of
the growth.

For Norway spruce, cluster 7 represents forests with
an excess of N and S in their needles. Nevertheless,
the needles of cluster 7 have the highest needle mass of
all six clusters for spruce. Clusters 4, 5 and 6 are char-

Table 2: The means and standard deviations of the
concentration and needle mass measurements of the
clusters for pine.

Cluster 2 4 5

N (mg/g) 13.6±0.9 12.5±0.7 9.7±0.7
S (mg/g) 1.05±0.09 0.97±0.08 0.86±0.09
P (mg/g) 1.76±0.16 1.51±0.14 1.58±0.12
NM (g/1000) 12.6±2.8 8.9±1.5 5.2±1.4
Ca (mg/g) 2.38±0.40 2.20±0.40 2.96±1.02
Mg (mg/g) 1.14±0.15 1.06±0.09 1.12±0.15
K (mg/g) 5.61±0.45 5.10±0.56 6.45±0.62
Cluster 6 7 8

N (mg/g) 11.4±1.1 13.6±0.7 11.8±1.0
S (mg/g) 0.94±0.10 1.18±0.10 0.89±0.08
P (mg/g) 1.75±0.17 2.04±0.13 1.43±0.12
NM (g/1000) 8.6±1.7 9.6±1.7 11.1±2.6
Ca (mg/g) 1.80±0.31 2.36±0.30 1.97±0.40
Mg (mg/g) 1.05±0.15 1.24±0.19 1.06±0.13
K (mg/g) 5.58±1.02 5.87±0.45 5.09±0.53

acterized by deficiency of respectively Mg, Ca & K,
and K. Only a small but constant number of Norway
spruce forests was characterized by cluster 5. In spruce
forests this is a more dynamic cluster than than in pine
forests. Due to the absence of needle mass data, the
nutrient status of clusters 2 and 8 could not be char-
acterized. For Norway spruce, clusters 2 and 8 have
no observations for needle mass, and consequently val-
ues for the nutrient content are not available. Norway
spruce needles just started to show these nutrient pro-
files in 1999 and 2000. In these years the needle mass
was not measured.

The temporal switching of the cluster of a stand was
analyzed to find out if there is any structure in the de-
velopment of nutrient concentrations. The most com-
mon switches were 8–2, 8–4, 2–8, 4–8 and 6–4. When
considering two consecutive switches, the most com-
mon series were 8–2–8, 2–8–2, 8–4–8, 4–5–4, 4–6–4 and
4–8–2. These results are not very surprising since the
most common clusters are 8, 4 and 2 and usually, the
shifts happen between the most common clusters.

Because the absolute numbers of switches didn’t re-
veal much information about the data, the conditional
probabilities of switching the cluster were calculated.
The estimated matrices correspond to transition prob-
ability matrices in a first-order Markov model. They
are shown for spruce and pine stands respectively in
Tables 3 and 4. The high probabilities tell something
about the most typical switches. The process in spruce
stands seems to have some tendency to converge to
cluster 4 and in pine stands to cluster 8.

The typical transitions between clusters can be vi-
sualized more effectively by constructing graphs that
show the switches between clusters. These graphs are
shown in Figure 4 for both species separately. Spruce
stands usually belong to clusters 4–7, cluster 4 being
the most common one and 6 the second most common.



Table 3: The temporal cluster switch probability matrix
for spruce. The rows show the conditional probabilities
of transition from a certain cluster to another.

Prev.\Curr. 2 4 5 6 7 8

2 0.00 1.00 0.00 0.00 0.00 0.00
4 0.02 0.62 0.09 0.17 0.02 0.09
5 0.00 0.58 0.25 0.08 0.00 0.08
6 0.05 0.17 0.05 0.59 0.10 0.05
7 0.06 0.11 0.00 0.33 0.50 0.00
8 0.00 0.40 0.00 0.00 0.00 0.60

Table 4: The temporal cluster switch probability matrix
for pine. The rows show the conditional probabilities
of transition from a certain cluster to another.

