## Blizzard 2014 spoke task submission: Dual acoustic models and probabilistic cross-lingual speaker adaptation

R. Karhila ${ }^{1}$, D. Gowda ${ }^{1}$, M. Gibson ${ }^{2}$, O. Watts ${ }^{3}$, A. Suni ${ }^{4}$, M. Kurimo ${ }^{1}$<br>${ }^{1}$ Aalto University, ${ }^{2}$ Nuance Communications inc. ${ }^{3}$ University of Edinburgh, ${ }^{4}$ University of Helsinki

June 4th 2014

## Outline

- Blizzard 2014 Spoke Task - Overview
- Dual language synthesis - overview
- Label generation
- Method 1: Transcribe English in Indian script
- Method 2: Dual front-end with filler words
- Acoustic model training
- Speaker-dependent models
- Cross-lingual adaptation
- Model set merging and synthesis
- Spoke Task - Demo


## Blizzard 2014: Spoke Task

- Task: To sythesize dual-language utterances, primarily a native language (Indian) intersperced with words from a non-native language (English)
- Training data
- Single speaker data only in Indian language (a few hundred utterances)
- Example: "प्रसिद्ध कबीर अध्येता, पुरुषोत्तम अग्रवाल का यह शोध आलेख, उस रामानंद की खोज करता है "
- Audio data (16kHz, 16 bits) along with text in Indian script (UTF-8)
- Test data
- Example: "Under 19 cricket world cup में सोमवार को अफ़गानिस्तान ने ऑस्ट्रेलिया को हराकर, बड़ा उलटफेर किया है"


## Dual-language synthesizer



Aalto University
School of Electrical
Engineering

## Label generation - Method 1: Eng-to-Ind transcription

- Transcribe all English words in the target Indian langauge script and use the OSSIAN front-end (FE)

Input utterance
! (จవిధ cell ...)

Festival FE
For English
(/s/ /e/ /el/)

Eng | Phone |
| :---: |
| Mapping |
| Eng-Ind |

## Issues with Method 1: Eng-to-Ind transcription

- Works best for Telugu
- Telugu script most phonetic
- Worst for Tamil
- Context dependent phonemes in Tamil
- Eg: single phoneme [k] represents both phones $/ \mathrm{k} /$ and $/ \mathrm{g} /$
- Not so good for Hin, Guj, Raj, and Asm.
- Schwa insertion an isuue in Hin, Guj, and Raj.
- Not able to assess Assamese


## Label generation - Method 2: Dual frontend with filler words

- Use independent front-ends for English and the Ind. Lang., with filler words and merge the labels



## Acoustic model training 1: Indian language speaker dependent HTS

- Speaker dependent models for 3 different Indian languages - Hindi, Rajasthani and Telugu
- Training data (audio + UTF-8 text)
- No. of uterrances - Hindi: 875, Rajasthani: 1369, Telugu: 1470
- GlottHMM acoustic modeling with Ossian front-end
- Features - LSFs:30, LSFsource:10, HNR:5, Gain:1, F0:1
- Trained with modified UEDIN Blizzard 2010 scripts.
- Number of reclusterings = 3


## Acoustic model training 2: Cross-lingual adaptation 0/4

- We want to create an English model set for each of the Indian language speakers:

- We'll use the Arctic KSP speaker's Indian accented English data as a starting point



## Acoustic model training 2: (Ind-Eng HTS) Cross-lingual adaptation 1/4

- English speaker-dependent model trained with Matt Gibson's code for two-pass decision tree generation:
- Top part of tree is populated by ASR-style questions related to triphone contexts No leaf nodes!
- Bottom part of tree contains TTS style questions about quinphone context, stress, position in phrase etc... and
 leaf nodes with Gaussians


## Acoustic model training 2: Cross-lingual adaptation 2/4

- After training, the Gaussians of the TTS model are collected based on the triphone contexts to make an ASR style model set
- This model set can be used to decode audio



## Acoustic model training 2: Cross-lingual adaptation 3/4

- Indian language speakers' utterances are decoded using the triphone set
- A simple phoneme loop is used as the language model
- Triphone labels are then aligned using the different associated fullcontext TTS-models as alternative pronunciations for each triphone.
- This gives a mapping between Indian language audio and English TTS-models and allows adaptation to be carried out normally.