Prev.\Curr. 2 4 5 6 7 8

2 0.41 0.13 0.00 0.00 0.03 0.44
4 0.27 0.14 0.00 0.00 0.14 0.45
5 0.08 0.08 0.77 0.00 0.00 0.08
6 0.00 0.00 0.00 0.00 0.33 0.67
7 0.62 0.00 0.00 0.00 0.12 0.25
8 0.11 0.08 0.00 0.01 0.00 0.80

Also, switches that happen with high probability are
5–4 and 8–4. In pine stands, the process is most of the
time in cluster 8. As time goes on, more stands switch
to cluster 8 than from cluster 8. Clusters 5, 6 and 7
are less common than 2 and 4. Switches that happen
with high probability are 2–8, 4–8, 6–8 and 7–2.

In the years 1987, 1988, 1991 and 1993, the high
needle mass cluster 8 was less usual than otherwise. In
1987 and 1988, the high sulfur concentration clusters 2
and 7 were more usual than normally. The reason for
high number of low needle mass clusters in 1991 might
be that there were a lot of measurements missing from
everywhere else but southern Finland, where the low
needle mass clusters are normally more probable than
elsewhere. This is caused by the fact that there are no
spruce stands in northern Finland. What reduces the
significance of this result is that in 1991, there were
needle mass measurements only from two stands. In
1993, the low needle mass cluster 4 was the most com-
mon one. Starting from 1995, the number of stands in
cluster 4 has decreased.

The clustering result on a geographical map for each
year can be seen in Figure 5. The probability of a
stand to be in cluster 8 doesn’t seem to be very much
connected to the geographical position of the stand.
In southern Finland, other clusters are a little more
common than cluster 8. Stands in the other clusters
are spread more unevenly on the map. A stand in
cluster 2 is most likely in northern or south-western
Finland. Clusters 4 and 7 can usually be found in
southern Finland and cluster 4 also in middle Finland.
Cluster 5 exists most often in south-eastern Lapland
(northern region in Finland) and cluster 6 in southern
and western Finland.
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Figure 4: Graphs showing the typical cluster switches.
Solid line denotes a probability higher than 0.4 and
dashed line a probability between 0.1 and 0.4. The
smaller number under the cluster number is the number
of years a stand has belonged to that cluster. Typical
transitions are shown for spruce (a) and for pine (b).

5 Summary and Conclusions

In this study, the nutrient concentrations of pine and
spruce needles in Finland between the years 1987–2000
were analyzed using clustering of the Self-Organizing
Map. The VS clustering algorithm was used in the
clustering and its performance with real-world data
was tested.

The clustering provided new information about the
relations of the nutrients between different years and
locations. With the clustering method, it was possible
to divide the measurements into six groups. In each
group, the growth of the needles and the amounts of
the nutrients were different and thus, different groups
represented different kinds of growing conditions. Us-
ing the result of the clustering method, it was possible
to construct a temporal model that characterizes the
development of the forests of Finland.

6 Further work

Processing and interpretation of large-scale foliar sur-
veys is hampered by difficulties to describe the struc-
ture in the data set and to interpret the observations.
The VS clustering method was found to be a promis-
ing approach to describe the structure in the data set,
however, some further improvements are needed to im-
prove the interpretation of the observations.

First, a model should be constructed that effectively
uses both the spatial and temporal dimensions of the
data. One possibility to achieve this would be to con-
struct different time series models for different parts of
the country. It would probably also be worth trying to
use separate models for different tree species and per-
haps even different weather conditions. The weather
data could be included as a more internal part to the
models. In this study, only the current year’s needles
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Figure 5: Clustering of the measurement stands for
each year plotted on the map of Finland. ′′◦′′ = cluster
2, ′′+′′ = cluster 4, ′′×′′ = cluster 5, ′′∗′′ = cluster 6,
′′�′′ = cluster 7, ′′�′′ = cluster 8.

were analyzed. Using also measurements from older
needles, more information about the growth and de-
velopment of the needles could be extracted.

In the future, the clustering model could be en-
hanced by using probability distributions instead of
the crisp clusters. This kind of fuzzy clustering can
be obtained by using for example Gaussian mixture
models or building the Gaussian distributions on top
of the Self-Organizing Map as in [1]. In addition to the
SOM, simple and perhaps useful visualizations of the
data could be achieved using other projection meth-
ods like Sammon’s mapping and principal component
analysis.
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