## Acoustic model training 2: Cross-lingual adaptation 4/4

- Potential trouble
- Lack of data for an average voice
- We're adapting a speaker-dependent voice
- But at least we have a fair amount of training data for adaptation
- Could complete only 3 out of 6 Indian languages
- Hindi, Rajasthani and Telugu completed. Stay tuned for samples!
- Tamil: Lack of an Indian-English female voice
- Gujarathi: Bad cross-lingual adaptation
- Assamese: Bad speaker dep. voice for Indian lang.


## Merging model sets

- Unseen models need to be synthesised using the decision trees, independently for both languages.
- The required models from both language model sets are concatenated:
- Macros are renamed to retain uniqueness
- Duplicate headers are removed
- Otherwise synthesis is done in a normal way

```
<STREAMINFO> 6 93 30 15 1 1 1
<MSDINFO> 6 0 0 0 1 1 1
<VECSIZE> 141<NULLD><USER><DIAGC>
~t "TrP 10"
<TRANSP> 7
~p "hnr_s4_1440"
<STREAM> 3-
<MEAN> 15
~h "
s+/0:v/1:ee/2:s/3:u/4:k/5:15/6:11/7:35/8:25/9:23/10:61/11:56
/12:65/13:4/14:66/15:64/16:57/17:64/18:8/19:5/20:1/21:3/22:2
/23:2/24:2/25:2/26:5/27:0/28:0/29:15/30:0/31:10/32:0/33:11/3
4:3/35:15/36:7/37:10/38:0/39:0/40:1/41:0/42:5/43:0/44:0/45:3
6/46:0/47:26/48:0/49:4/50:0/51:29/52:4/53:0/54:8/55:0/56:0/5
7:38/58:5/59:1/"
<BEGINHMM>
<NUMSTATES> 7
<ENDHMM>
~t "enTrP_10"
<TRANSP> 7
...
~p "en(flow_s2_301)169"
<STREAM> 2
<MEAN> 30
e/C/0+0+3/D/content_1/E/content+4:2+6&2+5#1+1/F/content_2/G/
0_0/H/11=7:1=1&L-L%/I/0_0/J/11+7-1"
<BEGINHMM>
```


## Demo page

## http://research.ics.aalto.fi/speech/demos/COIN_blizzard14/



1. Natural speech
samples: Some
hundreds of utterances
from each speaker are
used as training
material for synthetic


## Aalto University

School of Electrical
Engineering

## Issues to Ponder Over?

- How can a simple thing like this work?
- Role of filler words in label generation
- for smooth transition
- word count, accurate phone/context at boundaries
- what else?
- How significant is syllable and stress related information for Indian languages?


## References

1. Gibson, M.; Byrne, W., "Unsupervised Intralingual and Cross-Lingual Speaker Adaptation for HMM-Based Speech Synthesis Using Two-Pass Decision Tree Construction," Audio, Speech, and Language Processing, IEEE Transactions on, vol.19, no.4, pp.895,904, May 2011
2. Gibson, M.; Hirsimäki, T.; Karhila, R.; Kurimo, M.; Byrne, W., "Unsupervised cross-lingual speaker adaptation for HMM-based speech synthesis using two-pass decision tree construction," Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on , vol., no., pp.4642,4645, 14-19 March 2010
3. Simple4All Ossian front-end, http://homepages.inf.ed.ac.uk/owatts/ossian/html/index.html
4. T. Raitio, A. Suni, J. Yamagishi, H. Pulakka, J. Nurminen, M. Vainio, and P. Alku, "HMM-Based Speech Synthesis Utilizing Glottal Inverse Filtering", in IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 1, pp. 153-165, 2011.
5. Tokuda, K.; Nankaku, Y.; Toda, T.; Zen, H.; Yamagishi, J.; Oura, K., "Speech Synthesis Based on Hidden Markov Models," Proceedings of the IEEE , vol.101, no.5, pp.1234,1252, May 2013
6. Heiga Zen, Keiichi Tokuda, Alan W. Black, Statistical parametric speech synthesis, Speech Communication, Volume 51, Issue 11, November 2009, Pages 1039-1064
7. Tokuda, K., Zen, H., Yamagishi, J., Black, A., Masuko, T., Sako, S., Toda, T., Nose, T., Oura, K., 2008. The HMM-based speech synthesis system (HTS). [http://hts.sp.nitech.ac.jp/](http://hts.sp.nitech.ac.jp/).
